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Abstract This paper is a continuation of [1]. That is, it considers fuzzifying topologies, a special
case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying [2]. It investigates topological
notions defined by means of a-open sets when these are planted into the framework of Ying’s fuzz-
ifying topological spaces (by Lukasiewicz logic in [0, 1]). Other characterizations of fuzzifying o-
compactness are given, including characterizations in terms of nets and a-subbases. Several charac-
terizations of locally a-compactness in the framework of fuzzifying topology are introduced and the
mapping theorems are obtained.
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1. Introduction and preliminaries

In the last few years fuzzy topology, as an important research
field in fuzzy set theory, has been developed into a quite ma-
ture discipline [3-8]. In contrast to classical topology, fuzzy
topology is endowed with richer structure, to a certain extent,
which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [4], the kind of
topologies defined by Chang [9] and Goguen [10] is called
the topologies of fuzzy subsets, and further is naturally called
L -topological spaces if a lattice L of membership values has
been chosen. Loosely speaking, a topology of fuzzy subsets
(resp. an L -topological space) is a family 7 of fuzzy subsets
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(resp. L -fuzzy subsets) of nonempty set X, and 7 satisfies the
basic conditions of classical topologies [11]. On the other hand,
Hohle in [12] proposed the terminology L-fuzzy topology to be
an L-valued mapping on the traditional powerset P(X) of X.
The authors in [6,7,13,14] defined an L-fuzzy topology to be
an L-valued mapping on the L-powerset LY of X.

In 1952, Rosser and Turquette [15] proposed emphatically
the following problem: If there are many-valued theories be-
yond the level of predicates calculus, then what are the detail
of such theories ? As an attempt to give a partial answer to this
problem in the case of point set topology, Ying in 1991-1993
[2,16,17] used a semantical method of continuous-valued logic
to develop systematically fuzzifying topology. Briefly speaking,
a fuzzifying topology on a set X assigns each crisp subset of X
to a certain degree of being open, other than being definitely
open or not. Roughly speaking, the semantical analysis ap-
proach transforms formal statements of interest, which are
usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation
rules, and then these inequalities are demonstrated in an alge-
braic way and the semantic validity of conclusions is thus
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established. There are already more than 100 papers in fuzzify-
ing topology published in the last two decades, I guess. But
only a few papers can properly use the semantic method intro-
duced in the original papers of Ying, which I strongly believe,
can provide more delicate characterization of fuzzifying topo-
logical structure. So far, there has been significant research on
fuzzifying topologies [18-24]. For example, Ying [22] intro-
duced the concepts of compactness and established a general-
ization of Tychonoff’s theorem in the framework of fuzzifying
topology. In [24] the concept of local compactness in fuzzifying
topology is introduced and some of its properties are estab-
lished. In [18] the concepts of fuzzifying a-open set and fuzzify-
ing o-continuity were introduced and studied. Also, Sayed [21]
introduced some concepts of fuzzifying o-separation axioms
and clarified the relations of these axioms with each other as
well as the relations with other fuzzifying separation axioms.
Quite recently, Sayed in [1] used the finite intersection property
to give a characterization of fuzzifying a-compact spaces. In
classical topology , a-compact spaces and locally o-compact
spaces have been studied in [25,26]. In this paper, the concepts
of a-base and a-subbase of fuzzifying a-topology are intro-
duced. Other characterizations of fuzzifying a-compactness
are given, including characterizations in terms of nets and o-
subbase. Several characterizations of locally a-compactness
in the framework of fuzzifying topology are introduced and
the mapping theorems are obtained. Thus we fill a gap in the
existing literature on fuzzifying topology. We use the terminol-
ogies and notations in [1,2,16-18,21,22,24] without any expla-
nation. We note that the set of truth values is the unit interval
and we do often not distinguish the connectives and their truth
value functions and state strictly our results on formalization
as Ying does. We will use the symbol ® instead of the second
“AND” operation A as dot is hardly visible. This mean that
[(] <[e = Y] <= [o] @[] < [y]. All of the contributions in
general topology in this paper which are not referenced may
be original.

We now give some definitions and results which are useful
in the rest of the present paper. The family of all fuzzifying o-
open sets [18], denoted by 7, € I(P(X)), is defined as

A€, = Vx(x € A— x € Int(Cl(Int(A)))), i. e., 1,(A4)
= N\ Int(Cl(Int(4)))(x).

xeAd
The family of all fuzzifying a-closed sets [18], denoted by
F, € 3(P(X)), is defined as 4 € F, := X — 4 € 1,. The fuzzify-
ing o-neighborhood system of a point x € X [18] is denoted by
N*'(or N*) € 3(P(X)) and defined as N*(4) = \/ .(B).
xXeBCA

The fuzzifying o-closure of a set 4 c X [18], denoted by
Cl, € 3(X), is defined as Cl,(4)(x) =1 — Ni(X — A). If (X,7)
is a fuzzifying topological space and N(X) is the class of all nets
in X, then the binary fuzzy predicates >*, * € JI(N(X) x X)
[23] are defined as

Spx i =VA (A eN” - SCA) ,Soctx 1=V A <A eN” - SliA),

where “Sp?x”, S < *x”” stand for ““S a-converges to x”, “x is
an a-accumulation point of S”, respectively; and “C”, “[C” are
the binary crisp predicates “almost in “,”often in”, respec-
tively. The degree to which x is an a-adherence point of S is
adh,S(x) = [Se“x]. If (X,7) and (Y,0) are two fuzzifying
topological spaces and fe Y¥, the unary fuzzy predicates

C,, I, € 3(YY), called fuzzifying a-continuity [18], fuzzifying
a-irresoluteness [1], are given as Cyf):=VB(B<€o—
B e, L(H)=VBBeo,—f(B)e1,), respectively.
Let Q be the class of all fuzzifying topological spaces. A unary
fuzzy predicate T, € 3(L), called fuzzifying a-Hausdorffness
[21], is given as follows:

T5(X, 1) =VaVy((x e XAy € X Ax#y) - IBAC(Be N2 AN C
€ N'ABNC=¢)).

A unary fuzzy predicate I' € 3(Q), called fuzzifying compact-
ness [22], is given as follows:

r(X,7) := (VR)(K(R, X) — Bp)((p < R) A K(p, 4) @ FF(p)))

and if 4 C X, then I'(4):=I'(4,7/A). For K, K, (resp. < and
FF) see [16, Definition 4.4] (resp. [16, Theorem 4.3] and [22,
Definition 1.1 and Lemma 1.1]). A unary fuzzy predicate
T € 3(3(P(X))), called fuzzy finite intersection property [22],
is given as

JI(R) :=Vp((p < R) A FF(p) — IxVB(B € p — x € B)).

A fuzzifying topological space (X, 1) is said to be fuzzifying o-
topological space [1]if 1.(4 N B) = 1,(A) A 1,(B). A unary fuz-
zy predicate LC € 3(Q), called fuzzifying locally compactness
[24], is given as follows: (X,7)€ LC:=(Vx)3@B)((x €
Int(B) ® I'(B,t/B)).

2. Fuzzifying a-base and a-subbase

Definition 2.1. Let (X, ) be a fuzzifying topological space and
Py 1, Then B, is called an o-base of 7, if f, fulfils the
condition:

EAeN' —3B(Bep,)A(xeBCA)).

Theorem 2.1. f3,is an a-base of 1, if and only if t, = ﬁLU), where

Vo ABAB).

U B,—4/EA
JeA” "

B(4) =

Proof. Suppose that f, is an a-base of 7. If
UB}L = A7
reA

then from Theorem 3.1 (1) (b) in [18],

7,(4) —ng(UBz) = /\Toz(B/".) = /\ﬁoc(B/)

ieAd ieA reA

Consequently,

W) =\ BB,
UB;,:AAEA

reA
To prove that

\/ /\ﬁx(B/)>

U B,=A%€A
reAt

we first prove

nd) =/ V w®).

xeAxeBC A

1,(A4) <
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(Indeed, assume 7y, = {B:x € Bc A}. Then for any

rell. e Ut =4,

xeA

and furthermore

T (4) =11<Uf(X)> > \ulx) =V Anl(x)

xeAd xeAd /EH , XEA
xed’'r
= /\ \/ 7,(B).
xeAxeBC A
Also
(4 < \ V w®).
xeAxeBC A
Therefore
T,(4) = /\ \/ (B)).
xXeAxeBC A
Now, since

X

<AV B = H\/ NB)).
xeAxeBC A fe \'eAT‘xeA

Then

Tz(A) < \/ /\[))a(B/)
UBZ:A/‘EA

reA

Therefore

)=\ BB
UB/‘.:AAEA

reA

In the other side, we assume

W)=\ AB(B)
UB;,:A/EA

reA

and we will show that f, is an a-base of t,, i.e., for any

ACX, NO(4) < \/ B.B).

XEBCA
Indeed, if
XEBCA, UB,L = B,

rea

then there exists 4, € A such that x € B;, and

AB.(B:) < B,(B.) < \/ B.(B).

€A xeBCA
Therefore
Nay= \ wB =\ '\ ABB)
XEBCA X€BQAUB,: LeA
reA
<\ BB, O
xeBCA

N <\ BB LA =NV wuB = AN (1)

Theorem 2.2. Let f§, € I(P(X)). Then B, is an a-base for some
fuzzifying o-topology t, if and only if it has the following
properties:

M Yx) =1,

17
@ EMAep,)N(Bep,)N(xeAnB)—3C((C
eB)N(xe CCANB).

Proof. If f, is an o-base for some fuzzifying o-topology t,,
then 7,(X) = gV (X). Clearly, f”(X)=1. In addition, if
x € AN B, then

7,(4) A 1,(B) < 1,(AN B) < N* (4N B)
B.(C).

xeCC ANB

B.(4) A B.(B)

NN

Conversely, if f3, satisfies (1) and (2), then we have 7, is a fuzz-
ifying  o-topology. In fact, 1,(X)=1. For any
{A,;:4 € A} c P(X), we set

V= {{B(s/i Iég (S /1,} : U B,;/ = A,}

9,€4;
Then for any

fe H/le/ly;"’ U U st/: = UA/‘.-

JEAB;, Ef()) e

Therefore

TZ(UA;) = \V} /\B.(Bs)
e UBé _ UAZ sed
oe reA

> VAN BB

fen -GA"’/‘)‘GAB”/‘» €f(7)
el

AV ABB) = Au4).

/lE/l{B‘)/ :0,€A,}€y,0,€4; reA

Finally, we need to prove that t,(4 N B) = 1,(A) A 74(B).
If t,(4)>1t 1,B)>1t then there exists {B; :
/’{1 S Al}, {B;v2 : ;Lz S /12} such that

UB.=4, |JB.=B

JEM Ja€My

and forany A, € 4y, f,(B;,) > t,forany 4, € A,, p,(B;,) > t.
Now, for any x € 4 N B, there exists A;, € Ay, Ay, € 45 such
that x € B;, N B, . From the assumption, we know that

1 < B(Bi,) N Bu(Bs,) < \YAR (o)
xeCC B’lva’ZV

and furthermore, there exists C, such that

xeC,CB, NB, CANB, B,(Cy) > 1.

Since |J C,=ANB, we have

xeANB
t< A B(Co< \  AB(B)=w(4nB).
xXeANB JeA
B;=ANB
reA

Now, let 7,(A4) A 1,(B) = k. For any natural number n, we
have 1,(4) > k-1, 7,(B) >k —1and so 1,(ANB) > k-1
Therefore 1 (AN B) = k = 1,(A) A1(B). O
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Recall that if (X, 1) is a topological space and t, is the col-
lection of all ¢-open sets in X, then an a-subbase of 7, is a col-
lection S of a-open sets such that every a-open set is the union
of sets that are finite intersections of elements from S. There-
fore we have the following definition.

Definition 2.2. ¢, € 3(P(X)) is called an a-subbase of 1, if ¢
is an a-base of 7,, where

(P;m <ﬂB/‘.> = \/ /\(pa(B/LL {B/‘. )€ A}@P(X)’
N

ieA B,—4 €A
e "
with “€” standing for “a finite subset of™.

Theorem 2.3. ¢, € 3(P(X)) is an a-subbase of some fuzzifying
a-topology if and only if ¢V (X) = 1.

Proof. We only demonstrate that ¢ satisfies the second con-
dition of Theorem 2.2, and others are obvious. In fact

¢(4) 7 g} (B) = ( Vo A m(&«.») A ( VoA «pxw,-z))
ﬂ/.cm By =AM1€M n/wz By, =B
=V V ( A %(B,-..)> A ( A\ %(B,-.z))

= =B \AIEA Jo€d,
mqmlB"l Anqmzk’: B

<V (/\%(&.)) =@ (4NB).

N, Bi=AnB \is4
ieA

Therefore if x € A N B, then

P} (A) N o}(B) < gf(AnB) < \/ f(0). O

xeCC ANB

3. Fuzzifying a-compact spaces

Definition 3.1. A binary fuzzy predicate K, € I(I(P(X))x
P(X)), called fuzzifying o-open covering [l], is given as
K,(R,4) :=KR,4A)®@(RC1y). A unary fuzzy predicate
I'y € 3(Q), called fuzzifying o-compactness [1], is given as
follows:
(X,7) € I'y := (YR)(KL(R, X)—(Fp) (¢

< R) A K(p, X) @ FF(p)))
and if 4c X, then I',(A):=I,A4,t/A). It is obvious that
' (X,7):=I'(X,1,) and | K,(R, 4)—K,(R, 4).

Theorem 3.1. Let (X, 1) be a fuzzifying topological space, ¢, be
an a-subbase of 1, and

By = (YR)(K,, (R, X) — Fp((p < R) A K(p, X) @ FF(p))),
where K, (R, X) = K(R,X)® (RC 0,);

B, := (¥S)((Sis a universal net in X) — Jx((x € X) A (S5"x));
By = (¥S)((S € N(X) — AT)(F) (T < S) A(x € X) A (T64x)),
where “T < S stands for “T is a subnet of S”’;

By = (VS)((S € N(X) — ~(adh,S = ));

fs = (VR)(Re I(PX))ARCF, @ fI(R) - IxvVA(4 € R
—x € A)).

Then F(X,x)el, & pi=1,2,...,5.
Proof.

(1) Since ¢, C1,, [RCo,] < [RC1,] forany R € I(P(X)).
Then [K,, (R, X)] < [K,(R,X)]. Therefore I'y(X,7) <

[B1l-
() By = /\ {\/[Sbax] : S is a universal net in X}.

xeX

(2.1) Assume X is finite. We set X = {xi, ... ,x,,}. For any uni-
versal net S in X, there exists i, € {1,...,m} with SC{x; }. In
fact, if not, then for any ie{l,...,m}, SZ{x},
SCX —{x;} and SCN_,(X —{x;}) =¢, a contradiction.
Therefore x;, ¢ A and N7, (A4) =0 (see[18], Theorem 4.2 (1))
S¢A, and [S*xi] = A

54

provided furthermore

(1 - N (A)) — 1. Therefore [2] = 1 > [B1].

(2.2) In general, to prove that [f$,] < [f2] we prove that for any
A€]0,1], if [B5] < 4, then [f;] < 4. Assume for any 4 € [0, 1],
[B2] < A. Then there exists a universal net S in X such that

V [S*x] < A and for any xeX, [Sp']= A

xex Nl
(1 - N*(4)) <, ie., there exists AcX with S A and
N%(A4) > 1 — A. Since ¢, is an o-subbase of 7,, @7 is an «-base
of 1, and from Definition 2.1, we have

V o7 (B) = Ni(4) >1— 2, ie., there exists Bc 4 such

XEBCA
that x € Bc 4 and

\/ {minieA(f)x(Bi.) : ﬂBz =B,B,CX, € /1} = ¢} (B)

reA

>1-1,

where A is finite. Therefore there exists a finite set 4 and
B,cX(leA) such that () B,=B and for any

e
L€ A, p,(B;) > 1 — A Since S ¢ A and A is finite, there exists
;»()C) € A such that S {Z B,;(x) .We set R, (B/l(x)) = \/ (px(B/(\)) If
xeXx

p < N,, then for any 6 > 0,p5 < {B)):x € X}. Consequently,
for any B € p;, S¢ B and SCB because S is a universal net. If
[FF(p)] = 1 —inf{0 € [0, 1]:F(ps)} = t, then for any n € w (the
non-negative integer), inf{d € [0,1]: F(p;)} <1 —r+1 and
there exists 6, < 1 — 7+ such that F(ps,). If d, = 0, then
P(X) = ps, is finite and it is proved in (2.1). If §, > 0, then
for any B€ p;,SCB'. Since Fl(ps.), we have
SC{B: B€ ps}#¢. ie., Ups # Xand there exist x, € X
such that for any B € @s., X, ¢ B. Therefore, if x, € B, then
B ¢ 50> i.e.,

p(B) < do,K(p, X) = /\\/p(B) < \/p(B) < oo <1 7t+%.

xeXxeB X.EB

Let n—>oo. We obtain K(p,X)<1—1¢ and [K(p,X)®
FF(p)] = 0. In addition, [K, (R.,X)] > 1—-/4 In fact,
[R.C o, =1 and
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KR, X)] = AV Re(B) > AR(Bi) = \.(Biw)

xeXxeB xeX xeX
>1-2
because x € B;(,). Now, we have
[Bi] = (VR)(Ky, (R, X) — Fp((p < R) A K(p, X) ® FF(p)))
< K@,(‘RO,X) — Jp((p < Ro) A K(@, X) ® FF(p))
0.9, X) + \/ [K(p, X) ® FF(p))] < /.

P<R,

=min(l,1 —

By noticing that /4 is arbitrary, we have [f;] < [f2].
(3) It is immediate that [$,] < [B3].
(4) To prove that [f5]<[f4], first we prove that
ETUT < S) A (Tb*x))] < [S o< “x], where [T (T < S)

AT =V A (1-N(4))  and  [Soc] =
T<S 16 4

A (1 = NZ(4)). Indeed, for any T < S one can deduce

S7A

{4:S74}C{4:T ¢ A} as follows. Suppose T = So
K. If SZA, then there exists m € D such that S(n) ¢ A
when n > m, where > directs the domain D of S.
Now, we will show that T (ZA. If not, then there exists
p € E such that T(g) € 4 when ¢ > p, where > directs
the domain E of T. Moreover, there exists n; € E such
that K(n;) = m because T < S, and there exists n, € E
such that n, > nj,p because (E,>) is directed. So,
K(ny) = K(ny) = m,SoK(n,) ¢ A and SoK(n,) =
T(ny) € A. They are contrary. Hence {4 : SiA}g
{4: T(,;_‘A}. Therefore

BT(T < S) A =V A(O-
T<ST¢ A
-\ A )< A\ (1-N)
T<S{A:T ¢ 4} {A:S7 4}
— /\ (1 — Nf(A)) = [Soc*x].
S74

Therefore for any x € X and S € N(X) we have

[.33]:/\\/3T (T<S)A /\\/Socx]

SeN(X)xeX SeN(X)veX

- A ﬂ(/\mswx])): A [-adhs = 9)
SeN(X) xeXx SeN(X)

= [B4]-

(5) We want to show that [B4] < [f5]. For any R € 3(P(X)),

assume [fI(M)]=A. Then for any o6 >1-—4, if
Ay ooy A €Rs, A1NAyN...NA,#¢. In fact, we set
p(4;)) = Vi, R(4;). Then o <R and FF(p) = 1. By

puttinge = 1 + 6 — 1 > 0, we obtain

J—e< i< [FF(p) — (x)(VB)(BEp—chB)}
- VG- oie
xeXx¢B

There exists x, € Xsuch that 1 —e¢ < A (1 —
Xo¢B

plies p(B) <1—-A+¢e¢=0 and x,€Nps =4, NA,N...
N A, Now, we set 9;={41NAN...NA,:n€NA,...,
A, € R;} and S:95— X,B+>xp€ B,Bc s and know that
(¥s,<) is a directed set and S is a net in X. Therefore

©(B)), xo ¢ Bim-

[Ba) < [~(adh,S = ¢)] = \/ J\ (1 = N;(4)).

XEXSZ™ A

Assume [RCF,)=p Then for any Be P(X), R(B)
1+ F,(B) — u, and

[RCF, @ fI(R) — (Fx)(VA) (A € R) — x € A)]

=min(1,2—pu— i+ \/ (1 - R4

xeXx¢A

N

Therefore, it suffices to show that for any
xeX, N(1-N(4) <2—p—72+ \(1-R(4)),
S A x¢A

ie.,

\/ ®(4

)<2—p—i+\/ Ni4)

x¢A Sz A

for some 6 > 1 — A.For any ¢€[0,1], if \/ R(4) > ¢, then
x¢A

there exists A, such that x, ¢ 4, and R(4,) > ¢.

Case l.1<1— A thent<2—pu— 2+ \/N“( ).
Sz 4
Case2.t > 1 — 4 Here weset  =1(r+ 1 — 1) and have

A, € Rs, 4, € Ys. In addition,

1< R(A) <1+ Fy(Ao) — ot + pu— 1 < Fy(Ao) = 1,(A49).

Since A, € ¥s5, we know that Spe€ A4,, ie., Sp¢ A. when
Bc A, and StZ AS. Therefore,

2—p—i+\/ N4
Sz A
+ 1, (A4S) =t +

>0 p— i N(A) 22— pu—2

(I1-2) =1t

By noticing that t is arbitrary, we have completed the proof.
(6) Toprovethat[fis] = [(X,7) € I',]see[1] Theorem3.3. O

The above theorem is a generalization of the following
corollary.

Corollary 3.1. The following are equivalent for a topological
space (X,7).

(a) X is an a-compact space.

(b) Every cover of X by members of an a-subbase of t, has a
finite subcover.

(c) Every universal net in X a-converges to a point in X.

(d) Each net in X has a subnet that a-converges to some point
in X.

(e) Each net in X has an o-adherent point.

(f) Each family of a-closed sets in X that has the finite inter-
section property has a non-void intersection.

Definition 3.2. Let {(X,,t,):s € S} be a family of fuzzifying
topological spaces, HAESX be the cartesian product of
{Xys€S} and ¢= {p :s€8,Us; € P(X,)}, where
P [LesXs = Xi(t€S) is a prOJectlon. For ®c ¢, S(®)
stands for the set of indices of elements in ®. The o-base
B, € 3([Tese) of TTog(s), is defined as
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Ve/ﬁ,::(ﬂ(b)(tbéw/\(ﬂtb:V))HVS(SES(P)HVe ).), ie.,

M=\ AcG

"’@f’ﬂ H=pSES(P)

Definition 3.3. Let (X,7) and (Y,0) be two fuzzifying
topological space. A unary fuzzy predicate O, € J(Y%), is
called fuzzifying o-openness, 1is given as follows:
0,(f) =VUU € 1, > f(U) € 6,). Intuitively, the degree to
which f is a-open is [0,(f)]= A min(l,1 — 7, (U)+
o, (/D). vex

Lemma 3.1. Let (X,t) and (Y,0) be two fuzzifying topological
space. For any f € Y, 0,(f) := VB(B € B — f(B) € a,), where
ﬁf is an o-base of 1.

Proof. Clearly, [0,()] < [VU(U € B} — f(U) € ,)]. Con-
versely, for any U C X, we are going to prove

min(1,1 —7,(U) + 0,((V))) = VV(V € B} — (V) € 5,)].
If 7(U) < 0,(f(V)), it is hold clearly. Now assume 7,(U) >
a,(f(U)). If RCPX) with UR=U, then [, f(V)=
SIUR) =f(U). Therefore

(V) — 0,(/(V)) =

Vo AEW

[ P(X)"U R=UVeR

OV A

©C P(Y) Ug; (wywep

< \V  AEW

nc P(x) | Jr=vreR

R P(x)| JRr=ureR

< VA -y

mgPX)Um yVeR

\/ /\ min (1,1 = (V)

9w C ()| Jn=uren

VV(vepl —=fV)ea,)]. O

")),

min(l,1—

©(U) + 0.(f(U))) =

+0.(f(V))) =
Lemma 3.2. For any family {(Xy,t):s € S} of fuzzifying topo-
logical spaces. (1) F(Vs)(se€eS—>p,e0,);, and (2)
E(Vs)(seS—p,eC,).
Proof.

(1) For any ¢ € S, we have

Ooc(pl) = /\
ver([T %)

Then it suffices to show that for any U € P(HSeSXS), we have

min (1,1 (T] (=), ) (0) + (@), (V).

(2. p() = (T],5(,) (0.

Assume

[ )@=V AV A @)

Usea By =UleA®;€p,NP;=B;5cS(P;)

where @, = {p;!(V,) : 5 € S(®;)}(4 € A).Hence there exists
{B;: €A} CP(H(Eg ;) such that |J B; = U and further-

JeA

more, for dny A € A, there exists @, € ¢ such that ", = B,

and (1 p;'(Vs) = B;, where for any s€ S(®;) we have
seS(P,)
(t)s(Vs) > p. Thus p,(U) = (U n »'v )>
reA seS(d;)

(1) Ifforany ie A, () p;'(V,) = ¢, then U = ¢,
p(U) = ¢ and (2)(p(U)) = 1. Therefore
(22), (P (U)) = ([Tyes(),) (U).

(2) 1If there exists 4, € 4, such that o= () p;'(V,) = B,.,
SES(P;)
() Ift¢S(P,), ie.teS—S(®,.), p(B.) =X,
Therefore (t2),(p(B1)) = (Ta),( =1
(i) IfteS(P,,), then pt( .)=V,CX,. Thus

pl(U)_pl<< U B/L) ) ( U B/'.o)>
1€S(D,,) 1£S(P;,)

= U p(B.) |V U p(B) | =ViUX, =X.
1€8(%;,) 1#S(®,)

Hence () pU)) = () (pAU)) =
(V) > .

Therefore (1,),(p,(U)) = ([Les(t2),)(U). Thus O,(p,) = 1.

(2) From Lemma 3.1 in [17] we have E(Vs)(s € S —
p s € O). Furthermore, for any two fuzzifying to-
pological spaces (X,7) and (Y,0) and f € Y, we
have C(f) < C,(f) (Theorem 6.3 (3) in [18]). Th-
erefore F(Vs)(s e S—>p, e Cy). O

(t)X) =1 or

Theorem 3.2. Let {(X,,1,):s € S} be the family of fuzzifying
topological spaces, then

E3UUC][X ATL(U,t/U) A 3x(x € Int,(U))

seS

— AT(TES AVt € S— T AT, (X,,1)))).

Proof. It suffices to show that

\V ru.-/uyn \/ Ni{U)
ver([T,.%) <€ Les

< \/ /\ Foz(XnTt)-

TeSteS-T

Indeed, if

V oo Vv
UEP(H.;GSX’V) ’\AEHAESX‘
then there exists U € P(],.sX,) such that I',(U,t /U) > pand
VN> whee M@= V()0
xehCcu

XEH\ESXA
Furthermore, there exists V' such that xe€ Vc U and

(IT,es(t2),) (V) > p. Since B, is an a-base of [1.(x.),.

>u>0,
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(H‘_Es(r,)‘)(l/) =V AsB)= \V A ANCARUAE Lemma 3.4. For any fuzzifying oa-topological — space
Uiea B;=VieA Uien B, =VieA®;€@,n®;=B;scS(®;) (X7 T)7 ': 71;()(7 T) ® I‘VM(X7 T) — T’Z(X, 'L').

where

@, ={p,' (V) :5€ S(®;)} (% € A).

Hence there exists {B;: € A} C P([],.sX,) such that
UseaB; = V. Furthermore, for any / € A, there exists @, € ¢
such that N®, = B; and for any s € S(®,), we have (t,),(V,) >
u. Since x € V, thereexists B;_suchthatx € B,  C V'C U. Hence
there exists @, €¢ such that N®, = B, and

1 _ n.
ﬂ )ps (Vé) - B/-.v g SESXS

seS(®;

and for any s € S(®;), we have (7,)4(V,) > 1 — u. By
m p;l(V\) = B?.,\a
)

seS(@,

we have P(s(B;V\,) =V;CXs, if 0€ S(¢;~\,); P(;(B,;\,) = X;, if
0€S—S(®,,).Since B;, C U, forany é € S — S(®,_.), we have
P;(U) D Ps(B;,) = X5 and Ps(U) = X;. On the other hand,
since for any s € S and

U, € PG, ([T (w0, (07 (0)) = (m), (1),

we have, for any

ses Lip)= A min(1,1= (@), (U) + [T o) (0 () = 1.
UseP(Xy)

Furthermore, since by Theorem 4.4 [1], we have

FI(X,1) ® L(f) > [L(X)), then TI'(U,7/U)=TU,1/

l]) ® Iz(p()) < Fa(P(;(U),T(s) = Fz(X(;,‘L'(;) for each o€ S—

S(®,). Therefore,

\/ /\ Fx(Xz»Tz) =

TeSteS-T

Fa(Xévr(i) = Fa(Uv T/U) > U o
seS—S(®;)

The above theorem is a generalization of the following
corollary.

Corollary 3.2. If there exists a coordinate o-neighborhood
a-compact subset U of some point x € X of the product space,
then all except a finite number of coordinate spaces are
o-compact.

Lemma 3.3. For any  fuzzifying  topological
(X,1), ACX, E T5(X,1) — T5(A4,1/A).

space

Proof.
mwol= AV (Mosm)
XYEXxF#YU,VEP(X),UNV=¢
< A Vo (M wna N o)
XVEX XAV UNA)N(VNA)=¢ '
< (v )Nz (0m)
XYEAXFYUNV'=¢,U V' €P(A)
:T;(A7T/A)a
where N'(U)= \ 1,/A4(C) and 1,/A(B) =
V (V). O xeCeU
B=VnNA

For the definition of Tj(X, 1) see [21].

Proof. If [T5(X,t) ® I',(X,7)] =0, then the result holds.
Now, suppose that [75(X, 1) ® I',(X,7)] >4 >0. Then
T5(X,t) + I'y(X,7) — 1 > A > 0. Therefore from Theorem 4.6
(11,

T3(X,7) @ ([,(A) ATL(B)) A (AN B = )" T3(X, 7)
- AUEN(Uet,) AV
ETLNACU ABCV)AN(ANB=9)).
Then for any 4,BCc X, AN B = ¢,
T3(X,7) @ (I'(A) AT4(B)) < min(z,(U), 7,(V))

UNV=¢,AC U,BCV
or equivalently

T3(X,7) < I,(4) AT,(B) — min(z,(U), 7,(V)).
UNV=¢,ACUBCV
Hence for any
A, BCX, ANB=¢, 1 - [Fa(A)/\Fx(B)]
+ \/ min(t,(U), 7,(V)) + T(X,7) — 1 > A

UnV=¢,ACUBCV

From Theorem 4.1(1) in [1] we have
AeF, —TI,(A). Then

E (X, 1)®

Iy(X,7) + [1(A°) A a(BY)] = 1 = (Fu(X, 1) + 1 (49) = 1)
A(To(X, 1) + 1,(B) = 1)
< (Fa(X, 1) @ 1,(49))
A (I (X, 1) ® 1,(B))
< [I2(4) A T(B)).

Thus Foc(Xs T) - [FOC(A) N sz(B)] -1 < - [Toc(Ac) N Toc(B(')]' SO,
1 — [0,(A) A t,(BY)] + \V min(t,(U), 7, (V) > A,

i.e.’ unV=¢,ACUBCV

Ti(X,7) = N min(1,1 = [t,(4) A 1,(BY)]
ANB=¢
+ \ min(t,(U),1,(V))) > 4. O

UnV=¢,ACUBCV

The above lemma is a generalization of the following
corollary.

Corollary 3.3. Every a-compact a-Hausdorff topological space
is o-normal.

Lemma 3.5. For any fuzzifying o-topological  space
(X,7), E T5(X,7) @ I',(X,1) — T3(X,1). For the definition of
T5(X, 1) see 21, Definition 2.2].

Proof. Immediate, set A = {x} in the above lemma. O

The above lemma is a generalization of the following
corollary.
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Corollary 3.4. Every a-compact a-Hausdorff topological space
is a-regular.

Theorem 3.3. For any fuzzifying topological space (X,t) and
AcX ET(X,1)®T,(4) - A€F,.

Proof. For any {x}c A, we have
I',({x}) = 1. By Theorem 4.6 [1],

r,({xh))] <

GNHy=¢, ACG, xeHy

{x}Nn4=¢ and

[T3(X, 1) ® (I,(4) A

Assume

B.={H.:ANH,=¢,xecH}, |Jfx)2a

xex\4
and
Usxnd =@ na =
So, HL flix) =
Therefore
[T5(X,71) @ I'y(A)] < 7 (H.)

GNH,=¢, ACG, xeH,

<AV )

XEA“ANHy=¢,xEH

=V Aut)

fEH\'eA“ b ed!
<V f1<Uf(X)>— Vo)
-/‘EH,\em‘ﬁ‘ wed! feerx\Aﬁ‘
—F(4). O

The above theorem is a generalization of the following
corollary.

Corollary 3.5. a-compact subspace of an o-Hausdorff topolog-
ical space is a-closed.

4. Fuzzifying locally a-compactness

Definition 4.1. Let Q be a class of fuzzifying topological
spaces. A unary fuzzy predicate L,C € 3(Q), called fuzzifying
locally a-compactness, is given as follows:

(X,1) € L,C:=(Vx)3B)((x € Int,(B) ® I',(B,t/B)).  Since
[x € Int,(X)] = N%(X) =1, then L,C(X,7) > I',(X,7). There-
fore, F(X,71) e I', —> (X,7) € L,C.

Also, since EX,n)el' > (X,71) e LC  [24] and
F(X,7)eT',— (X,7) € Il], F(X,7) € I', = (X, 1) € LC, which
is a generalization of Corollary 4.4 [26].

Theorem 4.1. For any fuzzifying topological space (X,t) and
AcX E(X,1)eL,C®AecF,— (A4,1/4) € L,C.

Proof. We have

= /\ \/ max (O,MQX(B) +TI,(B,t/B) — 1)

XEXBC X

min(z,(G), TZ(HX))> .

and

L,C(A,1/A) =

/\\/max(ON"‘ G) +

x€AGC A

(G, (1/4)/G) — 1).

Now, suppose that [(X,7) € L,C® 4 € F,] > 2 > 0. Then for

any x € A, there exists B < X such that
N*(B) + T,(B,1/B) + 1, (X —A) =2 > A (%)

Set E = AN Be€ P(A). Then

\/ N(C) = N7 (B)

E=CNB

and for any U € P(E), we have

(v/4),/E(U) = U}(/tha/A(C) = Ui\(/‘mE(}/DMra(D)
B U*l}r{AﬁE‘caC (D) N UYI”TETM (D)

Similarly, 7 :

(t/B),/E(U) = \/ (D).

U=DNE

Thus, (1,/B)./E = (14/A)s/E and T'(E, (1/A)/E) = T'(E, (1/B)/
E). Furthermore,

[E€F,/B =1,/B(B—E)=1,/B(BNE) =

T, (X — A) = F,(A).

Since F(X,71)eTl,® A€F,—> (4,1/A)eT, (see [l],
rem 4.1 (1)], from (*) we have for any x € 4 that

Theo-

\/ max (0, N*(G) + I',(G

AéWme@wmm—l
= N (E) + I',(E, (t/B) E) — 1
> N*'(B) + [I',(B,</B) ® E € F,/B] — 1

(x/4)/G) = 1)

> N*'(B) + I',(B,7/B) + |[E € F,/B] —
> N*(B) + I'y(B,t/B)+ [A€F,] —2> /.
Therefore
L,C(4,/4) = N\ \/ max (0,N7'(G) + I(G, (:/4)/G) ~ 1)

xX€EAGCA

> .

Hence [(X,7) € L,C® A € F,] < L,C(4,t/4). O

As a crisp result of the above theorem we have the follow-
ing corollary.

Corollary 4.1. Let A be an a-closed subset of locally a-compact
space (X,t). Then A with the relative topology t/A is locally o-
compact.

The following theorem is a generalization of the statement
“If X is an a-Hausdorff topological space and 4 is an a-dense
a-locally compact subspace, then A4 is a-open”, where 4 is an
a-dense in a topological space X if and only if the a-closure
of 41is X.
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Theorem 4.2. For any fuzzifying a-topological space (X,t) and
AcCX,

ET5(X,7) ® L,C(A4,7/A) @ (Cl,(A) = X) = A € 1,.
Proof. Assume

[T5(X,7) ® L,C(A,7/4) ® (CL,(4) = X)] > 2> 0.

Then

L,C(A,1/A) > A= [T5(X, 1) @ (CL(A) = X)| + 1 =1 >,
1.e.,

A\ max <o7 N (B) + I'y(B, (t/A4)/B) — 1) > .

YEABC A

Thus for any x € A4, there exists B, < 4 such that

A

N (B,) + T'y(B.,(t/4)/B,) — 1> 7.

i.e.,
V' V (&) + (B, (t/4)/B,) — 1> /.
HNA=B,xeKC H

Hence  there  exists K, such that K.nA=
B,,7(K,) + I'(B\,(t/4)/B,) — 1 > . Therefore 1,(K,) > /.

(1) If for any xe€A4 there exists K, such that
xeK.,cB.,cA4, then |JK,=4 and 1t,(4)=
x€Ad
ra<U KX> > ANwK) =4 >
xed xed

(2) If there exists x, € 4 such that

K., 0 (B )#¢, t.(K..) + (B, (1/4)/By) = 1> /.

From the hypothesis

[T3(X,7) ® L,C(4,7/A4) ® (CL,(A) = X)] > 1. >0,

we have [T5(X,1) ® (CL(A) = X)]#0. So

©(Ky.,) + Tu(By,, (t/A4)/By,) — 1 + [T3(X, 1) @ (CL(4)
=X)]-1>4

Therefore

Tx(K»co) + Fx(onv (T/A)/on) -1+ T;(X7 ‘L') + [(Clac(A)

=X)]-1-1>4
Since
(12/A),/Bx.(U) = 7\/ 7,/ A(C)

\/ 7,(D)

U=CNBy,C=DNA
\/ Tot(D) = Ta(/Bxc (U)7
U=DNBy,
I'y(Bx., (t/4)/B.)
= Foc(onv ‘C/BXD)'

From Theorem 3.3 we have

w(B;) (X,7) ® I',(B..,7/Bx.)

>3
> T3(X.7) + [(B..,1/B.) - 1.

Hence
7,(Ky,) + Ta(Bic) +[CL(A)=X]—-2> A
Now, for any y € A° we have

[CL(4) = X] = \ (1 - N;‘_X(A")) <1—N(49).

xeX

Since (X, 1) is a fuzzifying a-topological space,

T(Ko) + 1 (B) =1 < tu(Ke) @1, (B) < (Ko ) Ao (BS)

where

v €Ky NB, CHy, N (Hy NA) = He 0 (H, UA)
=H, NA°C A"

Therefore

0 <A< 1(Ky,) + (By) + [CL(A)
= 1,(K..) + 1,(B) — 1 + [CL(A)
SN (A)+ 1= N (A) =1 =0,

X -2
X -1

a contradiction. So, case (2) does not hold. We complete the
proof. O

Theorem 4.3. For any fuzzifying a-topological space (X,t),
- T‘;(X,r)®(L1C(X,r))2—>VxVU<U€ N

—>3V(V€N§X/\C[1(V)gU/\I"Q(V)))7
where (L,C(X,t))?:=L,C(X,t) ® L,C(X,1).
Proof. We need to show that for any x and U, x € U,
T3(X,7) @ (L,C(X,7))* ® N7 (U)
<\ (NS A ANNS()AT(V,2/7) ).
ycx yeUs
Assume that T2%(X,7) ® (L,C(X,1))’ ® N?;:X(U) > 2> 0.
Then for any x € X there exists C such that
T3(X,7) + N2 (C) + (L D) + N (U) =3 > 4 (%)
Since (X, 1) is fuzzifying a-topological space,
N7 (€)+ N (U) = 1L < N (€)@ N7 (U) < NY'(C) AN (U)
<N (Cnuy =\ nw.

xewccnu

Therefore there exists W such that xe Wc CNU, and
T%(X,1) + (L,C(X,7))” + 7,(W) — 2 > 4. By Lemmas 3.3 and
3.5 we have T5(X,7) < T5(C,t/C) and

T5(C,t/C) 4+ I,(C,t/C) = 1 < T5(C,1/C) @ I',(C,t/C)

< T3(C,7/C).

Thus T5(X,7)+ I',(C,1/C) + 1,(W) — 2> A. Since for any
x € Wc U, we have
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T3(C,t/C) < 1 —1,/C(W) Theorem 4.4. For any fuzzifying o-topological space (X,t),

, _ E T3(X,7) ® (L.C(X,7)* = T5(X,7)
+\ ((N:‘(G)/\ A N;‘(C—G))),

Gece yeC-w Proof. By Theorem 4.3, for any x € U, we have

so there exists G,x € G < W such that

N N (e
((fo(G)/\ A N?C(C—G)>> Xeygu< T (V)/\}é( )

> TY(C, r/C);rra/C(W) s THC,T/C) + (W) — 1 > [T 0 @ (1(C/0) @ N (V)] ).

and Thus

B . 1-N'(U NV A NN () = | T3X 1) @ (IL(C,1/C) |,
((Ni (G) A /\ Ny (C—G)>>+FQ(C7T/C)—1>,1. (Hﬁy;u( " {z\ " [ L e /M)

yeC— i.e.’ [T’;(}C ‘L')] > [TZ(X, 'L') ® (roc(c7 T/C))2:| .

Thus
N;C(G) = \/ MX(D) = Nf’\;X(G uc) > Theorem 4.5. For any fuzzifying a-topological space (X,t),
DAC=G
=/+1-T,(C,t/C) > i E TY(X, 1) ® L,C(X, 1) HVAVU(UG N @ T,(4,1/4)
Furthermore, for any — 3V(Vg UNUEN, A, (VAT (V1) V))),
YEC-WNI(C=G) = \ NUGCUC)=N(G)>7  where Ue Ny = (vx)(xe AnUeNT).
DNC=CNG*
and Proof. We only need to show that for any 4, U € P(X),

N(G) =N (GUE)INC) 2 N(GUC) ANT(C) > 7. [T3(X,7) @ L.C(X, ) @ (4, / 4) & N3 (U)]
Since N}“,X(G") = V (B >4, forany y € C — W, there 3< \/ <N“X(V) (V) ATV 1) V))A

xeB° C G ) i
exists Bj such “that yEB,CG and 1,(B;) > 2. Set

ycu

B = ‘.egWB;. Then C— Wg B¢ c GC and TM(BC) = Indeed, if
N w(B) =74,  Again,  set V=BNC,  then

yeC— }

T (X,7) ® L,C(X, 1) @ [',(4,t/4) @ N (U)| > 4 >0,
VC(C— WY NC=(CUWMNC=CAW=WcUNC [3( 2 &) (4,7/4) & N ( )]

and V° = B° U C*.Since (X, 1) is fuzzifying a-topological space, then for any x € 4, there exists C € P(X) such that

NZ(V) = N (BN C) > N2 (B) AN (C) [T3(x,7) © N2'(C) @ TL(C7/C) @ (A 1/ 4) @ N7 (V)] >
> N;X(G) A NZX(C) > A (1) Since (X, 1) is fuzzifying a-topological space,
By (*) and Theorem3.3,7,(C°) = T3(X,1) ® I',(C,1/C) \/ (W) = NiX(Cﬁ U) > N_”“;X(C) /\Nch(U)
> T3(X,7) + I,(C,t/C) — 1 = 2. So 1,(V°) vewcany
X X X X
= 5,(B° U C) = 1,(BY) A 1,(C%) = Ny (C) AN (U) = N (€)@ Ny (U).
> e, 1, (V) + IL(C, t/C) — 1 Then there exists W such that x€ W< CN U, and
> Jand I,(V, 1/V) = I,(V, (t/C)/V) [T5(X,7) @ t,(W) @ I,(C,t/C) @ I',(A,7/A)] > A
> 1,/C(C — V) + I,(C, 7/C) — 1 Therefore
> 1,(V)+ 1,(C,t/C)—1 = A (2)
. [T3(X, 0] + 0(W) = 1 > 2 +2 = T,(C,1/C) = I',(4,7/A4)]
Finally, s )
/\ Nj‘,X(V") > /\N’;‘X(V‘) =1,(V) = A (3) Since for any
yeU© yeve ’
Thus by (1)—(3), for any x € U, there exists V' < U such that xew, [T;(X’ T)]
NV >4, NN(V)=2 and T (V,ti/V)=>2a So X,
[ J/E () V.2/V) <l-nm)+\/ (Nx (B)A \ N*' (B )),
yewr

V (N:X(V)/\ A N;X(V”)/\ra(va/V)> = /. U we have :

Vecx yeu*
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\/ (Nj*(B) A /\N;X(B")> > 7.

Thus there exists B, such that x € B, c W c Cn U and for
any y € W*, we have

X

NI(B) > i, N (B >
Since
N*(BS) = 1,(G) > I,

xeG“ C B
then for any y € W*, there exists G,, such that x € G, C B
and T, (G;},) > 7. Set Gy = U G, then W*C G C B} and

(>
yews ¥

w(G) = AT (G) > ). Since G, 2B, N'(G,) >
yews )
N (B,) > X, ie, \/
XEHC Gy
that x € H, € G, and 1,(H,) > /. Hence for any x € A, there
exists H, and G, such that xe H. c G, c U,t,(H,) > A and

W2 UG, D U H, 2 A. We define R € 3(P(4)) as follows:

7,(H) > . Thus there exists H, such

xeA xeAd
\/ 1,(H,), there exists H, such that H, N4 =D,
R(D) = Hn4=D
0, otherwise.
Let I'y(A,7/A) = p > u—e(e >0). Then 1—K,(R,A4)+

V [K(p, A) ® FF(p)] > 1 — €, where

p<R

KA = AV/RB) = A\VRO) = AV i) > 7

xeAxeB xeAxeD xeAxeDH NA=D

and

[RC1,/4] = N\ min(1,1— R(B) + ./ A(B))

BCX

min (1,1 — \/7 7,(H,) + \/ r“(H)> =1L

HNA=B

So. K,(R, 4) = [K(R, 4)] > 7. By (*),
[K(p, A) @ FF(p)] > u—e— 1+ K, (R, 4) > u—e—1+ 7

> l—e
Thus
/\\/@(E)+ 1= A\{d:F(p,)} —1>i—¢ and /\Vp(E)

>h—e+ \{0: Fp,)}.
Hence there exists f > 0 such that F(pp) and
AV eD)>i—e+8.
xeAxeD

Therefore for any x € A4, there exists D, A such that
p(D,) > A—¢€ + B and

UDXQA.

xeAd

Suitably choose € such that 2 —e > 0, then p(D,) > f > 0.
Since

R(Dy) = p(Dy) >0, D, =Hy N A,

ie, HvNA€gp,; By Fgpp, so there exists (finite

Hy, Hg, ..., Hg such that
n

JH, 2 4

=1

and

i=1 i=1
Set V= U?ZIGX;, and
L) = A TX(G;I,) > 7>

1<ign

x€A,G,.cWgc CNUcC, we have V = U?:lGx[ cCwcc.
Because 1,/C(C—V)= \/ 1,(D) = 1,(V°) > 1. Thus

DNC=CNVe
by (*), 7,/C(C - V) + T'(C,7/C) — 1 > A, and by Theorem 4.1
(1], I, (V.a/V) = I (V.t/ClV) 2 [Tl C,1/C) ® 14/
cc-nm) >

Finally, we have for any x € 4,

N (V) = N (UG) > N (UH) >, (UH>
i=1 i=1 i=1

> /\ rx(Hx/> =N >
1<ign '
So, NZX(V) =A NiX(V) > A. Therefore NjX(V) AT, (VA
(V1) V) = wed
Thus

Ve =N.G% ACVCU, and

Since for any

\/ (N;X(V)M(VC)AQ(V,T/V)) > O

vCcu

Theorem 4.6. Let (X,7) and (Y,0) be two fuzzifying topologi-
cal spaces and fe YX be surjective. Then k L,C(X,1)®
C.(f) ® O(f) > LC(Y,a). For the definition of O(f), see [17].

Proof. If [L,C(X,7) ® C,(f) ® O(f)] > A > 0, then for any

x€X, there UcX, such that [N?\‘,X(U)(X)

I,(U,7/U)® Cy(f) @ O(f)] > 4. Since N* (U)= \/ (V).
xeVcu

so there exists V' cX such that x€V cU and

[t(V) @ T'(U,7/U) @ C,f) ® O(f)] > A. By Theorem 4.3 in

[1], [[(U,7/U) @ C,0N < [[(AU), 6/AV))] and

exists

[c(V') @ O(f)] = max(0, t(V') + O(f) — 1) = max(0, ¢(V")
+ A\ min(1,1—<(V) +a(f(1) - 1)

< mliX(O,r(V’) +1—t(V)+o(f(V)—1)
= a(f(V) < Ny (V) < Ny (V).

Since f'is surjective,

LC(Y,0) = LC(A(X), 0)
= A V [N_f(U’)@[F(UQa/U')]]

YEflx) SAXU'=AU) CAX)
)
‘)

Yeflx) CAX)
CAX,

\%

[N, () @ [F(Aw),o/n0)]
A

yeflx

(V) ® O(f) ® I,(U,t/U) @ Cy(f)] = 4. O
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Theorem 4.7. Let (X,t) and (Y,a) be two fuzzifying topologi-
cal spaces and  feY¥ be surjective. Then
FL,C(X,1) ® I,(f) ® Ou(f) = L,C(Y,0).

Proof. By Theorem 4.3 in [1], the proof is similar to the proof
of Theorem 4.6. O

Theorems 4.6 and 4.7 are a generalization of the following
corollary.

Corollary 4.2. Let (X,t) and (Y,0) be two topological spaces
and f:(X,t) = (Y,0) be surjective mapping. If f is an o-
continuous (resp. a-irresolute), open (resp. a-open) and X is
locally o-compact, then Y is locally compact (resp. locally o-
compact) space.

Theorem 4.8. Let {(Xj,t,):s € S} be a family of fuzzifying
topological spaces, then

= L1C<HXS, Hses(r,()A) — Vs(s

seS
€ SAL,C(X;, (t,),) NIT(TES A V(1
eES—TAI(X,1))).

Proof. It suffices to show that

LO(TT %o T < A [LXC(XS, @) AV A rx(x,,m}.
SES TeSteS-T

From Theorem 4.7 and Lemma 3.1 we have for any 7 € S,

LO(T] 0 TT ) = [ (TT e TTy (0.

®C0<(pt) ® 036(171)} < LxC(le Tl)'

So,
NLC(X, 1) > LMC(HXESXN Hses(”)s)‘
teS
By Theorem 3.2 we have
VALK | n(e]]w/o)e o Nw)
TeSteS-T UQH@-X‘ XQH\QX‘

Therefore

O

NLCXLt) A\ N Tu(Xe 1) |-

tes TeSteS-T

LQC(HSESX»‘ ’ H.xeS(TZ)J S

We can obtain the following corollary in crisp setting.

Corollary 4.3. Let {X,:A€ A} be a family of nonempty
topological spaces. If 11,4 X; is locally a-compact, then each

X; is locally o-compact and all but finitely many X; are
a-compact

5. Conclusion

The present paper investigates topological notions when these
are planted into the framework of Ying’s fuzzifying topological
spaces (in semantic method of continuous valued-logic). It con-
tinue various investigations into fuzzy topology in a legitimate
way and extend some fundamental results in general topology
to fuzzifying topology. An important virtue of our approach
(in which we follow Ying) is that we define topological notions
as fuzzy predicates (by formulae of Lukasiewicz fuzzy logic)
and prove the validity of fuzzy implications (or equivalences).
Unlike the (more wide-spread) style of defining notions in fuzzy
mathematics as crisp predicates of fuzzy sets, fuzzy predicates of
fuzzy sets provide a more genuine fuzzification; furthermore the
theorems in the form of valid fuzzy implications are more gen-
eral than the corresponding theorems on crisp predicates of fuz-
zy sets. The main contributions of the present paper are to give
characterizations of fuzzifying a-compactness. Also, we define
the concept of locally a-compactness of fuzzifying topological
spaces and obtain some basic properties of such spaces. There
are some problems for further study:

(1) One obvious problem is: our results are derived in the
Lukasiewicz continuous logic. It is possible to generalize
them to more general logic setting, like residuated lat-
tice-valued logic considered in [27,28].

(2) What is the justification for fuzzifying locally a-com-
pactness in the setting of (2, L) topologies.

(3) Obviously, fuzzifying topological spaces in [14] form a
fuzzy category. Perhaps, this will become a motivation
for further study of the fuzzy category.

(4) What is the justification for fuzzifying locally o-com-
pactness in (M, L)-topologies etc.
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