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1. Introduction

The famous type of a translation surface is generated by two
planar curves lying on orthogonal planes. This type will be
called as a translation surface of plane type and takes the form:

X(u,v) = (u,0,/()) +(0,v,2(v)), (1)

where f(u) and g(v) being smooth functions of the variables u
and v, respectively.
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The translation surfaces of plane type have been investi-
gated from the various viewpoints by many differential
geometers. Verstraelen et al. [1] have investigated minimal
translation surfaces of plane type in n-dimensional Euclidean
spaces. Liu [2] has given the classification of the translation
surfaces of plane type with constant mean curvature or con-
stant Gauss curvature in 3-dimensional Euclidean space E’
and 3-dimensional Minkowski space E? Yoon [3] has studied
translation surfaces in the 3-dimensional Minkowski space
whose Gauss map G satisfies the condition AG = AG,A
€ Mat(3, R) where 4 denotes the Laplacian of the surface with
respect to the induced metric and Mat(3, R) the set of 3 x 3
real matrices. Dillen et al. [4] have derived a classification of
translation surfaces in the 3-dimensional Euclidean and Min-
kowski space, satisfying the Weingarten condition. Yoon [5]
has classified a polynomial translation surfaces in Euclidean
3-space satisfying the Jacobi condition with respect to the
Gaussian curvature, the mean curvature and the second
Gaussian curvature. Munteanu and Nistor [6] have studied
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the second fundamental form of translation surfaces of plane
type in E*. They have given a non-existence result for polyno-
mial translation surface with vanishing second Gaussian cur-
vature. Bekkar and Senoussi [7] have studied the translation
surfaces in the 3-dimensional Euclidean and Lorentz-Minkow-
ski space under the condition 4™ r; = wr;, u; € R, where 4™
denotes the Laplacian of the surface with respect to the third
fundamental form /II. They shown that in both spaces a trans-
lation surface satisfying the preceding relation is a surface of
Scherk. Cetin et al. [8,9] have investigated the translation sur-
faces according to Frenet frames in Euclidean and Minkowski
3-space. They have given some properties of these surfaces
using non-planer space curves.

The general form of translation surface is the surface that
can be generated from two arbitrary space curves by translat-
ing either of them parallel to itself. In such a way that each of
its points describes a curve that is a translation of the other
curve. A generalized type of a translation surface parameter-
ized by:

X(u,v) = a(u) + B(v), 2

where o and f§ are arbitrary space curves of the parameters u
and v (may be the arc-length parameters).

In this paper, we investigated the translation surfaces in
3-dimensional Euclidean space generated by two arbitrary
space curves. Furthermore, a classification of flat and minimal
translation surfaces has been obtained and some examples for
geometric points on these surfaces were introduced.

2. Preliminaries

The Euclidean 3-dimensional space E* is provided with the
metric given by [10-12]:

(,)= dxf + dx% + dx§,

where (x|, X, x3) is a rectangular coordinate system of E’. Let
6:ICR—E': s 5(s) be an arbitrary curve in E°. The
curve 0 is said to be of unit speed (or parameterized by the
arc-length parameter s) if (6'(s),&'(s)) =1 for any s € I. Let
{1(s),n(s),b(s)} be the moving frame of J, where the vectors
t, n and b are the tangent, normal and binormal vectors,
respectively. The Frenet equations for J are given by

() 0 K(s) 0 1(s)
wis)| =1 —-«xs) 0 ()| |nls)|. (3)
b'(s) 0 —1(s) O b(s)

Let S: & = &(u,v) C E* be a regular surface. Then the unit
normal vector field of the surface S is given by
P ND,

[

_ oD (u,v) b — oD (u,v) ’ @)

v - Ou ! v

where A stands the vector product of E*. The first fundamental
form of the surface is induced from the metric of the ambient
space E’

[ = (d®,dd) = E du* + 2F du dv+ G dv*, (5)

with coefficients

E= <d)u7¢u>, F= <d)u7¢v>a G= <q)va q)»>

Also, the second fundamental form of the surface S is given by

I = —{dU,d®) = L du* +2M du dv+ N dv*, (6)
where
L= <@mt7 U>7 M = <(puvv U>7 N= <(va7 U>

Under this parametrization @, the Gauss and mean curvatures
have the classical expressions, respectively

LN-M
=, (7)
EG—-F
EN+GL-2FM
= 5) (8)
2(EG — F)
The principal curvatures of the surface S are defined by
ki=H+VH -K, k=H-VH -K 9)

In the light of the above, the sectional curvature x, and geode-
sic torsion 1, are given by

KH KVH? — K
K”:277 'L'g: ATATY o (10)
2H* - K 2[2H* — K]

Now, we can write the following important definition:

Definition 2.1. A regular surface in E’ is a flat (developable)
surface if K =0 and a minimal surface if H = 0.

3. Curvatures on the translation surface

Let X(u,v) be a translation surface in Euclidean 3-space E’
taking the form (2), where the variables « and v are the arc-
length parameters for the two generating curves «(u) and
B(v), respectively. Let {t,, n,, b,} be the Frenet frame field
of the curve o with curvature x, and torsion t,. Also, let
{tg, ng, bg} be the Frenet frame field of the curve f with cur-
vature xp and torsion tg.

Calculating the partial derivative of (2) with respect to u
and v respectively, we get

X, = t,, /Y‘,:l‘/;7 (11)

since X, and X, are principal directions as any tangent vectors.
From which, the components of the first fundamental form are
E={(t,,1,) =1, F={(t,,t5) = cos[p(u,v)],
G:<l/;,f/;>:1, (12)
where ¢ (u, v) is the angle between tangent vectors of o(u) and S(v).
Then, the unit normal of the translation surface can be given by
. ty Nig
- sinfe(u,v)]’
Also, the components of the second fundamental form of X are
obtained by

L =k, cos[0,(u,v)],

M=0, (14)

N = Ky cos[Op(u,v)],

U(u,v) sin[¢(u, v)]#O0. (13)

where 6, (u, v) and 6;(u, v) are the angles between U and n,, n,
respectively.

It is worth noting that: for the degenerate curves (x = 0),
the tangent, normal and binormal are constant vectors. From
this note, it is easy to prove the following theorem:
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Theorem 3.1. For the translation surface (2), we have:

(1) The two variables u and v must appear in the angle ¢
between the tangent vectors t, and tg if and only if the
two curves a(u) and B(v) are non-degenerate curves
(K, # 0 and kg #0).

(2) The variable u must only appear in the angle ¢ between
the tangent vectors t, and tg if and only if k, # 0 and
Kﬁ =0.

(3) The variable v must only appear in the angle ¢ between
the tangent vectors t, and tg if and only if k, =0 and
K/g # 0.

(4) The angle ¢ between the tangent vectors t, and tg is con-
stant if and only if the two curves o(u) and B(v) are degen-
erate curves (i, = kg =0).

From the above theorem, we can write the following
lemma:

Lemma 3.2. If the curvatures of the two generating curves of the
translation surface (2) are vanished (1, =xp=20), then all
angles 0,,0p and ¢ are constants.

Now, the principal curvatures k; and k;,, the Gaussian cur-
vature K and the mean curvature H can be computed as the
following:

Ky cos[0,] 4 x4 cos[0] (1 n

R RV
i _4x,icy cos[0;] cos[0y] sin [d)]} )

. 2sin’[¢] (15 cos[0,] + K cos[0p])
(15)
- cos[0,] + K cos[0p] e 41,1 cos[0,] cos[0y] sin®[p] "
T 2sin’[¢] (e, cos[0,] + 1cp cos[é‘,g])2 ’
(16)
B K, cos[0),] cos[0] :
K—klkZ— sinz[(/)] ] ( 7)
e ki + ko _ Ky cos|0,] + 1 cos[0p] . (18)

2 2sin’[¢]

From the Eq. (17), we can write the following:

Theorem 3.3. If one of the generating curves is a degenerate
curve, then the translation surface generated by two space curves
is developable surface.

Lemma 3.4. The translation surface generated by two space
curves in Euclidean 3-space is developable if and only if one of
the following is satisfied:

(1) The angle ¢ is only a function of u.
(2) The angle ¢ is only a function of v.
() The angle ¢ is constant.

Proof. The proof of parts (1)-(3) is resulted from parts (2)—(4)
in theorem (3.1), respectively. [

From the Eq. (18), we can deduce the following theorem:

Theorem 3.5. The translation surface X generated by two space
curves in Euclidean 3-space is minimal surface if and only if the
Sfollowing condition is satisfied:

cos[0,(u,v)] _ Kp(v)
cos[0g(u, v)] e, (u) (19)

On the other hand, if the translation surface is minimal,
then the angle 0p is given by:

_ . 0, (u, v))]
0p(u,v) = cos™! {—% 20
plas) o (20)
Substituting the above equation in (17), we get
B K, cos[6,] 2
k=—(“ar) 2y

4. Classification of some points on translation surface

In this section, we will investigate how the normal curvature at
a point on a surface varies when a unit tangent vector varies. It
is known that a regular parameterized surface X : Q — E* (Qis
an open subset of the plane) has two principal curvatures
ki (u,v) and x,(u,v) at each point p = X(u,v) of the surface.
If 1 (u,v) < 12(u, v) then i (u,v) is the minimum of normal
curvatures in different directions at p, while x,(u, v) is the max-
imum of them. If x(u,v) < Ka(u,v) then the principal direc-
tions corresponding to x; and k, are uniquely defined,
however if k; = K, then the normal curvature is constant in
all directions and every direction is principal. Recalling that
EG — F* is always strictly positive, we can classify some special
points such as elliptic, hyperbolic, parabolic, singular as well as
umbilical on the surface depending on the value of the Gauss-
ian curvature K, and on the values of the principal curvatures
K1 and x; (or H). For the surface given by (2), we have the nor-
mal curvature x, as well as the geodesic torsion 7, of that sur-
face in the following forms

- 16,1 c0s[0,] cos[0] (e, cos[0,] + K cos[0p))
K2 c0s?[0,] + KF cos?[0] + 2, cos[0,] cos[0] cos?[¢]
(22)

Kn

1

- K1 c08[0,] c08[04][(1, cOs[A,] + K cos[0])” — dic, i cos[B,] cos[0y] sin? ]
2 [Ki cos2[0,] + 1 cos? (0] +2x, 15 cos[0,] cos[0] cos? [qf)]]
(23)
Here, it is important to give the following definitions [13]:

Definition 4.1. Given a surface S, a point p € S belongs to one
of the following kinds:

(1) Elliptic if L N — M?* > 0, or equivalently K > 0.

(2) Hyperbolic if L N — M?* < 0, equivalently K < 0.

(3) Parabolic if LN —M>=0 and L*+M*+N?>>0 or
equivalently K = 0 but either x; # 0 or x; # 0 i.e., only
one from the principal curvatures equals zero.

(4) Umbilical point (or umbilic) if the principal curvatures
at p are equal. An umbilical point p is said to be spher-
ical if k| = k> # 0, and flat (planar) if k; = Kk, = 0.

Definition 4.2. A point p is an umbilical point if and only if
H? — K = 0 at this point.
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Definition 4.3. Let o(u) be a curve in Euclidean 3-space lying
on a surface S. The following are well-known:

(1) o(u) is an asymptotic line if and only if the normal cur-
vature k, vanishes.

(2) o(u) is a principal line if and only if the geodesic torsion
T, vanishes.

(3) o(u) is a geodesic curve if and only if the geodesic curva-
ture x, vanishes.

Now, according to (17), we investigate the geometric points
on the translation surface (2), so let us distinguish the follow-
ing cases:

Case (1) The point p is an elliptic point of the surface (2)
if and only if K>0. In this case
Kl cos[0,] cos[fs] > 0 and the principal curva-
tures of the surface k; and k, have the same
sign. If x, and x; have the same sign, then 0,
and 0y € [0,%) or 0, and 0y € (g,n] When «,
and x; have opposite signs, then 0, € [0,5)
and 0 € (%,7] or 0, € (%,7 and 0 € [0,%).

Case (2) The point p is a hyperbolic point of the surface
(2) if and only if K<O0. In this case
Kyl cos[0,] cos[f;] < 0 and the principal curva-
tures of the surface k; and k, have opposite
signs. If x, and x; have the same sign, then
0,€[0,% and Oy € (%,n] or 0,¢ (2,7 and
05 € [O, g) When «, and x have opposite signs,
then 0, and 0, € [0,%) or 6, and 05 € (%, 7.

Case (3) The point p is a parabolic point of the surface (2)
if and only if K =0. In this case, x, = 0 and
7, = 0. From (17), we have &,k cos[0,] cos[0]
= 0. So that one of the following is satisfied:
(3.1): k, =0 or x5 = 0 or cos[f,] cos[d;] = 0. If
cos[0,] =0, then 0, =3(2n+1),n € Z, so a(u)
is an asymptotic line as well as principal line.
Similarly, if cos[fy] =0, then 0;=Z2(2n+
1),n € Z, then f(v) is also an asymptotic line.

Case (4) If cos[0,]=0 and cos[fs] =0, then
0,=%(2n+1) and 0y =2(2n+1), n€Z. In
this case, the point p is a planar point of the sur-
face (2) and k; =k, = 0.

Case (5) The point p is an umbilical point of the surface
(2) if and only if H*> — K =0. From the Egs.
(17) and (18), we easily obtain

2_

K, 057 [0,] + 1 cos’ (0]

_ [
 4sin*[¢]
+2k,1 cos[0,] cos[04] (1 — 2sin’[p])] = 0. (24)

Based on the above equation, the point p is an umbilical
point of the surface (2) if and only if one of the following is
satisfied:

(I x, = xp = 0, which implies the Gaussian and mean cur-
vatures are vanished. In this case, the point p is a planar
point and k; =k, = 0.

) x, =0 and 0;=2(2n+1), n€Z, again we have
K = H =0 and the point p is again a planar point.

() k=0 and 0,=3(2n+1), n€Z, one can get

K = H = 0 and the point p is a planar point too.
V) 0,=0s=%(2n+1), ne Z lead to K =H = 0.

As a consequence of the above cases, we give the following
theorem:

Theorem 4.4. If the surface (2) is not a developable surface,
then there are not umbilical points on the translation surface (2)
in Euclidean 3-space.

Now, by considering Eqgs. (2), (11) and (13), the singular
points on the translation surface X (u, v) are the points such that
X, AX, =0,
or equivalently

sin[¢(u, v)] = 0,

therefore, ¢(u,v) =nm,n € Z. So, one can get the following
theorems:

Theorem 4.5. The point X(ug,vo) of the translation surface
X(u,v) is a singular point if and only if

sin[¢(u, v)] = 0,
Theorem 4.6. If the point X(uo,vo) of the translation surface

X(u,v) is a singular point, then we have:

(1) The angle between tangent vectors of o(u) and f(v) is
equal to nm,n € Z.

(2) The generated a(u) and S(v) are degenerate curves, i.e.,
K, = 1p = 0.

(3) The point X (ug, vy) of the translation surface X (u,v) is
an umbilical point.

5. Applications

We consider some important examples to illustrate the main
results that we have presented in our paper.

Example 5.1. Let S be the translation surface which is not
minimal and defined by (2) with generating two circular helices
curves [8]:

a(u) = (sin [g],cos [g} - L@) B(v)

y o 242y
= (cos [ﬂ — 1,sin [ﬂ, 3 ) (25)
The components of the first and second fundamental forms
of this surface are given by, respectively:

2 1. [B3u+2v
E=1, F—\/;()sm{6}7 G=1, (26)

-~ 4 4 V/6sin 22

4\/23 + cos [22] + 8+/6sin [F12] '

M=0, (27)
_ V6 + 4sin [Fee27]

9/23 + cos [-452] + 8/Gsin -]

L
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At the origin, we get the following:

E=G=1, F:\@, L—_1 M =0, N1 (28)

26’ 18
230+ VS8 HAVe 2+3V6— VS8 +4V6
' 24 o 24 ’
(29)
237 - 7V6 29 +2v6
Ky = , Ty = . (30)
4470 4v/3(29 + 4V6)

Since K >0 and L N — M? > 0, the origin is an elliptic point.

Example 5.2. Scherk’s Surface, obtained by H. Scherk in 1834,
is the only non-flat minimal surface that can be presented as a
translation surface of plane type [14]. Scherk’s Surface is given
by (2) with generating curves

a(u) = (u,O,é log[sec[a u]]), pv) = (07 V’é log[cos[a v]])
(31)

For the two generating curves (31), we have

t, = (cos|a u],0,sinfa u]), ts = (0,cosa v], —sinfa v]),
n, = (—sinfa u], 0, cos[a u]),
b, =(0,-1,0),

K, = acosla ul,

ng = —(0,sin[a v], cos[a v])
b/f = (717()’0)

kg = acosa v].

(32)
Then, the unit normal vector is given by
1 .
Uu,v) = m(— sinfa u] cos|a V], cos[a u]
x sinfa v], cos|a u] cos[a v]), (33)
where
sin¢(u, v)] = \/1 — sin*[a u] sin*[a V). (34)
From the above, we can obtain the following:
cos[0, (u, v)] = cosla ] . cos[0s(u, v)]
\/ 1 — sin’[a u] sin’[a ]
B —cos[a u] . (35)

- \/ 1 — sin’[a u] sin’[a ]

On the other hand, the components £, F and G of the first fun-
damental form and L, M and N of the second fundamental
form are given by

E=sec’lau], F=—tanf[au|tan[aV], G =sec?[a V],

2la V]

L— asec?[a u] M=0 N = —asec

sec2[a v]+tan?(a u| ’ sec[a v]+tan?a u]
(36)
Hence, the Gaussian curvature of the Scherk’s surface is:

e _(l acosla u] cosfa v] )2_ (37)

— sin’[a u] sin’[a ]

The mean curvature is vanished, i.e., H = 0.

Remark 5.1. For the minimal surface generated by the two
plane curves (31) and from the above results we can write the
following:

(1) Eq. (34) of the two variables u and v appeared in the
angle ¢ is harmonic with Part (1) in theorem (3.1).

(2) The results in the Egs. (32) and (35) are harmonic with
lemma (3.4) and the main theorem (3.5) of minimal
surface.

The principal curvatures as well as the normal curvature
and the geodesic torsion of Scherk’s surface are given by,
respectively:

acosla u]cosfa v

K| = —Ky = K, =0,

1 —sin’[a ] sin’[a v]’
acos|a u]cosla v]

Tg = — ) s 2 ' (38)
2(1 — sin’[a u] sin’[a v])

At the origin, we have
E=G=1, F=0, L=-N=a,

— 2 _ -
K=—-a, Kk =-K =a,

M=0,
K, =0, 1,=-9.

(39)

Since, the Gaussian curvature is negative at the origin, then the
origin is a hyperbolic point.

Example 5.3. Let the translation surface S be the cylinder
defined by (2) such that one of the generating curves is a circle
with radius @ and the other is a straight-line perpendicular to
the plane of the circle. These two curves can be written as:

B(v) =(0,0,v). (40)

For these curves, one can easily get the following:

o(u) = (acos[u],asinfu],0),

E=d, F=0, G=1, L=—a, M=N=0,
1 1
KZO, H:—ﬁ, K1:07 K22—57 Kn:’fg:O.

(41)

because L N — M*> =0 and L* + M? + N* > 0, then, all points
on the cylinder are parabolic points.

Example 5.4. Let S be a translation surface given by (2) with
generating two plane curves lying on parallel planes and given
by [15]:

a(u) = [ (cos [ [ r,(u) du],sin [ [, (u) du,0])du,
B(v) = [ (cos [[xp(v) dv],sin [[x4(v) dv],0)dv,
where «, and kg are the curvatures of the two curves o(u) and
B(v), respectively. By straightforward computations, one can
obtain the following:

E=1, F=cos|[r,(u) du+ [r5(v) dv],
L=M=N=K=H=x =K =0.

(42)

G=1 (43)

In this case U, = U, = 0, therefore the normal vector is con-
stant along the surface. The derivative of the function (U, X)
with respect to u and v is (U, X,) = (U, X,) = 0 because U is
perpendicular to the tangent vectors X,, X,, hence (U, X) is
constant and the surface is contained in a plane. This means
that all points of the surface S are planar points while this sur-
face has not umbilical points.
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Example 5.5. Let S be a surface in Euclidean 3-space, then S'is
written as

X(”v V) = a(“) + ﬁ(v)v (44)
with generated curves

O‘(”):(u37070)7 ﬁ(V):(O,V3,0), u e [_171]7 Ve [_171]'

Calculating the partial derivative of (44) with respect to u and v
respectively, we get

{Xu = (342,0,0),

X, = (0,3v%,0).
Then

X, A X, =(0,0,9%7).

At the origin, by a straightforward computations, one can get
the following:

X, ANX, =(0,0,0).

Since X, A X, = 0, hence the origin is a singular point.
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