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Abstract In this paper we introduce a new integration operator S
ðnÞ
g;/, where

S
ðnÞ
g;/ ¼

Z z

0

/ðnÞð fðnÞÞgðnÞdn:

We characterize all entire functions that transform a Bloch-type space into another by this new

integration operator. Also, we prove that all generalized superposition operators induced by such

entire functions are bounded.

AMS: 46E15; 47B33; 47B38; 54C35
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1. Introduction

Let HðDÞ denote the space of all analytic functions on the unit
disk D of C. Let / be analytic self-map of D; n be a positive
integer and g 2 HðDÞ. Let X and Y be two metric spaces of

analytic functions on the unit disk and / denotes a complex-
valued function of the plan C. The superposition operator
S/ on X is defined by

S/ð f Þ ¼ / � f; f 2 X:

If S/ f 2 Y for f 2 X, we say that / acts by superposition from

X into Y. We see that if X contains linear functions, / must be
an entire function. Let HðDÞ be the class of all analytic

function on D, then for g 2 HðDÞ, we define a new nonlinear
superposition operator as follows:

ðSðnÞg;/ f ÞðzÞ ¼
Z z

0

/ðnÞð fðnÞÞgðnÞdn:

The operator S
ðnÞ
g;/ is called the generalized superposition oper-

ator. When g ¼ f 0 and n ¼ 1, we see that this operator is essen-

tially superposition operator, since the following difference
S
ðnÞ
g;/ � S/ is a constant. Therefore, S

ðnÞ
g;/ is a generalization of

the superposition operator. To the best of our Knowledge,

the operator S
ðnÞ
g;/ is introduced in the present paper for the first

time. The graph of S
ðnÞ
g;/ is usually closed but, since the operator

is nonlinear, this is not enough to assure its boundedness.
Nonetheless, for a number of important spaces X; Y, such

as Hardy, Bergman, Dirichlet, and Bloch, the mere action
S
ðnÞ
g;/ : X! Y implies that / must belong to a very special class

of entire functions, which in turn implies boundedness.
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Wen Xu studied superposition operators on Bloch-type
spaces in [1].

In this paper we give a complete description of the general-

ized superpositions on Bloch-type spaces in terms of the order
and type of / and the degree of polynomials.

Let D ¼ fz 2 C : jzj < 1g be the open unit disk in the com-

plex plane C. Recall that the well known Bloch space (cf. [2]) is
defined as follows:

B ¼ ff : f analytic in D and sup
z2D
ð1� jzj2Þj f 0ðzÞj <1g;

the little Bloch space B0 (cf. [2]) is a subspace of B consisting of
all f 2 B such that

lim
jzj!1�

ð1� jzj2Þj f 0ðzÞj ¼ 0:

Definition 1.1 [3]. Let f be an analytic function in D and

0 < a <1. The a-Bloch space Ba is defined by

Ba ¼ ff 2 HðDÞ : k fkBa ¼ sup
z2D
ð1� jzj2Þaj f 0ðzÞj <1g;

the little a-Bloch space Ba
0 is given as follows

Ba
0 ¼ ff 2 HðDÞ : k fkBa

0
¼ lim
jzj!1�

ð1� jzj2Þaj f 0ðzÞj ¼ 0g:

The spaces B1 and B1
0 are called the Bloch space and denoted

by B and B0 respectively (see [4]).

As a simple example one can get that the function
fðzÞ ¼ logð1� zÞ is a Bloch function but fðzÞ ¼ log2ð1� zÞ is
not a Bloch function.

Definition 1.2 (see [5]). For p 2 ð0;1Þ and �1 < a <1, the

Bergman-type spaces Ap
a are defined by

Ap
a ¼ f f 2 HðDÞ : k fkAp

a
¼ sup

z2D
j fðzÞjpð1� jzj2Þa <1g:

Moreover, f 2 A0;a; if and only if

lim
jzj!1�

sup
z2D
j fðzÞjð1� jzj2Þa ¼ 0:

Conformally invariant spaces of the disk: It is a standard

fact that the set of all disk automorphisms (i.e., of all one-
to-one analytic maps u of D onto itself\,), denoted AutðDÞ,
coincides with the set of all Möbius transformations of D onto
itself:

AutðDÞ ¼ fkua : jkj ¼ 1; a 2 Dg;

where uaðzÞ ¼ a�z
1��az

are the automorphisms: uaðuaðzÞÞ � z.

A space X of analytic functions in D, equipped with a semi-
norm q, is said to be conformally invariant or Möbius invari-
ant if whenever f 2 X, then also f � u 2 X for any u 2 AutðDÞ
and, moreover, qð f � uÞ 6 Cqð f Þ for some positive constant

C and all f 2 X.

Definition 1.3. In topology, a geometrical object or space is
called simply connected (or 1-connected) if it is path-connected

and every path between two points can be continuously
transformed into every other while preserving the two
endpoints in question.
Definition 1.4. A path from a point x to a point y in a topolog-

ical space X is a continuous function f from the unit interval
½0; 1� to X with fð0Þ ¼ x and fð1Þ ¼ y. A path-component of
X is an equivalence class of X under the equivalence relation

defined by x is equivalent to y if there is a path from x to y.
The space X is said to be path-connected (or path-wise con-
nected or 0-connected) if there is only one path-component,
i.e. if there is a path joining any two points in X.

Remark 1.1. Every path-connected space is connected. The
converse is not always true.

In this section, we give some auxiliary results which are
incorporated in the following lemmas.

Lemma 1.1. Let and f 2 Ba and 0 < a <1. Suppose that
Ia ¼
Z 1

0

jzjdt
ð1� t2jzj2Þa

<1: ð1Þ

Then we have,

j fðzÞj 6 j fð0Þj þ Ck f kBa ;

for some C > 0 independent of f.

Proof. Let jzj > 1
2
; z ¼ rn, and n 2 @D. We have

f ðzÞ � f
rn
2

� �����
���� ¼

Z 1

1
2

zf0ðtzÞdt
�����

����� 6
Z 1

1
2

jzk f 0ðtzÞjdt

6 2k fkBa

Z 1

0

jzjdt
ð1� t2jzj2Þa

6 Ck fkBa :

Also, we have

j fðzÞj 6 max
jzj61

2

j fðzÞj þ Ck fkBa : ð2Þ

Let jzj 6 1
2
, then, by the mean value property of the function

fðzÞ � fð0Þ (see [6]) and Jensen’s inequality, we obtain

max
jzj61

2

j fðzÞ � fð0Þj 6 4n
Z
jzj63

4

j fðwÞ � fð0ÞjdAðwÞ

6 4n
Z
jzj63

4

j f 0ðwÞj2dAðwÞ 6 3nmax
jzj63

4

j f 0ðwÞj2:

The second inequality can be easily proved by using the homo-
geneous expansion of f.

Hence,
max
jzj61

2

j fðzÞj 6 j fð0Þj þ ð
ffiffiffi
3
p
Þ
n
max
jzj63

4

j f 0ðzÞj

6 j fð0Þj þ 24að
ffiffiffi
3
p
Þn

7a k fkBa : ð3Þ

From (2) and (3), the result follows easily when a – 1. If a ¼ 1,

then we have

j fðzÞj 6 j fð0Þj þ 16ð
ffiffiffi
3
p
Þn

7
k fkB1 þ Ck fkB1

6 j fð0Þj þ 16ð
ffiffiffi
3
p
Þn

7
þ C

 !
k fkB1 :

This complete the proof. h
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Throughout this work, the letter X will be used to denote a
planar domain and @X its boundary.

A univalent function in D is an analytic function which is

one-to-one in the unit disk. By the Riemann mapping theorem
[6], for any given simply connected domain X (other than the
plane itself\,) there is such a function f (called a Riemann

map) that takes D onto X and the origin to a prescribed point.
Denoting by distðw; @XÞ the Euclidean distance of the point w
to the boundary of the domain X, the Riemann map f has the

following property:

1

4
ð1� jzj2Þj f 0ðzÞj 6 distð fðzÞ; @XÞ

6 ð1� jzj2Þj f 0ðzÞj for all z 2 D: ð4Þ

This estimate plays an important role in the geometric theory

of functions. In particular, (4) tells us that a function f univa-
lent in D belongs to B if and only if the image domain fðDÞ
does not contain arbitrarily large disks.

The auxiliary construction of a conformal map onto a spe-
cific Bloch domain with the maximal growth along a certain
polygonal line displayed below might be of some independent
interest. Thus, we state it separately as a lemma. Loosely

speaking, such a domain can be imagined as a ‘‘highway from
the origin to infinity’’ of width 2d. Somewhat similar construc-
tions of simply connected domains as the images of functions

in various function spaces can be found in the recent papers
[7,8].

Lemma 1.2. For each positive number d and for every sequence
wn of complex number such that w0 ¼ 0; jw1jP
5d; j argw1 � h0j < p

4 ; argwn & h0, or argwn % h0 and

jwnjP max 3jwn�1j;
Xn�1
k¼1
jwk � wk�1j

( )
for all n P 2; ð5Þ

there exists a domain X with the following properties:

(i) X is simply connected;
(ii) X contains the infinite polygonal line L ¼

S1
n¼1
½wn�1;wn�,

where ½wn�1;wn� denotes the line segment from wn�1 to wn;
(iii) there exists a conformal mapping f of D onto X which

takes the origin to a prescribed point belongs to B;
(iv) distðw; @DÞ ¼ d for each point w on L, where % denotes

the increasing functions and & denotes the decreasing
functions.

Proof. It is clear from (5) that jwnj % 1, as n!1. We con-
struct the domain X as follows. First connect the points wn by a
polygonal line L as indicated in the statement. Let

Dðz; dÞ ¼ fw : jz� wj < dg and define

X ¼
[
fDðz; dÞ : z 2 Lg;

i.e. let X be a d-thickening of L. In other words, X is the union
of simply connected cigar-shaped domains

Cn ¼
[
fDðz; dÞ : z 2 ½wn�1;wn�g:

By our choice of wn, it is easy to check inductively that
jwn � wkjP 5d whenever n > k. Since our construction implies
that
Cn � fw : jwn�1j � d < jwj < jwnj þ dg;

we see immediately that

(a) for all m and n; Cm \ Cn – ;, if and only if jm� nj 6 l;
(b) for all n; Cn \ Cnþ1 is either Dðwn; dÞ or the interior of

the convex hull of Dðwn; dÞ [ fang for some point an out-

side of Dðwn; dÞ, where Dðwn; dÞ is the closure of

Dðwn; dÞ. Thus, each XN ¼
SN

n¼1
Cn is also simply con-

nected. Since

X ¼
[1
N¼1

XN and XN � XNþ1 for all N;

we conclude that X is also simply connected (like in [8]). By
construction, distðw; @XÞ 6 d for all w in X, hence any
Riemann map onto X will belong to B. It is also clear that

(iv) holds. h
2. S
ðnÞ
g;/ on Bloch space

First we will show that if 0 < b < a, then S
ðnÞ
g;/ maps Ba into Bb

unless / is a constant.

Theorem 2.1. Let 0 < b < a and / be an entire function. Then

the generalized superposition operator S
ðnÞ
g;/ maps Ba into Bb if

and only if / is a constant function.

Proof. If / is a constant, it is obvious that S
ðnÞ
g;/ðB

aÞ � Bb. Now

we assume that / is not a constant. We distinguish three cases
to prove that S

ðnÞ
g;/ðB

aÞ å Bb.

(i) When a < 1. Since / is not a constant, there exists a disk

jw� w0j < r on which

j/ðnÞðwÞj > d > 0:

Let jgðzÞj ¼ j1� zj�a 2 Ba. Then, for z 2 D, we have

ð1�jzj2ÞbjðSðnÞg;/ fÞðzÞj ¼ ð1�jzj
2Þbj/ðnÞð fðzÞÞkgðzÞjP dð1�jzj2Þb

j1� zja :

The right side of the above inequality tends to infinity as z! 1
This shows that S

ðnÞ
g;/ð f Þ R Bb and S

ðnÞ
g;/ðB

aÞ å Bb.

(ii) When a ¼ 1. Since / is unbounded, there exists a com-
plex sequence wn !1 such that j/ðwnÞj ! 1 as
n!1. Without loss of generality, we may assume that

wn satisfies the conditions in Lemma 1.2 with some d > 0
by adding w0 ¼ 0 and choosing a subsequence if neces-
sary. By Lemma 1.2, there exists a domain X and a con-

formal mapping f of D onto X such that wn 2 X for
n ¼ 0; 1; . . . and f 2 B. By Lemma 1.1, any function in

Bb is bounded and, hence, SðnÞg;/ð f Þ R Bb and

SðnÞg;/ðB
aÞ å Bb, since SðnÞg;/ is unbounded.

(iii) When a > 1. Since / is not a constant, there is a

sequence wn !1 such that j/ðnÞð f ðznÞÞjP d for some

fixed d > 0 and n 2 N ¼ f1; 2; . . .g. We may assume that

j arg wnj < minfða�1Þp
4

; p
2
g and jwnj > 1 for n 2 N, by

rotating and choosing a subsequence if necessary.
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Consider the function jgðzÞj ¼ j1� zj�a 2 Ba. The pre-

image of wn under the function jgj is

zn ¼ 1� wn
xð1�jzjÞ

� ��1
a
, which belongs to the domain

S ¼ z 2 D : j1� zj < 1; j argð1� zÞj < p
4

n o
:

Therefore, there exists a constant M such that

j1� znj 6Mð1� jznjÞ for n 2 N

ð1� jznj2Þ
bj/ðnÞð fðznÞÞkgðznÞjP dð1� jznj2Þ

bjgðznÞj

P
dð1� jznj2Þ

b

j1� znja
P

d

Mað1� jznjÞa�b !1 as n!1:

This shows that S
ðnÞ
g;/ R Bb and S

ðnÞ
g;/ðB

aÞ å Bb. The proof is
completed. h

Now, we will study generalized superposition operators
from Ba to Bb ða 6 bÞ.

An operator acting between two metric spaces is said to be

bounded if it maps bounded sets into bounded sets.

Theorem 2.2. Let 0 < a < 1;; and a 6 b. Then for any entire
function /; SðnÞg;/ is a bounded operator of Ba into Bb.

Proof. Let 0 < a < 1; a 6 b, and / be an entire function. Let

M > 0. For a function g with kgkBa 6M, by Lemma 1.1,
j fðzÞj < CaM (where Ca is a constant depending only on a),
then

/ð fð0ÞÞ 6M1 ¼ max
jwj¼CaM

j/ðwÞj;

/ðnÞð fðzÞÞ 6M2 ¼ max
jwj¼CaM

j/ðnÞðwÞj; for z 2 D:

Thus

kSðnÞg;/ fkBb 6 jSðnÞg;/ð f Þð0Þj þ sup
z2D
ð1� jzj2ÞbjðSðnÞg;/ f ÞðzÞj

6 jSðnÞg;/ð f Þð0Þj þ sup
z2D
ð1� jzj2Þaj/ðnÞð fðzÞÞkgðzÞj

6M2sup
z2D
ð1� jzj2ÞbjgðzÞj 6M1 þM2kgkBa

6M1 þMM2:

where M2 depend on a;/ and M only. This completes the
proof. h

Theorem 2.3. Let be a nondecreasing function, 1 < a 6 b and /
be an entire function. Then the following statements are
equivalent:

(i) SðnÞg;/ maps Ba into Bb;
(ii) SðnÞg;/ is a bounded operator of Ba into Bb;
(iii) / is a polynomial of degree at most b�1

a�1.

Proof. We need to show ðiÞ ) ðiiiÞ ) ðiiÞ. First, assume
that ðiiiÞ holds. It suffices to verify the statement ðiiÞ for

/ðzÞ ¼ zr with positive integer n < r 6 b�1
a�1. For f 2 Ba, by

Lemma 1.1, we have
ð1� jzj2ÞbjðSðnÞg;/ f ÞðzÞj 6 ðr� nÞ!ð1� jzj2Þbj fðzÞjr�nþ1jgðzÞj

¼ ðr� nÞ!ð1� jzj2Þaj fðzÞjr�nþ1ð1� jzj2Þb�ajgðzÞj
6 CkgkBa � k fkAr�nþ1

b�a
:

Thus,

kSðnÞg;/ fðzÞkBb 6 CkgkBa � k fkAr�nþ1
b�a

:

This shows that the generalized superposition operator S
ðnÞ
g;/ is a

bounded operator from Ba into Bb. The implication

ðiiiÞ ) ðiiÞ is proved.
Now suppose that / is not a polynomial of degree at most

b�1
a�1, or equivalently that the Taylor expansion of / about zero
has a non-zero coefficient of order m > b�1

a�1. Then, there exists

a constant d > 0 and a sequence wn !1 such that

j/ðnÞð fðwnÞÞjP d for n 2 N:

We want to find a function f 2 Ba with S
ðnÞ
g;/ðB

aÞ å Bb. With-

out loss of generality j argwnj < minfða�1Þp
4

; p
2
g for n 2 N, by

rotating and choosing a subsequence if necessary. Let

jgðzÞj ¼ j1� zj�a 2 Ba. As in the proof of Theorem 2.1, the

point zn ¼ 1� ðwnÞ
�1
a , satisfies that j1� znj < 1 and

j argð1� znÞj < p
4

and consequently, that j1� znj 6
Mð1� jznjÞ for n 2 N. Thus,

ð1� jznj2Þ
bjðSðnÞg;/ f ÞðznÞj ¼ ð1� jznj

2Þbj/ðnÞð fðznÞÞjgðznÞj

P
dð1� jznj2Þ

b

j1� znjða�1Þðm�1Þþa
P

d

Mmða�1Þþ1ð1� jznjÞmða�1Þþ1�b
:

Since m > b�1
a�1, we have mða� 1Þ þ 1� b > 0. Thus,

ð1� jznj2Þ
bjðSðnÞg;/ f ÞðznÞj ! 1 as n!1;

which implies that S
ðnÞ
g;/ðB

aÞ å Bb. This shows that ðiÞ ) ðiiiÞ.
The theorem is proved. h

The notion of the order and type of the entire function / is

involved in the investigation when 1 ¼ a < b. Let
MðrÞ ¼ max

jzj¼r
j/ðzÞj for r P 0. The logarithmic order (log-or-

der) of the function MðrÞ is defined as

q ¼ lim sup
r!1

lnþlnþMðrÞ
ln r

;

where lnþx ¼ maxfln x; 0g. If 0 < q <1, the logarithmic type
(log-type) of the function MðrÞ is defined as

s ¼ lim sup
r!1

lnþMðrÞ
rq

:

Note that if f is an entire function, then the growth order of f is

just the log-order of MðrÞ, the maximum modulus function of
f.

In the earlier papers [7,9], the cut usually occurred at the le-
vel of functions of infinite type. The appearance of the func-

tions of given order and type zero in the result below seems
to be a novelty in this context.

Theorem 2.4. Let b > 1.

(i) If / is an entire function of order less than one, or of order
one type zero, and
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j fðzÞj 6Mð1þ log
1

1� jzjÞ for z 2 D:

Then,

kSðnÞg;/kBb 6 CkgkBb :

(ii) If / is an entire function of order greater than one, or of

order one and positive type and suppose thatZ jzn j

0

dt

ð1� t2Þ <1 and ð1� jzj2Þj f 0ðzÞjP d; d > 0:

Then,

kSðnÞg;/kBb P CkgkBb :

Proof.

(i) Given M > 0, let r ¼ b�1
M . Since / is an entire function of

order less than one or of order one and type zero, the
same holds for /ðnÞ. Then there exists M1 such that

j/ðnÞðwÞj; j/ðwÞj 6M1e
rjwj for w 2 C:

Thus,

j/ð fð0ÞÞj 6M1e
rj fðzÞj

6M1e
rM ¼M1e

b�1

sup
z2D
ð1�jzj2ÞbjðSðnÞg;/ fÞðzÞj6M1sup

z2D
ð1�jznj2Þ

bjgðznÞjerj fðzÞj

6M1sup
z2D
ð1�jznj2Þ

bjgðznÞj
e

1�jzj

� �b�1

6 2b�1M1e
b�1kgkBb :

Hence,

kSðnÞg;/ fkBb 6 CkgkBb : ð6Þ

(ii) Now, suppose that /ðnÞ is of order bigger than 1, or of
order one and positive type. Thus, there exists an

g > 0 and a sequence wn !1 such that

j/ðnÞðwnÞjP egjwn j for n 2 N: ð7Þ

Let d > 0 be given so that gd
r > b. As in the proof of

Theorem 2.1, we may assume that wn satisfies the condition in

Lemma 1.2 with the given d. Thus, there exists a domain X and
a conformal mapping fð fð0Þ ¼ 0Þ with all properties in Lemma

1.1. Let l ¼ f�1ðLÞ; zn ¼ f�1ðwnÞ, and denote the part of l from
0 to zn by ln for n 2 N0 ¼ N [ f0g. We have zn ! @D since

wn !1. For w0 2 L, let z0 ¼ f�1ðw0Þ and w1 ¼ z0�z
1��zz for z 2 D.

Since ð1� jz0j2Þj f 0ðz0ÞjP d. Thus, for n 2 N, by (5) and (7)

3jwnjP
Xn
k¼1
jwk � wk�1j ¼

Z
ln

j f 0ðzÞkdzj

¼
Z
ln

ð1� jzj2Þj f 0ðzÞj jdzj
ð1� jzj2Þ

P d
Z jzn j

0

dt

ð1� t2Þ ¼ dC;

and

ð1�jznj2Þ
bjðSðnÞg;/ fÞðznÞj ¼ ð1�jznj

2Þbj/ðnÞð fðwnÞÞjgðznÞj

P ð1�jznj2Þ
b
egj fðwnÞj jgðznÞjPCkgkBb :
This completes the proof. h
3. Conclusion

we introduced a new integration operator S
ðnÞ
g;/, We character-

ized all entire functions that transform a Bloch-type space into
another by this new integration operator. We proved that all

generalized superposition operators induced by such entire
functions are bounded. Also, we studied the generalized super-
positions on Bloch-type spaces in terms of the order and type

of / and the degree of polynomials.

4. Future work

It is still an open problem to extend the obtained results in this
paper by using the generalized superposition operators in new
hyperbolic classes of functions which introduced in [10].
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