

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE On asymptotically ideal equivalent sequences

Bipan Hazarika

Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India

Received 16 September 2013; revised 13 December 2013; accepted 27 January 2014 Available online 18 March 2014

KEYWORDS

Ideal; *I*-convergence; Asymptotically equivalent sequence **Abstract** In this article we introduce the notion of asymptotically *I*-equivalent sequences. We prove the decomposition theorem for asymptotically *I*-equivalent sequences. Further, we will present four theorems that characterize asymptotically *I*-equivalent of multiple λ and the regularity of asymptotically *I*-convergence by using a sequence of infinite matrices.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 40A05; 40A99; 40C15

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

Throughout $w, \ell_{\infty}, c, c_0, c^I, c_0^I, m^I$, and m_0^I denote all, bounded, convergent, null, *I*-convergent, *I*-null, bounded *I*-convergent and bounded *I*-null class of sequences, respectively. Also \mathbb{N} and \mathbb{R} denote the set of positive integers and set of real numbers, respectively. Further S_0^I denote the subset of the space m_0^I with non-zero terms.

The notion of statistical convergence is a very useful functional tool for studying the convergence problems of numerical sequences/matrices (double sequences) through the concept of density. It was first introduced by Fast [1] and Schoenberg [2], independently for the real sequences. Later on it was further investigated from sequence space point of view and linked with the summability theory by Fridy [3] and many others. The idea

E-mail address: bh_rgu@yahoo.co.in Peer review under responsibility of Egyptian Mathematical Society.

is based on the notion of natural density of subsets of \mathbb{N} , the set of positive integers, which is defined as follows. The natural density of a subset of \mathbb{N} is denoted by $\delta(E)$ and is defined by

$$\delta(E) = \lim_{n \to \infty} \frac{1}{n} |\{k \leqslant n : k \in E\}|,$$

where the vertical bar denotes the cardinality of the respective set.

The notion of *I*-convergence (*I* denotes an ideal of subsets of \mathbb{N}), which is a generalization of statistical convergence, was introduced by Kostyrko et al. [4]. Later on it was further investigated from sequence space point of view and linked with summability theory by Šalát et al. [5,6], Tripathy and Hazarika [7] and many others.

A non-empty family of sets $I \subseteq P(\mathbb{N})$ (power set of \mathbb{N}) is called an ideal of \mathbb{N} if (i) for each $A, B \in I$, we have $A \cup B \in I$; (ii) for each $A \in I$ and $B \subseteq A$, we have $B \in I$. A family $F \subseteq P(\mathbb{N})$ (power set of \mathbb{N}) is called a filter of \mathbb{N} if (i) $\phi \notin F$; (ii) for each $A, B \in F$, we have $A \cap B \in F$; and (iii) for each $A \in F$ and $B \supset A$, we have $B \in F$. An ideal I is called nontrivial if $I \neq \phi$ and $\mathbb{N} \notin I$. It is clear that $I \subseteq P(\mathbb{N})$ is a non-trivial ideal if and only if the class $F = F(I) = {\mathbb{N} - A : A \in I}$ is a filter on \mathbb{N} . The filter F(I) is called the filter associated with the ideal I. A non-trivial ideal $I \subseteq P(\mathbb{N})$ is called an admissible

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2014.01.011

ideal of \mathbb{N} if it contains all singletons, i.e., if it contains $\{\{x\}: x \in \mathbb{N}\}.$

In [8], Marouf introduced the definition for asymptotically equivalent of two sequences. In [9], Pobyvancts introduced the concept of asymptotically regular matrices, which preserve the asymptotic equivalence of two nonnegative numbers sequences. The frequent occurrence of terms having zero value makes a term-by-term ratio inapplicable in many cases. In [3], Fridy introduced new ways of comparing rates of convergence. If x is in ℓ^1 , he used the remainder sum, whose *n*th term is $R_n(x) := \sum_{k=n}^{\infty} |x_k|$, and examined the ratio $\frac{R_n(x)}{R_n(y)}$ as $n \to \infty$. If x is a bounded sequence, he used the supremum of the remaining terms which is given by $\mu_n x := \sup_{k \ge n} |x_k|$. In [10], Patterson introduced the concept of asymptotically statistically equivalent sequences and natural regularity conditions for nonnegative summability matrices.

In present study we introduce the definition of asymptotically *I*-equivalent sequences and prove the decomposition theorem for asymptotically *I*-equivalent sequences and some interesting theorems related to this notion.

2. Definitions and notations

Definition 2.1. [1,3]. A sequence (x_k) is said to be textitualistically convergent to x_0 if for each $\varepsilon > 0$, the set $E(\varepsilon) = \{k \in \mathbb{N} : |x_k - x_0| \ge \varepsilon\}$ has natural density zero.

Definition 2.2 [4]. A sequence (x_k) is said to be *I*-convergent if there exists a number x_0 such that for each $\varepsilon > 0$, the set

 $\{k \in \mathbb{N} : |x_k - x_0| \ge \varepsilon\} \in I.$

Definition 2.3 [4]. Let (x_k) and (y_k) be two real sequences, then we say that $x_k = y_k$ for almost all k related to I (a.a.k.r.I) if the set $\{k \in \mathbb{N} : x_k \neq y_k\}$ belongs to I.

Definition 2.4 [4]. An admissible ideal *I* is said to have the property (AP) if for any sequence $\{A_1, A_2, \ldots\}$ of mutually disjoint sets of *I*, there is sequence $\{B_1, B_2, \ldots\}$ of sets such that each symmetric difference $A_i \Delta B_i (i = 1, 2, 3, \ldots)$ is finite and $\bigcup_{i=1}^{\infty} B_i \in I$.

Example 2.1. If we take $I = I_f = \{A \subseteq \mathbb{N} : A \text{ is a finite subset}\}$. Then, I_f is a non-trivial admissible ideal of \mathbb{N} and the corresponding convergence coincide with usual convergence of sequences.

Example 2.2. If we take $I = I_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$, where $\delta(A)$ denote the asymptotic density of the set A. Then I_{δ} is a non-trivial admissible ideal of \mathbb{N} and the corresponding convergence coincide with statistical convergence of sequences.

Let $\ell^1 = \{x = (x_k) : \sum_{k=1}^{\infty} |x_k| < \infty\}.$

For a summability transformation A, we use d(A) to denote the domain of A:

$$d(A) = \left\{ x = (x_k) : \lim_{n} \sum_{k=1}^{\infty} a_{n,k} x_k \text{ exists} \right\}.$$

Also $S_{\delta} = \{x = (x_k) : x_k \ge \delta > 0 \text{ for all } k\}$ and

 $S_0 = \{$ the set of all nonnegative sequences which have at most a finite number of zero entries $\}$.

For a sequence $x = (x_k)$ in ℓ^1 or ℓ_{∞} , we also define

$$R_n(x) := \sum_{k=n}^{\infty} |x_k|$$
 and $\mu_n x := \sup_{k \ge n} |x_k|$ for $n \ge 0$.

Definition 2.5 [8]. Two nonnegative sequences (x_k) and (y_k) are said to be *asymptotically equivalent*, written as $x \sim y$ if $\lim_k \frac{x_k}{y_k} = 1$.

Definition 2.6. If $A = (a_{n,k})$ is a sequence of infinite matrices, then a sequence $x = (x_k) \in \ell_{\infty}$ is said to be *A*-summable to the value x_0 if

$$\lim_{n} (Ax)_n = \lim_{n} \sum_{k=1}^{\infty} a_{n,k} x_k = x_0.$$

Definition 2.7. A summability matrix *A* is *asymptotically regular* provided that $Ax \sim Ay$ whenever $x \sim y, x \in S_0$ and $y \in S_{\delta}$ for some $\delta > 0$.

The following results will be used for establishing some results of this article.

Lemma 2.1 (*Pobyvancts [9]*). A nonnegative matrix A is asymptotically regular if and only if for each fixed integer m,

$$\lim_{n\to\infty}\frac{a_{n,m}}{\sum_{k=1}^{\infty}a_{n,k}}=0.$$

Lemma 2.2. A matrix A which maps c_0 to c_0 if and only if

- (a) $\lim_{n\to\infty} a_{n,k}$ for k = 1, 2, 3, ...
- (b) There exists a number M > 0 such that for each n, ∑_{k=1}[∞] |a_{n,k}| < M. Throughout the article I is an admissible ideal of subsets of N.</p>

3. Asymptotically I-equivalent sequences

In this section we introduce the following definitions and prove the decomposition theorem and some interesting theorems.

Definition 3.1. Two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be *asymptotically I-equivalent* of multiple $\lambda \in \mathbb{R}$, written as $x \stackrel{I_k}{\sim} y$, provided for every $\varepsilon > 0$, and $y_k \neq 0$, the set

$$\left\{k \in \mathbb{N} : \left|\frac{x_k}{y_k} - \lambda\right| \ge \varepsilon\right\}$$

belongs to *I* and in this case we write $I - \lim_k \frac{x_k}{y_k} = \lambda$, simply asymptotically *I*-equivalent if $\lambda = 1$. It is easy to observe that $x \stackrel{I_2}{\sim} y$ is equivalent to $\frac{x_k}{\lambda} \stackrel{I}{\sim} y_k$. From this observation it follow, that we obtain the same notion if we use all real $\lambda's$, some $\lambda \neq 0$, or just $\lambda = 1$.

Example 3.1. Let us consider the sequences $x = (x_k)$ and $y = (y_k)$ as follows:

$$x_k = \begin{cases} 3k^{-1}, & \text{if } k \text{ is even;} \\ (k+2)^{-1}, & \text{if } k \text{ is odd} \end{cases}$$

and

$$y_k = \begin{cases} k^{-1}, & \text{if } k \text{ is even;} \\ 3(k+2)^{-1}, & \text{if } k \text{ is odd} \end{cases}$$

Therefore we have

 $\frac{x_k}{y_k} = \begin{cases} 3, & \text{if } k \text{ is even;} \\ 3, & \text{if } k \text{ is odd} \end{cases}$

Thus

 $\left\{k \in \mathbb{N} : \left|\frac{x_k}{y_k} - 3\right| \ge \varepsilon\right\} \in I$

Hence $x = (x_k)$ and $y = (y_k)$ are asymptotically *I*-equivalent of multiple 3.

Definition 3.2. A summability matrix A is said to be asymptotically *I*-regular provided that $Ax \stackrel{I_{\lambda}}{\sim} Ay$ whenever $x \stackrel{I_{\lambda}}{\sim} y, x \in S_0^I$ and $y \in S_{\delta}$ for some $\delta > 0$.

Example 3.2. Let us consider the sequences $x = (x_k)$ and $y = (y_k)$ as follows:

 $x_k = 3 = y_k$ for all $k \in \mathbb{N}$.

Let A be defined as follows:

(3	0	3	0	0	0	0	0	0)
	0	3	0	3	0	0	0	0	0	
	0	0	3	0	3	0	0	0	0	
	0	0	0	3	0	3	0	0	0	
	0	0	0	0	3	0	3	0	0	
	0	0	0	0	0	3	0	3	0	
	0	0	0	0	0	0	3	0	3	
	0	0	0	0	0	0	0	3	0	
	0	0	0	0	0	0	0	0	3	
١,	dots	cdots)							

We have

 $Ax = (18, 18, \ldots) = Ay$

Then we have

 $I - \lim_{k} \frac{x_k}{y_k} = 1 \text{ and } I - \lim_{n} \frac{(Ax)_n}{(Ay)_n} = 1.$ i.e. $x \stackrel{I_1}{\longrightarrow} y$ implies $Ax \stackrel{I_1}{\longrightarrow} Ay$.

Theorem 3.1. Let $x = (x_k)$ and $y = (y_k)$ be two elements in S_0^I be such that $x \stackrel{I}{\sim} y$. Then there exists a sequence $z = (z_k)$ in S_0^I such that $x \stackrel{I}{\sim} y \stackrel{I}{\sim} z$.

Proof. The proof of the theorem is trivial, thus omitted. \Box

Theorem 3.2. Let I has the property (AP). Let $x = (x_k), y = (y_k) \in S_0^I$, then the followings are equivalent:

(i) $x \stackrel{I}{\sim} y$.

- (ii) There exist $x' = (x'_k), y' = (y'_k) \in S_0$ such that $x_k = x'_k$ for a.a.k.r.I; $y_k = y'_k$ for a.a.k.r.I and $x' \sim y'$.
- (iii) There exists a subset $K = \{k_i : i \in \mathbb{N}\}$ of \mathbb{N} such that $K \in F$ and $(x_{k_i}) \sim (y_{k_i})$.

Proof. (i) \Rightarrow (ii) Let $x = (x_k) \in S_0^I$, then there exists a subset A_1 of \mathbb{N} with $A_1 \in F$ such that

 $\lim x_k = 0$, over A_1 .

Again if $y = (y_k) \in S_0^l$, then there exists a subset A_2 of \mathbb{N} with $A_2 \in F$ such that

 $\lim_{k \to \infty} y_k = 0$, over A_2 .

Let $x \stackrel{I}{\sim} y$, then there exists a subset A_3 of \mathbb{N} with $A_3 \in F$ such that

$$\lim_{k} \frac{x_{k}}{y_{k}} = 0, \text{ over } A_{3}.$$

Let $A = A_{1} \cap A_{2} \cap A_{3}$, then $A \in F$.

We define the subsequences $x' = (x'_k)$, $y' = (y'_k)$ as follows:

$$x'_{k} = \begin{cases} x_{k}, & \text{if } k \in A; \\ k^{-3}, & \text{otherwise} \end{cases}$$

and

$$y'_k = \begin{cases} y_k, & \text{if } k \in A; \\ k^{-3}, & \text{otherwise} \end{cases}$$

Clearly $x' = (x'_k), y' = (y'_k) \in S_0$ and $x_k = x'_k$ for *a.a.k.r.I*; $y_k = y'_k$ for *a.a.k.r.I*. Also we have $x' \sim y'$.

(ii) \Rightarrow (iii) Let $x' = (x'_k), y' = (y'_k) \in S_0$ be such that $x_k = x'_k$ for *a.a.k.r.I*; $y_k = y'_k$ for *a.a.k.r.I* and $x' \sim y'$.

Let $B_1 = \{k \in \mathbb{N} : x_k = x'_k\}$ and $B_2 = \{k \in \mathbb{N} : y_k = y'_k\}$. Then $B_1, B_2 \in F$.

Put $K = B_1 \cap B_2$. Then $K \in F$.

Since $K \subset \mathbb{N}$, we can enumerate K as $K = \{k_i : i \in \mathbb{N}\}$. Then $(x_{k_i}) = (x'_{k_i}) \in S_0$ and $(y_{k_i}) = (y'_{k_i}) \in S_0$. Also we have

$$\frac{x_{k_i}}{y_{k_i}} = \frac{x'_{k_i}}{y'_{k_i}} \to 1 \text{ as } l \to \infty.$$

Hence $(x_{k_i}) \sim (v_{k_i}).$

(iii) \Rightarrow (i) Let $K = \{k_i : i \in \mathbb{N}\}$ be a subset of \mathbb{N} with $K \in F$ and $(x_{k_i}) \sim (y_{k_i})$. Then, we have

$$\lim_{i} \frac{x_{k_i}}{y_{k_i}} = 1.$$

Therefore we have

$$\left\{k \in \mathbb{N} : \left|\frac{x_k}{y_k} - 1\right| \ge \varepsilon\right\} \in I$$

Hence $x \stackrel{i}{\sim} y$. \Box

Theorem 3.3. A necessary and sufficient condition for a sequence of summability matrices A to be asymptotically I-regular is that for each fixed positive integer k_0 :

(i) $\sum_{p=1}^{k_0} a_{n,p}$ is bounded for each n; (ii) For $\varepsilon > 0$ and for each k_0 such that

$$\left\{p \in \mathbb{N}: \left|\frac{\sum_{p=1}^{k_0} a_{n,p}}{\sum_{p=1}^{\infty} a_{n,p}}\right| \ge \varepsilon\right\} \in I.$$

Proof. The necessary part of this theorem is easy, so omitted. To establish the sufficient part, let $\varepsilon > 0$ be given and $x \stackrel{I_{\lambda}}{\sim} y, x \in S_0^I$ and $y \in S_{\delta}$ for some $\delta > 0$, then we have for some $t = 1, 2, 3, \ldots$,

$$(\lambda - \varepsilon)y_{k+t} \leq x_{k+t} \leq (\lambda + \varepsilon), \text{ for } a.a.k.r.I.$$
 (3.1)

Let us consider the following:

$$\frac{(Ax)_n}{(Ay)_n} = \frac{\sum_{p=1}^{t} a_{n,p} x_p + \sum_{p=1+t}^{\infty} a_{n,p} x_p}{\sum_{p=1+t}^{t} a_{n,p} y_p + \sum_{p=1+t}^{\infty} a_{n,p} y_p} \\
= \frac{\frac{\sum_{p=1}^{t} a_{n,p} x_p}{\sum_{p=1+t}^{\infty} a_{n,p} x_p} + \sum_{p=1+t}^{\infty} a_{n,p} x_p}{\sum_{p=1+t}^{\infty} a_{n,p} y_p} .$$
(3.2)

The inequality (3.1) implies that

$$\lim_{n} \frac{\sum_{p=1+i}^{\infty} a_{n,p} x_p}{\sum_{p=1+i}^{\infty} a_{n,p} y_p} = \lambda \text{ for } a.a.n.r.I.$$

Since $x \in S_0^I$ and $y \in S_\delta$ for some $\delta > 0$ and condition (ii) holds, we obtain the following:

$$\lim_{n} \frac{\sum_{p=1}^{t} a_{n,p} x_{p}}{\sum_{p=1+t}^{\infty} a_{n,p} y_{p}} = 0, \text{ for } a.a.n.r.I.$$

and

$$\lim_{n} \frac{\sum_{p=1}^{t} a_{n,p} y_{p}}{\sum_{p=1+t}^{\infty} a_{n,p} y_{p}} = 0, \text{ for } a.a.n.r.I.$$

Thus from the relation (3.2), we have

$$\lim_{n} \frac{(Ax)_{n}}{(Ay)_{n}} = \lambda \text{ for } a.a.n.r.l$$

i.e.

$$\left\{ n \in \mathbb{N} : \left| \frac{(Ax)_n}{(Ay)_n} - \lambda \right| \ge \varepsilon \right\} \in I.$$

This implies that $Ax \stackrel{I_{\lambda}}{\sim} Ay$, whenever $x \stackrel{I}{\sim} y, x \in S_0^I$ and $y \in S_{\delta}$, for some $\delta > 0$.

This completes the proof. \Box

Theorem 3.4. Let $A = (a_{n,k})$ be an infinite nonnegative matrix. Suppose $x \stackrel{I}{\sim} y$ and $x \in S_0^I$ and $y \in S_{\delta}$, for some $\delta > 0$. Then $(\mu Ax) \sim (\mu Ay)$, if and only if for each $i = 1, 2, 3, \dots$ and for $\varepsilon > 0$ such that

$$\left\{n\in\mathbb{N}: \left|\frac{a_{n,i}}{\sum_{j=1}^{\infty}a_{n,j}}\right| \ge \varepsilon\right\} \in I.$$

Proof. Suppose for for $\varepsilon > 0$ and for each i = 1, 2, 3, ... such that

$$\left\{n\in\mathbb{N}: \left|\frac{a_{n,i}}{\sum_{j=1}^{\infty}a_{n,j}}\right| \ge \varepsilon\right\} \in I.$$

(μ.

We want to show that $(\mu Ax) \stackrel{I}{\sim} (\mu Ay)$.

Since $x \stackrel{I}{\sim} y$, then there exists a bounded sequence $z = (z_k)$ with *I*-limit zero such that $x_k = y_k(1 + z_k), k = 1, 2, 3, \dots$ Then for each *n*, we have the following:

$$\begin{split} \frac{(\mu A x)_n}{(\mu A y)_n} &= \frac{\sup_{k \ge n} (A x)_k}{\sup_{k \ge n} (A y)_k} \\ &= \frac{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} x_i}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i} \\ &= \frac{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} (y_i + y_i z_i)}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i} \\ &\leqslant \frac{\sup_{k \ge n} \left| \sum_{i=1}^{\infty} a_{k,i} (y_i + y_i z_i) \right|}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i} \\ &\leqslant 1 + \frac{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i} \\ &+ \frac{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i}, \end{split}$$

where t_0 is a positive integer.

Since z is a bounded null sequence, therefore $\sup_i |z_i| < \infty$ and for any $\varepsilon > 0$, there exists a positive integer t_0 such that $|z_i| < \varepsilon$ for $i \ge t_0$. Therefore we have

$$\begin{aligned} \frac{(\mu A x)_n}{(\mu A y)_n} &\leqslant 1 + \sup_j |z_j| \sum_{i=1}^{t_0} \frac{\sup_{k \ge n} a_{k,i} y_i}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i} \\ &+ \frac{\varepsilon \sup_{k \ge t_0} \sum_{i=t_0+1}^{\infty} a_{k,i} y_i}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i} \\ &\leqslant 1 + \sup_j |z_j| \sum_{i=1}^{t_0} \frac{\sup_{k \ge n} a_{k,i} y_i}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i} y_i} + \varepsilon. \end{aligned}$$

According to the hypothesis, we obtain the following:

$$\frac{a_{k,i}}{\sum_{i=1}^{\infty} a_{k,i}} < \frac{\varepsilon}{t_0} \sup_j |z_j| \sup_{0 < i \le t_0} y_i, \text{ for } a.a.k.r.I.$$

For $n \ge t_0$ we have

$$\frac{(\mu Ax)_n}{(\mu Ay)_n} \leqslant 1 + \varepsilon + \varepsilon, \text{ for } a.a.n.r.I.$$

This implies that

$$\lim_{n} \frac{(\mu A x)_{n}}{(\mu A y)_{n}} \leq 1, \text{ for } a.a.n.r.I$$

In a similar manner, we can prove that

$$\lim_{n} \frac{(\mu A x)_{n}}{(\mu A y)_{n}} \ge 1, \text{ for } a.a.n.r.I$$

Thus we have

$$\lim_{n} \frac{(\mu A x)_{n}}{(\mu A y)_{n}} = 1, \text{ for } a.a.n.r.I.$$

i.e.

$$\left\{ n \in \mathbb{N} : \left| \frac{(\mu A x)_n}{(\mu A y)_n} - 1 \right| \ge \varepsilon \right\} \in I.$$

Hence $(\mu A x) \stackrel{I}{\sim} (\mu A y).$

Next, suppose that $(\mu Ax) \sim^{I} (\mu Ay)$, for $x \sim^{I} y$ and $x \in S_0^{I}$ and $y \in S_{\delta}$, for some $\delta > 0$. If we consider the sequences x and y defined by

$$x_{k} = 1 = y_{k} \text{ for all } k \in \mathbb{N}.$$

Then $(\mu Ax) \stackrel{I}{\sim} (\mu Ay).$ i.e.
$$\lim_{n} \frac{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i}}{\sup_{k \ge n} \sum_{i=1}^{\infty} a_{k,i}} = 1, \text{ for } a.a.n.r.I.$$

Therefore, there exists K > 0 such that $\left\{\sum_{i=1}^{\infty} a_{k,i}\right\}_{k=1}^{\infty}$ is bounded by K.

Suppose

$$\left\{n \in \mathbb{N} : \left|\frac{a_{n,i}}{\sum_{j=1}^{\infty} a_{n,j}}\right| < \varepsilon\right\} \in F \text{ for some } i \text{ and } \varepsilon > 0.$$

Then there exists $\gamma > 0$ and a sequence $n_1 < n_2 < \dots$ such that

$$\frac{a_{u,i}}{\sum_{j=1}^{\infty} a_{u,j}} \ge \gamma \text{ for } u = 1, 2, 3 \dots$$

For s > 0 and define the sequences x and y by

$$x_k = \begin{cases} 1+s, & \text{if } k=i;\\ 1, & \text{otherwise} \end{cases}$$

and

 $y_k = 1$ for all $k \in \mathbb{N}$.

Clearly $x \stackrel{l}{\sim} y$ and $x, y \in S_1$. Consider the following limit:

$$\lim_{u\to\infty} \frac{\sup_{k\ge u}\sum_{j=1}^{\infty} a_{n_k,j} x_j}{\sup_{k\ge u}\sum_{j=1}^{\infty} a_{n_k,j} y_j} = \lim_{u\to\infty} \frac{\sup_{k\ge u}\sum_{j=1}^{\infty} (a_{n_k,j} + sa_{n_k,j})}{\sup_{k\ge u}\sum_{j=1}^{\infty} a_{n_k,j}}$$
$$\geqslant \lim_{u\to\infty} \frac{\sup_{k\ge u} \left(\sum_{j=1}^{\infty} a_{n_k,j} + s\gamma\sum_{j=1}^{\infty} a_{n_k,j}\right)}{\sup_{k\ge u}\sum_{j=1}^{\infty} a_{n_k,j}}$$
$$= 1 + s\gamma.$$

We choose $s = \frac{1}{2}$, then we have

$$\lim_{u\to\infty}\frac{(\mu Ax)_{n_u}}{(\mu Ay)_{n_u}} \ge 2.$$

This contradicts that $(\mu Ax) \stackrel{I}{\sim} (\mu Ay)$. \Box

Example 3.3. We consider the sequences x and y defined by

 $x_k = 3 = y_k$ for all $k \in \mathbb{N}$.

Let A be defined as follows:

(2	0	2	0	0	0	0	0	0)
0	1	2	1	0	0	0	0	0	
0	0	2	0	2	0	0	0	0	
0	0	0	1	2	1	0	0	0	
0	0	0	0	2	0	2	0	0	
0	0	0	0	0	1	2	1	0	
0	0	0	0	0	0	2	0	2	
0	0	0	0	0	0	0	1	2	
0	0	0	0	0	0	0	0	2	
(.)

We have

$$(\mu Ax) = 12 = (\mu Ay)$$

Then we have

$$x \stackrel{I}{\sim} y$$
 and $(\mu A x) \stackrel{I}{\sim} (\mu A y)$.

Also for i = 1, 2, 3, ... we have

$$\left\{n\in\mathbb{N}: \left|\frac{a_{n,i}}{\sum_{j=1}^{\infty}a_{n,j}}\right| \ge \varepsilon\right\} \in I.$$

Example 3.4. Consider the sequences x and y defined by

$$x = (4, 4, 4, \ldots)$$
 and $y = (4, 2, 4, 2, \ldots)$.

Let

A

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & . & \dots \\ 0 & \frac{1}{4} & 0 & 0 & . & \dots \\ 0 & 0 & \frac{1}{8} & 0 & . & \dots \\ 0 & 0 & 0 & \frac{1}{16} & . & \dots \\ . & . & . & . & . & \dots \end{pmatrix}.$$

We have

$$Ax = \left(4, 1, \frac{1}{2}, \frac{1}{4}, \dots\right)$$
$$Ay = \left(4, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \dots\right)$$

Also we have

$$\frac{\mu_n x}{\mu_n y} = 1, n = 1, 2, 3, \dots$$

i.e. $\mu_n x \stackrel{I}{\sim} \mu_n y$.
Again

$$\frac{(\mu Ax)_n}{(\mu Ay)_n} = \begin{cases} 2, & \text{if } n \text{ is odd;} \\ 1, & \text{if } n \text{ is even} \end{cases}$$

 $\frac{(\mu Ax)_n}{(\mu Ay)_n} \text{ has no limits as } n \to \infty.$

and

 $\frac{x}{y}$ has no limits as $k \to \infty$. i.e

 $x \stackrel{I}{\sim} y$ and $(\mu A x) \stackrel{I}{\sim} (\mu A y)$.

4. Applications

We can used this concept to the derivation of the continuous time Gaussian channel capacity.

Acknowledgement

The author express his heartfelt gratitude to the anonymous reviewer for such excellent comments and suggestions which have enormously enhanced the quality and presentation of this paper.

References

- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
- [2] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [3] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301– 313.
- [4] P. Kostyrko, T. Šalát, W. Wilczynśki, *I*-convergence, Real Anal. Exchange 26 (2000/2001) 669–689.
- [5] T. Šalát, B.C. Tripathy, M. Ziman, On *I*-convergence filed, Italian J. Pure Appl. Math. 17 (2005) 45–54.

- [6] T. Šalát, B.C. Tripathy, M. Ziman, On some properties of *I*convergence, Tatra Mt. Math. Publ. 28 (2004) 279–286.
- [7] B.C. Tripathy, B. Hazarika, *I*-monotonic and *I*-convergent sequences, Kyungpook Math. J. 51 (2011) 233–239, http://dx.doi.org/10.5666/KMJ.2011.51.2.233.
- [8] M.S. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci. 16 (4) (1993) 755–762.
- [9] I.P. Pobyvancts, Asymptotic equivalence of some linear transformation defined by a nonnegative matrix and reduced to generalized equivalence in the sense of Cesaro and Abel, Mat. Fiz. 28 (1980) 83–87.
- [10] R.F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math. 36 (1) (2003) 149–153.