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Abstract In this article we introduce the notion of asymptotically I-equivalent sequences. We

prove the decomposition theorem for asymptotically I-equivalent sequences. Further, we will pres-

ent four theorems that characterize asymptotically I-equivalent of multiple k and the regularity of

asymptotically I-convergence by using a sequence of infinite matrices.
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1. Introduction

Throughout w; ‘1; c; c0; c
I; cI0;m

I, and mI
0 denote all, bounded,

convergent, null, I-convergent, I-null, bounded I-convergent
and bounded I-null class of sequences, respectively. Also N

and R denote the set of positive integers and set of real num-
bers, respectively. Further SI

0 denote the subset of the space
mI

0 with non-zero terms.

The notion of statistical convergence is a very useful func-
tional tool for studying the convergence problems of numerical
sequences/matrices (double sequences) through the concept of

density. It was first introduced by Fast [1] and Schoenberg [2],
independently for the real sequences. Later on it was further
investigated from sequence space point of view and linked with
the summability theory by Fridy [3] and many others. The idea
is based on the notion of natural density of subsets of N, the

set of positive integers, which is defined as follows. The natural
density of a subset of N is denoted by dðEÞ and is defined by

dðEÞ ¼ lim
n!1

1

n
jfk 6 n : k 2 Egj;

where the vertical bar denotes the cardinality of the respective
set.

The notion of I-convergence (I denotes an ideal of subsets
of N), which is a generalization of statistical convergence,
was introduced by Kostyrko et al. [4]. Later on it was further

investigated from sequence space point of view and linked with
summability theory by Šalát et al. [5,6], Tripathy and Hazarika
[7] and many others.

A non-empty family of sets I#PðNÞ (power set of N) is

called an ideal of N if (i) for each A;B 2 I, we have
A [ B 2 I; (ii) for each A 2 I and B#A, we have B 2 I. A fam-
ily F#PðNÞ (power set of N) is called a filter of N if (i) / R F;

(ii) for each A;B 2 F, we have A \ B 2 F; and (iii) for each
A 2 F and B � A, we have B 2 F. An ideal I is called non-
trivial if I–/ and N R I. It is clear that I#PðNÞ is a non-trivial
ideal if and only if the class F ¼ FðIÞ ¼ fN� A : A 2 Ig is a fil-
ter on N. The filter FðIÞ is called the filter associated with the
ideal I. A non-trivial ideal I#PðNÞ is called an admissible
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ideal of N if it contains all singletons, i.e., if it contains
ffxg : x 2 Ng.

In [8], Marouf introduced the definition for asymptotically

equivalent of two sequences. In [9], Pobyvancts introduced
the concept of asymptotically regular matrices, which preserve
the asymptotic equivalence of two nonnegative numbers

sequences. The frequent occurrence of terms having zero value
makes a term-by-term ratio inapplicable in many cases. In [3],
Fridy introduced new ways of comparing rates of convergence.

If x is in ‘1 , he used the remainder sum, whose nth term is

RnðxÞ :¼
P1

k¼njxkj, and examined the ratio RnðxÞ
RnðyÞ as n!1. If

x is a bounded sequence, he used the supremum of the remain-
ing terms which is given by lnx :¼ supkPnjxkj. In [10], Patterson

introduced the concept of asymptotically statistically equiva-
lent sequences and natural regularity conditions for nonnega-

tive summability matrices.
In present study we introduce the definition of asymptoti-

cally I-equivalent sequences and prove the decomposition the-
orem for asymptotically I-equivalent sequences and some

interesting theorems related to this notion.
2. Definitions and notations

Definition 2.1. [1,3]. A sequence ðxkÞ is said to be textitstatis-

tically convergent to x0 if for each e > 0, the set
EðeÞ ¼ fk 2 N : jxk � x0jP eg has natural density zero.
Definition 2.2 [4]. A sequence ðxkÞ is said to be I-convergent if
there exists a number x0 such that for each e > 0, the set

fk 2 N : jxk � x0jP eg 2 I:

Definition 2.3 [4]. Let ðxkÞ and ðykÞ be two real sequences,

then we say that xk ¼ ykfor almost all k related to I
(a:a:k:r:I) if the set fk 2 N : xk–ykg belongs to I.

Definition 2.4 [4]. An admissible ideal I is said to have the

property (AP) if for any sequence fA1;A2; . . .g of mutually dis-
joint sets of I, there is sequence fB1;B2; . . .g of sets such that
each symmetric difference AiDBiði ¼ 1; 2; 3; . . .Þ is finite andS1

i¼1Bi 2 I.

Example 2.1. If we take I¼ If ¼fA#N :A is a finite subsetg.
Then, If is a non-trivial admissible ideal of N and the
corresponding convergence coincide with usual convergence

of sequences.

Example 2.2. If we take I ¼ Id ¼ fA# N : dðAÞ ¼ 0g, where
dðAÞ denote the asymptotic density of the set A. Then Id is a
non-trivial admissible ideal of N and the corresponding con-

vergence coincide with statistical convergence of sequences.

Let ‘1 ¼ x ¼ ðxkÞ :
P1

k¼1jxkj <1
� �

.

For a summability transformation A, we use dðAÞ to denote
the domain of A:

dðAÞ ¼ x ¼ ðxkÞ : lim
n

X1
k¼1

an;kxk exists

( )
:

Also Sd ¼ fx ¼ ðxkÞ : xk P d > 0 for all kg and
S0 = {the set of all nonnegative sequences which have at
most a finite number of zero entries}.

For a sequence x ¼ ðxkÞ in ‘1 or ‘1, we also define

RnðxÞ :¼
X1
k¼n
jxkj and lnx :¼ sup

kPn

jxkj for n P 0:
Definition 2.5 [8]. Two nonnegative sequences ðxkÞ and ðykÞ
are said to be asymptotically equivalent, written as x � y if

lim
k

xk

yk
¼ 1:

Definition 2.6. If A ¼ ðan;kÞ is a sequence of infinite matrices,
then a sequence x ¼ ðxkÞ 2 ‘1 is said to be A-summable to

the value x0 if

lim
n
ðAxÞn ¼ lim

n

X1
k¼1

an;kxk ¼ x0:

Definition 2.7. A summability matrix A is asymptotically regu-
lar provided that Ax � Ay whenever x � y; x 2 S0 and y 2 Sd

for some d > 0.

The following results will be used for establishing some
results of this article.

Lemma 2.1 (Pobyvancts [9]). A nonnegative matrix A is

asymptotically regular if and only if for each fixed integer m,

lim
n!1

an;mP1
k¼1an;k

¼ 0:

Lemma 2.2. A matrix A which maps c0 to c0 if and only if

(a) limn!1an;k for k ¼ 1; 2; 3; . . .
(b) There exists a number M > 0 such that for each

n;
P1

k¼1jan;k j < M . Throughout the article I is an admissi-

ble ideal of subsets of N.
3. Asymptotically I-equivalent sequences

In this section we introduce the following definitions and prove
the decomposition theorem and some interesting theorems.

Definition 3.1. Two nonnegative sequences x ¼ ðxkÞ and

y ¼ ðykÞ are said to be asymptotically I-equivalent of multiple
k 2 R, written as x�Ik y, provided for every e > 0, and yk–0, the
set

k 2 N :
xk

yk
� k

����
���� P e

� �

belongs to I and in this case we write I� limk
xk
yk
¼ k, simply

asymptotically I-equivalent if k ¼ 1. It is easy to observe that

x�Ik y is equivalent to xk
k �

I
yk . From this observation it follow,

that we obtain the same notion if we use all real k0s, some k–0,
or just k ¼ 1.

Example 3.1. Let us consider the sequences x ¼ ðxkÞ and
y ¼ ðykÞ as follows:



:
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xk ¼
3k�1; if k is even;

ðkþ 2Þ�1; if k is odd

(

and

yk ¼
k�1; if k is even;

3ðkþ 2Þ�1; if k is odd

(

Therefore we have

xk

yk
¼

3; if k is even;

3; if k is odd

�

Thus

k 2 N :
xk

yk
� 3

����
���� P e

� �
2 I

Hence x ¼ ðxkÞ and y ¼ ðykÞ are asymptotically I-equivalent of

multiple 3.

Definition 3.2. A summability matrix A is said to be asymptot-

ically I-regular provided that Ax�Ik Ay whenever x�Ik y; x 2 SI
0

and y 2 Sd for some d > 0.

Example 3.2. Let us consider the sequences x ¼ ðxkÞ and
y ¼ ðykÞ as follows:

xk ¼ 3 ¼ yk for all k 2 N:

Let A be defined as follows:

3 0 3 0 0 0 0 0 0 . . .

0 3 0 3 0 0 0 0 0 . . .

0 0 3 0 3 0 0 0 0 . . .

0 0 0 3 0 3 0 0 0 . . .

0 0 0 0 3 0 3 0 0 . . .

0 0 0 0 0 3 0 3 0 . . .

0 0 0 0 0 0 3 0 3 . . .

0 0 0 0 0 0 0 3 0 . . .

0 0 0 0 0 0 0 0 3 . . .

cdots cdots cdots cdots cdots cdots cdots cdots cdots . . .

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

We have

Ax ¼ ð18; 18; . . .Þ ¼ Ay

Then we have

I� lim
k

xk

yk
¼ 1 and I� lim

n

ðAxÞn
ðAyÞn

¼ 1:

i.e. x�I1 y implies Ax�I1 Ay.

Theorem 3.1. Let x ¼ ðxkÞ and y ¼ ðykÞ be two elements in SI
0

be such that x�I y. Then there exists a sequence z ¼ ðzkÞ in SI
0

such that x�I y�I z.

Proof. The proof of the theorem is trivial, thus omitted. h

Theorem 3.2. Let I has the property (AP). Let
x ¼ ðxkÞ; y ¼ ðykÞ 2 SI

0, then the followings are equivalent:

(i) x�I y.
(ii) There exist x0 ¼ ðx0kÞ; y0 ¼ ðy0kÞ 2 S0 such that xk ¼ x0k for

a.a.k.r.I; yk ¼ y0k for a.a.k.r.I and x0 � y0.
(iii) There exists a subset K ¼ fki : i 2 Ng of N such that

K 2 F and ðxkiÞ � ðyki
Þ.
Proof. (i)) (ii) Let x ¼ ðxkÞ 2 SI
0, then there exists a subset

A1 of N with A1 2 F such that

lim
k
xk ¼ 0; over A1:

Again if y ¼ ðykÞ 2 SI
0, then there exists a subset A2 of N with

A2 2 F such that

lim
k
yk ¼ 0; over A2:

Let x�I y, then there exists a subset A3 of N with A3 2 F
such that

lim
k

xk

yk
¼ 0; over A3:

Let A ¼ A1 \ A2 \ A3, then A 2 F.

We define the subsequences x0 ¼ ðx0kÞ, y0 ¼ ðy0kÞ as follows:

x0k ¼
xk; if k 2 A;

k�3; otherwise

�

and

y0k ¼
yk; if k 2 A;

k�3; otherwise

�

Clearly x0 ¼ ðx0kÞ; y0 ¼ ðy0kÞ 2 S0 and xk ¼ x0k for a.a.k.r.I;
yk ¼ y0k for a.a.k.r.I. Also we have x0 � y0.

(ii)) (iii) Let x0 ¼ ðx0kÞ; y0 ¼ ðy0kÞ 2 S0 be such that xk ¼ x0k
for a.a.k.r.I; yk ¼ y0k for a.a.k.r.I and x0 � y0.

Let B1 ¼ fk 2 N : xk ¼ x0kg and B2 ¼ fk 2 N : yk ¼ y0kg.
Then B1;B2 2 F.

Put K ¼ B1 \ B2. Then K 2 F.

Since K � N, we can enumerate K as K ¼ fki : i 2 Ng.
Then ðxkiÞ ¼ ðx0kiÞ 2 S0 and ðykiÞ ¼ ðy0kiÞ 2 S0. Also we have

xki

yki
¼

x0ki
y0ki
! 1 as l!1:

Hence ðxkiÞ � ðykiÞ.

(iii)) (i) Let K ¼ fki : i 2 Ng be a subset of N with K 2 F
and ðxkiÞ � ðykiÞ. Then, we have

lim
i

xki

yki
¼ 1:

Therefore we have

k 2 N :
xk

yk
� 1

����
���� P e

� �
2 I

Hence x�I y. h

Theorem 3.3. A necessary and sufficient condition for a
sequence of summability matrices A to be asymptotically I-reg-
ular is that for each fixed positive integer k0:
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(i)
Pk0

p¼1an;p is bounded for each n;

(ii) For e > 0 and for each k0 such that

p 2 N :

Pk0
p¼1an;pP1
p¼1an;p

�����
����� P e

( )
2 I:
Proof. The necessary part of this theorem is easy, so omitted.
To establish the sufficient part, let e > 0 be given and
x�Ik y; x 2 SI

0 and y 2 Sd for some d > 0, then we have for
some t ¼ 1; 2; 3; . . .,

ðk� eÞykþt 6 xkþt 6 ðkþ eÞ; for a:a:k:r:I: ð3:1Þ

Let us consider the following:

ðAxÞn
ðAyÞn

¼
Pt

p¼1an;pxp þ
P1

p¼1þtan;pxpPt
p¼1an;pyp þ

P1
p¼1þtan;pyp

¼

Pt

p¼1
an;pxpP1

p¼1þt
an;pyp
þ
P1

p¼1þt
an;pxpP1

p¼1þt
an;pypPt

p¼1
an;pypP1

p¼1þt
an;pyp
þ 1

: ð3:2Þ

The inequality (3.1) implies that

lim
n

P1
p¼1þtan;pxpP1
p¼1þtan;pyp

¼ k for a:a:n:r:I:

Since x 2 SI
0 and y 2 Sd for some d > 0 and condition (ii)

holds, we obtain the following:

lim
n

Pt
p¼1an;pxpP1

p¼1þtan;pyp
¼ 0; for a:a:n:r:I:

and

lim
n

Pt
p¼1an;pypP1

p¼1þtan;pyp
¼ 0; for a:a:n:r:I:

Thus from the relation (3.2), we have

lim
n

ðAxÞn
ðAyÞn

¼ k for a:a:n:r:I

i.e.

n 2 N :
ðAxÞn
ðAyÞn

� k

����
���� P e

� �
2 I:

This implies that Ax�Ik Ay, whenever x�I y; x 2 SI
0 and

y 2 Sd, for some d > 0.

This completes the proof. h

Theorem 3.4. Let A ¼ ðan;kÞ be an infinite nonnegative matrix.
Suppose x�I y and x 2 SI

0 and y 2 Sd, for some d > 0. Then

ðlAxÞ�I ðlAyÞ, if and only if for each i ¼ 1; 2; 3; . . .and for
e > 0 such that

n 2 N :
an;iP1
j¼1an;j

�����
����� P e

( )
2 I:

Proof. Suppose for for e > 0 and for each i ¼ 1; 2; 3; . . . such
that
n 2 N :
an;iP1
j¼1an;j

�����
����� P e

( )
2 I:

We want to show that ðlAxÞ�I ðlAyÞ.

Since x�I y, then there exists a bounded sequence z ¼ ðzkÞ
with I-limit zero such that xk ¼ ykð1þ zkÞ; k ¼ 1; 2; 3; . . .. Then
for each n, we have the following:

ðlAxÞn
ðlAyÞn

¼ supkPnðAxÞk
supkPnðAyÞk

¼ supkPn

P1
i¼1ak;ixi

supkPn

P1
i¼1ak;iyi

¼ supkPn

P1
i¼1ak;iðyi þ yizi

supkPn

P1
i¼1ak;iyi

6
supkPn

P1
i¼1ak;iðyi þ yiziÞ

�� ��
supkPn

P1
i¼1ak;iyi

6 1þ supkPn

Pt0
i¼1ak;iyijzij

supkPn

P1
i¼1ak;iyi

þ
supkPn

P1
i¼t0þ1ak;iyijzij

supkPn

P1
i¼1ak;iyi

;

where t0 is a positive integer.
Since z is a bounded null sequence, therefore supjjzjj <1

and for any e > 0, there exists a positive integer t0 such that

jzjj < e for j P t0. Therefore we have

ðlAxÞn
ðlAyÞn

6 1þ sup
j

jzjj
Xt0
i¼1

supkPnak;iyi
supkPn

P1
i¼1ak;iyi

þ
esupkPt0

P1
i¼t0þ1ak;iyi

supkPn

P1
i¼1ak;iyi

6 1þ sup
j

jzjj
Xt0
i¼1

supkPnak;iyi
supkPn

P1
i¼1ak;iyi

þ e:

According to the hypothesis, we obtain the following:

ak;iP1
i¼1ak;i

<
e
t0
sup

j

jzjj sup
0<i6t0

yi; for a:a:k:r:I:

For n P t0 we have

ðlAxÞn
ðlAyÞn

6 1þ eþ e; for a:a:n:r:I:

This implies that

lim
n

ðlAxÞn
ðlAyÞn

6 1; for a:a:n:r:I:

In a similar manner, we can prove that

lim
n

ðlAxÞn
ðlAyÞn

P 1; for a:a:n:r:I:

Thus we have

lim
n

ðlAxÞn
ðlAyÞn

¼ 1; for a:a:n:r:I:

i.e.

n 2 N :
ðlAxÞn
ðlAyÞn

� 1

����
���� P e

� �
2 I:

Hence ðlAxÞ�I ðlAyÞ.
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Next, suppose that ðlAxÞ�I ðlAyÞ, for x�I y and x 2 SI
0 and

y 2 Sd, for some d > 0. If we consider the sequences x and y
defined by

xk ¼ 1 ¼ yk for all k 2 N:

Then ðlAxÞ�I ðlAyÞ. i.e.

lim
n

supkPn

P1
i¼1ak;i

supkPn

P1
i¼1ak;i

¼ 1; for a:a:n:r:I:

Therefore, there exists K > 0 such that
P1

i¼1ak;i
� �1

k¼1 is
bounded by K.

Suppose

n 2 N :
an;iP1
j¼1an;j

�����
����� < e

( )
2 F for some i and e > 0:

Then there exists c > 0 and a sequence n1 < n2 < . . . such
that

au;iP1
j¼1au;j

P c for u ¼ 1; 2; 3 . . . :

For s > 0 and define the sequences x and y by

xk ¼
1þ s; if k ¼ i;

1; otherwise

�

and
yk ¼ 1 for all k 2 N.
Clearly x�I y and x; y 2 S1. Consider the following limit:

lim
u!1

supkPu

P1
j¼1ank ;jxj

supkPu

P1
j¼1ank ;jyj

¼ lim
u!1

supkPu

P1
j¼1 ank ;j þ sank ;j
� �

supkPu

P1
j¼1ank;j

P lim
u!1

supkPu

P1
j¼1ank;j þ sc

P1
j¼1ank ;j

	 

supkPu

P1
j¼1ank ;j

¼ 1þ sc:

We choose s ¼ 1
c, then we have

lim
u!1

ðlAxÞnu
ðlAyÞnu

P 2:

This contradicts that ðlAxÞ�I ðlAyÞ. h

Example 3.3. We consider the sequences x and y defined by

xk ¼ 3 ¼ yk for all k 2 N:

Let A be defined as follows:

2 0 2 0 0 0 0 0 0 . . .

0 1 2 1 0 0 0 0 0 . . .

0 0 2 0 2 0 0 0 0 . . .

0 0 0 1 2 1 0 0 0 . . .

0 0 0 0 2 0 2 0 0 . . .

0 0 0 0 0 1 2 1 0 . . .

0 0 0 0 0 0 2 0 2 . . .

0 0 0 0 0 0 0 1 2 . . .

0 0 0 0 0 0 0 0 2 . . .

� � � � � � � � � . . .

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

We have
ðlAxÞ ¼ 12 ¼ ðlAyÞ

Then we have

x�I y and ðlAxÞ�I ðlAyÞ:

Also for i ¼ 1; 2; 3; . . .we have

n 2 N :
an;iP1
j¼1an;j

�����
����� P e

( )
2 I:

Example 3.4. Consider the sequences x and y defined by

x ¼ ð4; 4; 4; . . .Þ and y ¼ ð4; 2; 4; 2; . . .Þ:

Let

A ¼

1 0 0 0 : . . .

0 1
4

0 0 : . . .

0 0 1
8

0 : . . .

0 0 0 1
16

: . . .

� � � � � . . .

0
BBBBBB@

1
CCCCCCA
:

We have

Ax ¼ 4; 1;
1

2
;
1

4
; . . .

� �

Ay ¼ 4;
1

2
;
1

2
;
1

4
; . . .

� �

Also we have

lnx

lny
¼ 1; n ¼ 1; 2; 3; . . .

i.e. lnx�
I

lny.

Again

ðlAxÞn
ðlAyÞn

¼
2; if n is odd;

1; if n is even

�

But

ðlAxÞn
ðlAyÞn

has no limits as n!1:

and

x

y
has no limits as k!1:

i.e

x ¿

I
y and ðlAxÞ ¿I ðlAyÞ:
4. Applications

We can used this concept to the derivation of the continuous
time Gaussian channel capacity.
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