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Abstract In this paper, we discuss the global asymptotic stability of all solutions of the difference

n=0,1,...

where A4, B,C are positive real numbers and the initial conditions x_,,x ;,x, are real

numbers. Although we have an explicit formula for the solutions of that equation, the oscillation
character is worth to be discussed.
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1. Introduction

Difference equations, although their forms look very simple, it
is extremely difficult to understand thoroughly the global
behaviors of their solutions. One can refer to [1-4]. The study
of nonlinear rational difference equations of higher order is of
paramount importance, since we still know so little about such
equations.

Cinar [5,6] examined the global asymptotic stability of all
positive solutions of the rational difference equation
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Xn—1
Xnpl =TT n=0,1,...
1+xl1xn—]
and
Xn—1
Ny = ——"L =01, ..
—1 4+ x,x,_

He also [7] discussed the behavior of the solutions of the
difference equation
ax,—

—_— =0,1,...
1+b-xnxn71’ " T

Xnyl =
Stevi¢ [8] showed that every positive solution of the difference
equation
Xn—1

Xpp) = ———— =0,1,...
Xn+1 1+x,1x,,,1’ n [
converges to zero.

In [9], H. Sedaghat determined the global behavior of all
solutions of the rational difference equations
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axXp—|
b
XpXpo1 + b

_ aAxXyXp—| —0.1
Xny1 = —, n=0,1,...
Xn + bxn—Z

Xnt1 =

where a,b > 0.
In [10], the author investigated the global behavior and
periodic character of the two difference equations

Xn—2

n=0,1,...

Xny1 =
+1 + XpXp—1Xn-2 ’

In this paper, we discuss the global stability and periodic
character of all solutions of the difference equation

Axn72
il ==, =0,1,... 1.1
ot B + anxnflxan " ( )
Consider the difference equation
Xpr1 =Xy Xty ooy Xug), n=0,1... (1.2)
where f: R*"! — R.
Definition 1.1 [11]. An equlhbrlum point for Eq. (1.2) is a

point ¥ € R such that X = f(X, X,..., X).
Definition 1.2 [11].

(1) An equilibrium point X for Eq. (1.2) is called locally
stable if for every € > 0,36 > 0 such that every solution
{x.} with initial conditions  X_j,X_ji1,.. -,
Xo €]Jx — 0,X + d[ is such that x, €]x — e,X + €[, Vn € N.
Otherwise ¥ is said to be unstable.

(2) The equilibrium point X of Eq. (1.2) is called locally
asymptotically stable if it is locally stable and there
exists y >0 such that for any initial conditions
X_fyX_fily .- -5 Xo €JX — y,% + 7|, the corresponding solu-
tion {x,} tends to X.

(3) An equilibrium point x for Eq. (1.2) is called global
attractor if every solution {x,} converges to ¥ as n — oc.

(4) The equilibrium point ¥ for Eq. (1.2) is called globally
asymptotically stable if it is locally asymptotically stable
and global attractor.

The linearized equation associated with Eq. (1.2) is

yn+1 Zax 7x)yn7i’ n:071727"' (13)

the characteristic equation associated with Eq. (1.3) is

VAR ©)2 =0 1.4
Z B, Y 14

Theorem 1.3 [11]. Assume that fis a C' function and let X be an
equilibrium point of Eq. (1.2). Then the following statements are
true:

(1) If all roots of Eq. (1.4) lie in the open disk |A| < 1, then X
is locally asymptotically stable.

(2) If at least one root of Eq. (1.4) has absolute value greater
than one, then X is unstable.

The change of variables \"/%x,, =y, reduces the Eq. (1.1) to
the equation

Yn2
1 + YnVn-1Vn-2 '

_4
where y = 4.

yn+1: I’l:O,l,... (15)

2. Linearized stability and solutions of Eq. (1.5)

In this section we study linearized stability analysis and the
solutions of the difference Eq. (1.5). It is clear that Eq. (1.5)
has the equilibrium points y = 0 and y = y/y — 1. During the
paper, we suppose that o =y_,y_,y,.

The following theorem describes the behavior of the equi-
librium points.

Theorem 2.1. Assume that 07 —<r—
following statements are true.

Z - for any n € N. Then the
io?"

() If y < 1, then y =0 is locally asymptotically stable and
y =~y — 1 is unstable.

(2) If y =1, then y = 0 is a nonhyperbolic point.

(3) If y> 1, theny =0 is a repeller andy = \/y — 1 is a non-
hyperbolic point.

Theorem 2.2. Let y_,,y_, and y, be real numbers such that
o= yfzyflyo#zﬁi,lw,for any n € N. Then the solutions of Eq.
i=0"

(1.5) are
n=l 14g Z o
}+1 k=0 —
Y HlolJf“Z, ﬂ/,? n 174777'”
n 1+
y, =1y e /101 “Zwk, n=2,58,... 2.1
k=0
e A/:ozyk
Yol Tt n=23,6,9,...
T ey

Proof. We have that
1 o

y_ﬁl T V=
1+oa(l +7y)
=T T o L
1 +o(l+y+92)

=

as expected by formula (2.1). Now assume that m > 1. Then
from formula (2.1), we can write

m—1 1/—
T LE %2k
Vam—2 = V- 2V H

1+a>) Oy'
R » LY il
3m—1 1 3j+1
n— B 1+ Zk]:() v
m 3j-2_k m— 3j+1
y =y ym 1 + aZI\] 0 / =y ,ym 1 + Zk/+0 ’yk
3m — Y0 3j—1 -0 T Y2k
R RO o1+ YDy

Then
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VYV3m—2
1 +y3lnx3111—]y3n172

=1 g
I+a E
m m—111%2 o7
27"l

Ty
/=0 |, “Z/ Sk
= . E
m—11+a »* m—1 1+ m—11+2 e
N
1+ ’,7711_[ ZA =0 " mH ZA =0’ mH Z
Yooy =0 |, Z‘/ ‘J/ 1/ j=0 l+aZ}/+] yO/ o "s/+2 "
k=0 "
3j-1 K 3j-1 ,\
1 14 1+a
m+1 =1 T2 0 m+1 =1 Lak=0"
Yoy H/:o o Zw, < Y H/ 0 T Zu "
— — k=0’
~y3m
14237 14 o3 —
3 m—1 = "1 3m T
1+OL'}' m]._.[ 1o TS V2 l+aZAzo "

Y, m*‘( +uzz’f0]7k>]_[ (H—acz,%/ OIVA>
(Hm ll+a23/ o) )(1“1’0{23”7 ly"+<xyw’">

zvm+IH7; ( +D(ZA 0’ )

2)’m+le (H‘O‘Zk 01 )’k>

:H'"‘(H@ o) (+ast) a1+ a )

=y vm+1H’” Loy
. =0 oSy

This completes the proof. [

=V3mt1-

Corollary 2.3. Assume thaty =1 and 0. =y_,y_,y,7# — 1/n for
any n € N. Then the solutions of Eq. (1.5) are
%
1+(3))x _
vol[REs n=1,47,..
=0
#
o= o] [ n=2,58,... (2.2)
J=0
Yo % n=3,69,...
=1

3. Periodicity and global stability

Theorem 3.1. Assume that {y,},>_, is a positive solution of Eq.
(1.5). Then the following statements are true.

(1) Ify < 1, then {y,},>_, converges to zero.
2) If y =1, then {y,},-_, converges to zero.

Proof.
(1) Let {y,},-_, be a positive solution of Eq. (1.5). Then

)
S p— T (1 T
y+] 1+ynyn—1yn—2 -2

Hence we have

Vame: <"y s i=1,2,3

Therefore,

limy, = 0.

n—oo

(2) We consider only the case o < 0. Case o > 0 is similar
and will be omitted. From formula (2.1) we have

m 1+ 3]
Vame1 = V- 2H1+ 3]+1

m 1+3]{X
v In
Y-2€XP (Z 1+ (3+1 ))

Nl B+ D

= 1
= 1 1

Y_»€Xp ( 2 n( +1+3/a>>

m 1

=y ,exp| —a 2 1+3]a 5 —0 n— oo,
since 337,k — —00 as m— o0 and 307 00( ) is con-
vergent.

Similarly  y3,,, =0 as m— oo
m — 00.This completes the proof. [J

and y3m+3 —0 as

Theorem 3.2. Eq. solutions

—1 w1
7
{q)]v §027q,w,2 s Py P2y f/;|</’2 3

and {@y, Py, @3, 91, P2y @3, - - -}
y=1.

(1.5) has
} with @,p,0;3 =7 — 1 when y#1,

period-3

with  @,p,03 =00=0 when

Proof. Case y#1

It is clear that {¢1,¢2,ﬁ7(p1,¢2,%7...} are period-3

5) Now let {'"7(p17¢27(p37(p17¢27(p37"'}

be a period-3 solution of Eq. (1.5). Then

solutions of Eq. (1.

VP, _ P2 _ YP3

(p = — = 5 = .
"+ 00,0, L+ @10:05 1+ @10:05

As y#1, we have that ¢,¢p,0; =7 — 1.
Case y =1

Let o = 0. Using formula (2.1) it is sufficient to see that

Vo, ,n=147,...
Yy, =49y, ,n=258, ...

Yo »n=3,609,...
therefore, we have

Yam = Yos y3m+l =V and Vimi2 = V-2, n=0,l,...

Now suppose that y_, = @, y_; = ¢,,¥, = ¢5. It follows that

{01, 02, 03,01, 02,03, ..}

is a period-3 solution with ¢, ¢,¢p; = o = 0. This completes the
proof. O

4. Oscillation behavior

3j+i-2
),
)
l+a Zk o

Hence (2.1) can be written as

Let &y = i=1,2,3andj > 0.
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n—1
3

YRR | (&
=0

n=147,...

Yn = /%+1H63j+1 ,n:2,5787... (41)
j=0
41
yoy%Hg’mQ n=23,6,9,...
J=0
Lemma 4.1. Assume that either o=y _,y_1yy>0, or

o=y 2y 1Yo <0and 1 —y+o = 0. Then

Sgn(y3m+i) = Sgn(y73+f)a i= 172a 3 and m = _1707 17 oo

Proof. Assume that «=y_,y_;y, > 0. Then we have that
&ypi1 >0, j=0,1,..., i=1,2,3.

Therefore, S (Vyys) = sgn(y_y )"t
sgn(y_s4), i=1,2,3and m=—1,0,1,....

m g _
=0 C3j+i—1) =

Now assume that a=y_,y_;9<0 and 1—y4+a > 0.
Then

32y

14o b 1,-,+1,T,3/+H 1
(1) f1—y+a=0,then &, | = S =i e =,>0.
14a yk Po—oy b
k=0
32
1+a N 3j+i—1
P _ k=0 ' __ l—ydo—oy’
@ I 1=y ta>0, &y = —htr =1 > 0.
k=0 '

This implies that sgn(ys,.;)
—_1,01,... O

=sgn(y_3,.), i=1,2,3 and

Theorem 4.2. Assume that {y,}r. , be a solution of Eq. (1.5).
Then the following statements are true:

(D) If o =y_,y_,»y >0, then {y,},° , is positive or except
(possibly) for the first semicycle, {y,}.. , oscillates
about y = 0 with negative semicycles of length two and
positive semicycles of length one.

Q) o=y ,y 19 <0, l —y—+0a > 0,then {y,}°_, is neg-
ative or except (possibly) for the first semicycle, {y,}.- ,
oscillates about y = 0 with negative semicycles of length
one and positive semicycles of length two.

Proof. Let {y,},° , be a solution of Eq. (1.5).

(1) Suppose that o =y_,y_,y, > 0. From lemma (4.1), we

have that sgn(ys,..) =sen(y_s,;), i=1,2,3 and
m=—1,0,1,.... That is, each  subsequence
{Vsmiito 1, i =1,2,3 preserves sign. It follows that, if

V.3 >0, i=1,2,3, then {y,}r. , is positive.Other-
wise, there exists iy € {1,2,3} such that y 5., >0 and
V.3, <0, i€{1,2,3}\ {ip}. Therefore, except (possi-
bly) for the first semicycle, {y,}- , oscillates about
y = 0 with negative semicycles of length two and positive
semicycles of length one.

(2) Suppose that a =y ,y_,¥,<0, 1 —=y+a > 0. Again
from lemma (4.1), we have that sgn(ys,.;) =
sgn(y_s4;), i=1,2,3and m = —1,0,1,.... That is, each
subsequence {yy,.i}. i=1,2,3 preserves sign. It

m=—1’

follows that, if y_;.; <0, i=1,2,3, then {y,} - , is
negative.Otherwise, there exists iy € {1,2,3} such that
Vs, <0and y 5, >0, iec{l,2 3}\{1’0} Therefore,
except (possibly) for the first semicycle, {y,}.- , oscil-
lates about y =0 with negative semicycles of length
one and positive semicycles of length two. O

Lemma 4.3. Assume that « =y_,y_y, <0, 1 —y+ o <0 and
let 0 =012 Thep

() If y=1, then &y <0 when —1(l4i)<j<—
W4i-1),i=1,2,3,
(2) If y#1, then &,y < 0 when & < j <& =123,

Proof. Assume thata =y_,y_y, <0, 1 —y+a <0.

3j+i 2
(1) Ify =1, then &y, = :Zf; e = = L) T clear
k=0
that &, > 0if j €] —o0, =5 (L +i)[U - (E+i—1),
oo[. Therefore, if —1(14+1) <j< -1 we have that

&3jpic1 <0, i=1,2,3.
(2) If y#1, then we have two cases:

o If p<1, then 0="0250  Now  set
o 1,},+ 3=l 7 ! o
E3jio = % = Asa=y_,y_ 13, <0, we

have that / > II. But I > 0 <= 1 — y 4+ o > ay¥+~!
= (1—y+a) o<yl In((1—y+a)/a)
<@j+i—1)Iny<= W—0>3j+l—l
= j < Also I < 0 <= j > &L Therefore, if
”’“<]< wehaveg3j+,1<01—123
e case y > 1 is similar and will be omitted. [

for any ne N. Let
y+a<0. Then

Lemma 4.4. Assume that ocséz
U=y, 1Y <0, p#1 and ’°1
0 =" ooy for any n € N.

Proof. Assume that «a =y ,y 3, <0, 1 —y+a<0. Then

from lemma (4.3), we have that 0 = w > 0.

Now let 0= ll+ac)/v) n, n€N. This implies that
In((1—-y+o)/a)) =nlny<=1—y+a=o <= a=—12%=
— =+, which is a contradiction, as o#—— for any

Z/:O]y, Zl U’yl

neN. O

Now consider the two situations,

Sy: There is no natural number j, € N with |j, — ¢| <} and
S: There is a natural number j, € N with |j, —c| <4,
where

L meGr2-1), =1
120-2i4+1), 7#1.

Lemma 4.5. Assume that o=y ,y 1y, <0, { >0 for each
J €N, andlet {y,},°_, be a solution of Eq. (1.5). Then {y,},- _,
is negative or except (possibly) for the first semicycle, {y,}n-_,
oscillates about y = 0 with negative semicycles of length one and
positive semicycles of length two.



66

R. Abo-Zeid

Proof. Assume that o =y_,y_,y, < 0. Then

g (Var) =5gn(V_s 7" T o Exivint) =5gn(v310), i=1,2,3
and m=-1,0,1,....

That is, each subsequence {ys,. .}, i =1,2,3 preserves
sign. It follows that, if y_;,; <0, i=1,2,3, then {y,},~_, is
negative.

Otherwise, there exists iy € {1,2,3} such that y 5., <0
and y_3; >0, i€ {1,2,3}\ {ip}. Therefore, except (possibly)
for the first semicycle, {y,}, , oscillates about y =0 with
negative semicycles of length one and positive semicycles of

length two. O

Theorem 4.6. Assume that o=y _,y_y,<0,  —=y4+a <0,
and let {y,}.. , be a solution of Eq. (1.5). Then one of the
following statements will be satisfied.

(1) {y,}.~_, is negative or except (possibly) for the first
semicycle, {y,},-_, oscillates about y = 0 with negative
semicycles of length one and positive semicycles of
length two.

(2) There exists a natural number L, such that {y, 50:72 is
negative and {y,},2, ,, oscillates about y =0 with
negative semicycles of length two and positive semicycles
of length one or except (possibly) for the first semicycle,
{y, Y, oscillates about y = 0 with negative semicycles
of length one and positive semicycles of length two
and {y,},2, . is either positive or oscillates about
y = 0 with negative semicycles of length two and positive
semicycles of length one.

Proof. Case y#1. Suppose that the situation S is satisfied. In
this case ¢3,; 1 > 0 for each j€ N and /= 1,2,3. It follows
from lemma (4.1) that sgn(ys,.,,) = sgn(y_s.;), i=1,2,3 and
m=—1,0,1,..., and from lemma (4.5) the result in (1)
follows.

Now suppose that the situation S, is satisfied for some
ip € {1,2,3}. In this case

<0 j=j,
éyﬂo,l{ )

i=1,23.
>0 ,otherwise.’ o

This implies that

g
® SgN(Y3(j,—1)+i,) = SEN (yfsmv“l'[j‘;o f3j+fu—1) =5gn(y_3.4)s
L4 Sgn(y3j0+i0) = Sgn(y—sﬁovjo“Hj:l):of}ﬁig—l) = Sg”(yfﬂio“/ioﬂ
jo—1
63j0+i0—1H§(J:0 f3j+i071) = _Sgn(y—3+i0):
b Sgn(y3m+,-0) = sgn (y—3+ioym+|H;'n:Oé3j+i0*1) = —sgn(y_3+,-0),
m = j.

® 5gn(Vs,.;) = sgn (yfsﬂymﬂ 7:053_/41'71) =sgn(y_3.;),  for
o € {1,2,3}\ {io} m=-1,0,1,....

Hence  {y3,44, {;’1;171, has the sign of y_5,,, and

{y3m+,-0};°:j0, has the opposite sign of y_ 5, .

Now assume that iy = 1. Then

v{<0
o

Also there exists Ly = 3j, € N such that we have the following:

m

W :j07 m .
and ys, . =y 5 HHCs/-
J=0

, otherwise.

eIf y,<0,i=1,2,3, then {y, 5‘;72 is negative and

{Vutnes, 1 oscillates about y = 0 with negative semicycles
of length two and positive semicycles of length one.

e Otherwise, except (possibly) for the first semicycle, {y, 50:72
oscillates about y = 0 with negative semicycles of length one
and positive semicycles of length two and {y,},2, ., is
either positive or oscillates about y = 0 with negative semi-
cycles of length two and positive semicycles of length one.

By similar way, we can show that the last assertion is
satisfied for iy = 2,3 and will be omitted.

Case y = 1 is similar and will be omitted. O
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