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Abstract This paper analyzes the dynamics of a Cournot duopoly model with different strategies.

We offer results on existence, stability and local bifurcations of the equilibrium points. The bifur-

cation diagrams and Lyapunov exponents of the model are presented to show that the model

behaves chaotically with the variation in the parameters. The state variables feedback and param-

eter variation methods are used to control the chaos of the model.
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1. Introduction

A Cournot duopoly game is an oligopoly market with two
players. Oligopoly was first introduced by Cournot [1]. In a
typical Cournot oligopoly, there are two or more players, no

other players can enter the market, and collusive behavior is
prohibited. Each player in the oligopoly market aims to max-
imize its expected profit, and profit is maximized when mar-
ginal revenue equals marginal cost. Recently, it has also been

shown that even oligopolistic markets may become chaotic un-
der certain conditions [2–10]. In general, in order to adjust his
output, a player can choose his expectation rule among many

available strategies. Naive, adaptive, boundedly rational and
local approximation expectations are only a few examples. In
the literature on oligopoly games, most papers focus on games

with homogeneous strategies, that is, players who adopt the
same expectation rule. Another branch of the literature is
made up of studies in which games with different strategies

are taken into consideration. The assumption of players adopt-
ing heterogeneous rules to decide their production is, in our
opinion, more realistic than the opposite case. This approach

characterizes the works by Leonard and Nishimura [11],
Den-Haan [12], Agiza et al. [13], Agiza and Elsadany [14,15].
Zhang et al. [16] used the technique of Agiza and Elsadany

to analyze a duopoly game with heterogeneous players and
nonlinear cost function. Angelini et al. [17] and Tramontana
[18] studied a duopoly game with heterogeneous firms assum-
ing a microfounded nonlinearity on the demand function.

The main purpose of this paper is to investigate the dynamic
behavior and control of duopoly game with different strategies.
We considered that each player forms a different strategy in or-

der to compute its expected output. We assume that the first
player represents a boundedly rational player and the second
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player has local approximation expectations. The main aim of
this work is to investigate the dynamic behaviors of the two play-
ers game using different expectation rules. Moreover, from a

mathematical point of view, it is shown that the loss of the mar-
ket equilibrium stability may occur through a flip bifurcation
and that a cascade of flip bifurcationsmay lead to periodic cycles

and chaos.
The paper is organized as follows. In Section 2 we describe

a nonlinear duopoly game model. In Section 3 we study the

fixed points and the dynamics of the model, showing explicit
parametric conditions of the existence and local stability of
the market equilibrium. Section 4 the results of the previous
section are numerically illustrated and showing the occurrence

of complex behaviors. In Section 5, we exerted control on the
duopoly game model. Section 6 concludes.

2. The model

We consider a duopoly Cournot game where xt
i ; i ¼ 1; 2 repre-

sent the quantity supplied by ith player during period

t ¼ 0; 1; 2 . . ..Assume that the inverse demand function [19,20] is

pðXÞ ¼ a� b
ffiffiffiffi
X
p

ð1Þ

whereX ¼ x1 þ x2 is the total quantity in themarket, a and b are
positive constants. This function is convex as the isoelastic de-
mand function but it does not tend to infinity as p! 0. In fact,

ða=bÞ2 represents the maximum amount of output that can be
brought to the market. Those properties are important/relevant
from an economic point of view. Moreover this form has also
used in others oligopoly models and in laboratory experiments

economics dealing with learning and expectations formation
(see e.g. [21–23]). The cost function of the players is as follows:

CiðxiÞ ¼ cixi; i ¼ 1; 2: ð2Þ

where the positive parameters ci are the marginal costs. The

profit function of player i is

Piðx1; x2Þ ¼ xi a� b
ffiffiffiffi
X
p� �

� cixi; i ¼ 1; 2: ð3Þ

From the profit maximization by player i, the marginal
profits are obtained as:

Ui ¼ @Pi

@xi

¼ a� ci � b
ffiffiffiffi
X
p
� bxi

2
ffiffiffiffi
X
p ; i ¼ 1; 2 ð4Þ

We assume different expectations: i.e., player 1 is boundedly
rational and player 2 is local approximation. The boundedly

rational player 1 has no complete knowledge of the market;
hence they try to use local information based on the marginal
profit @P1

@x1
. It decides to increase (decrease) its quantity if it has

a positive (negative) marginal profit. This adjustment mecha-
nism has been called myopic by Dixit [2]. Thus, the dynamic
adjustment mechanism can be modeled as follows:

xtþ1
1 ¼ xt

1 þ a1x
t
1

@p1 xt
1; x

t
2

� �
@xt

1

; ð5Þ

where a1 is a positive parameter which represents the speed of
adjustment of first player.

The second duopolist is a local approximation player (see
[19,23]), i.e.

xtþ1
2 ¼ xtþ1

2

2
þ c1 � fðXtÞ

2f0ðXtÞ ð6Þ
Therefore, given these types of strategies formation, the
two-dimensional system that characterizes the dynamics of a
Cournot duopoly game is the following:

xtþ1
1 ¼ xt

1 þ a1x
t
1 a� c1 � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt
1 þ xt

2

p
� bxt1

2
ffiffiffiffiffiffiffiffiffi
xt
1
þxt

2

p
� �

xtþ1
2 ¼ 2ða�c2Þ

ffiffiffiffiffiffiffiffiffi
xt
1
þxt

2

p
�2bxt1�bx

t
2

2b

8><
>: ð7Þ

We are interested only in positive trajectories. Note also that

the game is not defined in the origin (0,0). In the next section,
we study the dynamical behaviors of the map (7).

3. Equilibrium points and local stability

In this section, we determine the equilibrium points of the map
(7) by solving the following nonlinear algebraic system:

x�1 a� c1 � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�1 þ x�2
p � bx�1

2
ffiffiffiffiffiffiffiffiffi
x�
1
þx�

2

p
� �

¼ 0

2ða� c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�1 þ x�2
p � 2bx�1 � 3bx�2 ¼ 0

8<
: ð8Þ

This map has two equilibrium points:

E1 ¼ 0;
4ða� c2Þ2

9b2

 !
ð9Þ

E2 ¼ x�1; x
�
2

� �
where

x�1 ¼
4ð2a� c1 � c2Þðaþ 2c2 � 3c1Þ

25b2
; x�2 ¼

4ð2a� c1 � c2Þðaþ 2c1 � 3c2Þ
25b2

ð10Þ

E2 is called Nash equilibrium point and has positive coordi-
nates provided that

2a > c1 þ c2

a > 3c1 � 2c2

a > 3c2 � 2c1

8><
>: ð11Þ

In order to investigate the local stability of the equilibrium

points, we must consider the Jacobian matrix of the map (7) is
the following:

J¼
1þ a1 a� c1� b

ffiffiffiffi
X
p
� bx1

2
ffiffiffi
X
p � 3bx21þ4bx1x2

4

ffiffiffiffi
X3
p

	 �
� a1 bx21þ2bx1x2ð Þ

4

ffiffiffiffi
X3
p

a�c2
2b
ffiffiffiffiffiffiffiffiffi
x1þx2
p � 1 a�c2

2b
ffiffiffiffiffiffiffiffiffi
x1þx2
p � 1

2

2
64

3
75

ð12Þ

The equilibrium points will be stable if the eigenvalues ki,
i ¼ 1; 2 of the above Jacobian matrix satisfy inequalities
kij j < 1; i ¼ 1; 2. By applying the stability condition to the

equilibrium E1 we have the following result:

Proposition 1. If the Nash equilibrium E2 is strictly positive,
then the equilibrium point E1 is a saddle point.
Proof. In fact at E1, the Jacobian matrix becomes a triangular
matrix:

JðE1Þ ¼
1þ a1

ðaþ2c2�3c1Þ
3

0
�1
4

1
4

" #

whose eigenvalues are given by the diagonal entries. They are
k1 ¼ 1þ a1

ðaþ2c2�3c1Þ
3

and k2 ¼ 1
4
. If the Nash equilibrium point
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has positive coordinates, then a > 3c1 � 2c2, hence jk1j > 1

and jk2j < 1. Then E1 is a saddle point. h
Figure 1 Bifurcation diagram of the model (7) with respect to a1.
3.1. Stability of the Nash equilibrium point E2

In order to investigate the local stability properties of the Nash
equilibrium point (10) of the two-dimensional system (7), the
Jacobian matrix evaluated at E2, that is:

JðE2Þ ¼
1� a1 3bx�21 þ4bx

�
1x
�
2ð Þ

4

ffiffiffiffiffi
X�3
p � a1 bx�21 þ2bx

�
1x
�
2ð Þ

4

ffiffiffiffiffi
X�3
p

a�c2
2b
ffiffiffiffiffiffiffiffiffi
x�
1
þx�

2

p � 1 a�c2
2b
ffiffiffiffiffiffiffiffiffi
x�
1
þx�

2

p � 1
2

2
64

3
75 ð13Þ

where X� ¼ x�1 þ x�2.
Whose trace and determinant are given by:

T :¼TrðJðE2ÞÞ¼
1

2
�a1hþ/

D :¼DetðJðE2ÞÞ¼/�1

2
�a1w/þa1r

where

h¼
3bx�21 þ4bx�1x

�
2

� �
4
ffiffiffiffiffiffiffi
X�3
p ;/¼ a� c2

2b
ffiffiffiffiffiffi
X�
p ;w¼

bx�21 þbx�1x
�
2

� �
2
ffiffiffiffiffiffiffi
X�3
p ð14Þ

and r¼ bx�21

8
ffiffiffiffiffiffiffi
X�3
p

so the characteristic polynomial of (13) is:

PðkÞ ¼ k2 � TkþD; ð15Þ

whose discriminant is D ¼ T2 � 4D.
From the stability theory we know that the fixed point E2 is

locally asymptotically stable as long as the eigenvalues of Jaco-

bian matrix JðE2Þare inside the unit circle of the complex
plane. This is true if and only if the following Jury’s [24] stabil-
ity criteria are hold:

ð1Þ : F :¼ 1þ TþD > 0;

ð2Þ : TC :¼ 1� TþD > 0;

ð3Þ : H :¼ 1�D > 0:

8><
>: ð16Þ

The above inequalities (16) define a region in which the Nash

equilibrium point E2 is local stable. The violation of any sin-
gle inequality in (16), with other two being simultaneously ful-
filled leads to: (1) a flip bifurcation (real eigenvalue that passes

through �1) when F ¼ 0; (2) a fold or transcritical bifurcation
(a real eigenvalue that passes through +1) when TC ¼ 0; (3) a
Neimark-Sacker bifurcation (i.e., the modulus of a complex

eigenvalue pair that passes through 1) when H ¼ 0 and
Tj j < 2 (see [25,26]).

The discriminant of (13) is

D ¼ T2 � 4D ¼ 3

2
� a1h� /

� �2

þ 2a1ð2w/� 2h/þ h� 2rÞ;

From Eqs. (10), (11), (14) and since a; b; c1; c2 and a1 are posi-
tive parameters. Then w > h and h > 2r. Hence D > 0, then

the eigenvalues of Nash equilibrium are real.
For the special case of the Jacobian matrix (13), the stabil-

ity conditions in (16) can be written as follows:

ð1Þ : F :¼ 1� a1hþ 2/� a1w/þ a1r > 0;

ð2Þ : TC :¼ a1hþ a1r� a1w/ > 0;

ð3Þ : H :¼ 3
2
� /þ a1w/� a1r > 0:

8><
>: ð17Þ
Since the discriminant is positive, the existence of complex

eigenvalues of JðE2Þ is prevented. Then the condition (3) is
always fulfilled. While from Eqs. (10), (11) and (14) it is clear
that the condition (2) is satisfied. Therefore, the Nash equilib-

rium point E2 can loose stability only through a flip bifurca-
tion. So, we have the following proposition about local
stability of Nash Equilibrium point E2.

Proposition 2. The Nash equilibrium point E2 is asymptotically

stable if a < 1þ2/
wþ/h�r. The system (7) undergoes a flip bifurcation

at E2 when a� ¼ 1þ2/
wþ/h�r. Moreover, period-2 points bifurcate

from E2 when a > 1þ2/
wþ/h�r.

Proof. From above results, the conditions (2) and (3) are

always satisfied. However, condition (1) can be violated, since
the flip bifurcation occurs when F ¼ 0. Then

1þ TþD ¼ 0;

1� a1hþ 2/� a1w/þ a1r ¼ 0

Then from stability situation, the Nash equilibrium point can

loose stability when a� ¼ 1þ2/
wþ/h�r . Hence the Nash equilibrium

point is asymptotically stable if a < a�. Moreover, period-2
points bifurcate from E2 when a > a�. h

Next we present the results of the numerical simulations for
the system (7).

4. Analysis and numerical simulation

The main purpose of this section is to show that the qualitative

behavior of the solutions of the nonlinear duopoly game with
heterogeneous players (described by the dynamic system (7)).
To provide some numerical evidence for the existence of chaotic

motions, we use several standard tools, bifurcations diagrams,
basin of attraction, lyapunov exponents, strange attractors, sen-
sitive dependence on initial conditions and so on.

Fig. 1 presents a bifurcation diagram of system (7) in
ða1 � x1x2Þ plane when a ¼ 10; b ¼ 1; c1 ¼ 1 and c2 ¼ 3. From
Fig. 1, we can see that the orbit with initial values ð0:25; 0:2Þ
approaches to the stable fixed point for a1 < 0:415. With a1

increasing, a flip bifurcation for system (7) takes place at a1

¼ 0:415 and period-2 points bifurcate as a1 ¼ :415 , which is
verifies Proposition 2. Furthermore, the period-2 points are

attracting when a1varies in the interval ð0:415; 0:565Þ. As long



Figure 4 Bifurcation diagram of the model (7) with respect to c1.
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as the parameter a1increases, the Nash equilibrium point E2

becomes unstable and the bifurcation scenario occurs and ulti-
mately leads to unpredictable (chaotic) motions that are ob-

served. This means that immediately after the NS bifurcation
the system displays complicated dynamics, differently from
what happens after the period doubling bifurcation in which

aperiodic attractor appears. While bifurcation and chaos oc-
cur, the output of players acutely fluctuate making it difficult
for players to forecast their output and to make decisions in

the future.
In order to classify the dynamic behavior of system (7) for

many different parameters set, we compute the largest lyapunov
exponent. Fig. 2 shows the largest lyapunov exponent corre-

sponding to the bifurcation diagram Fig. 1. As it is positive,
there is evidence of chaos and beyond that it is even possible
to differentiate between cycles of very high order and aperiodic

(chaotic) behavior of the system. Moreover, by comparing the
standard bifurcation diagram in Fig. 1 with the diagram of larg-
est lyapunov exponent, one can obtain a better understanding of

the particular properties of the dynamic behavior of the system.
Fig. 3 shows the bifurcation diagram with respect to the

parameter a with b ¼ 1; c1 ¼ 1; c2 ¼ 3 and a1 ¼ 0:6. The Nash

equilibrium E2 is locally stable for small values of a. As a
increases, the Nash equilibrium point becomes unstable and
complex dynamic behavior occurs, including higher-order
cycles and chaos. The bifurcation diagram with respect to c1
Figure 2 Largest Lyapunov exponents corresponding to Fig.1.

Figure 3 Bifurcation diagram of the model (7) with respect to a.

Figure 5 Strange attractor for the model (7).
when the other parameters take the values ða; b; c2; a1Þ ¼
ð10; 1; 3; 0:6Þ is given Fig. 4. We can see that the system dynam-

ics is chaotic if the return rate c1 is small. As c1 increases, there
exist period-halving bifurcations. The game experiences chaos
and period-halving bifurcation.

A strange attractor is another characteristic of chaos of the

system, and it reflects the inherent regularity of the complex
phenomena in a chaotic state. Thus, players can forecast the
market output in a short term according to inherent regularity

while the system is in a chaotic state. Fig. 5 shows the graph of
strange attractors of system (7) when a ¼ 10; b ¼ 1; c1 ¼ 1;
c2 ¼ 3 and a1 ¼ 0:6. Strange attractors show the complexity

of players dynamic output competition in chaos.

5. Chaos control

The appearance of chaos in the economic system is not ex-
pected and even is harmful. Thus, people hope to find some
methods to control the chaos of economic system. A wide vari-

ety of methods have been proposed for controlling chaos in
oligopoly models, for example, chaos control with OGY meth-
od in the Kopel duopoly game model was applied in [27],
chaos control with modified straight-line stabilization method



Figure 7 Time series of system (18) when control parameter

l ¼ 0:3.
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in an output duopoly competing evolution model have been
studied by Du et al. [28], Holyst and Urbanowicz [29] had
studied chaos control with time-delayed feedback method in

an economical model. The dynamics and adaptive control of
a duopoly advertising model based on heterogeneous expecta-
tions is presented in Ding et al. [30], and so on. Elabbasy et al.

[31] have considered such a feedback control in their triopoly
with heterogeneous players. Also Ding et al. [32] have applied
feedback control on multi-team Bertrand model.

The above section results show that the duopoly market
will become unstable and fall into chaos when output adjust-
ment speed parameter out of the stable region. Therefore, it
is necessary to take a control strategy to delay or eliminate

the occurrence of bifurcation and chaos. Feedback and param-
eter variation are two methods for the chaos control. Recently,
Luo et al. [33] proposed a new control method which is called

as control strategy of the state variables feedback and param-
eter variation. Pu and Ma [34] have considered the state vari-
ables feedback and parameter variation method in their four

oligopolist model. In this article, the same method will be used
to control the chaos of system (7). We change two-dimensional
discrete dynamic system (7) into the following format:
xtþ1
1 ¼ð1�lÞ xt

1þa1x
t
1 a�c1�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt
1þxt

2

p
� bxt

1

2
ffiffiffiffiffiffiffiffiffi
xt
1
þxt

2

p
� �
 �

þlxt
1

xtþ1
2 ¼ð1�lÞ 2ða�c2Þ

ffiffiffiffiffiffiffiffiffi
xt
1
þxt

2

p
�2bxt1�bx

t
2

2b


 �
þlxt

2

8>>><
>>>:

ð18Þ
System (7) will fall into instability region and chaos with the
change of output modification speed for player 1. The chaotic
state of system (7) with the change of speed adjustment a1 for

player 1 is controlled. Fig. 6 is the bifurcation diagram of con-
trolled system (18) with the change of control parameter l
after adding control to the chaotic state (a¼ 10; b¼ 1; c1¼ 1;
c2¼ 3 and a1¼ 0:6). It can be seen from Fig. 6 that the system
(18) is in a chaotic state when l< 0:0465; the first players
output and the second players output are controlled in the

four-fold period bifurcation state when l¼ 0:0475. The first
player output and the second player output are controlled in
the period-doubling bifurcation when l¼ 0:0875. Also, the
period-doubling bifurcation disappears, and the system stabi-

lizes at the Nash equilibrium point when l> 0:27. Fig. 7 shows
that the chaotic system is controlled at fixed point when
Figure 6 Bifurcation diagram of system (18) with respect to

control parameter l.
l¼ 0:3. Thus chaos control is successful. The method pre-
sented here can be applied to many chaotic dynamical systems.

6. Conclusion

A Cournot duopoly game model with different strategies is
analyzed. The stability of the equilibrium points has been ana-

lyzed. From bifurcation diagrams and phase portraits, the ba-
sic properties of the game are presents. The results show that
the quantity adjustment speed of boundedly rational player
has an obvious impact on the stability of the players’ dynamic

quantity competition model. When it continues to increase, a
series of chaotic phenomena occur: period doubling bifurca-
tion, a positive Lyapunov exponent and strange attractors

have been obtained. Finally, the model is quickly arrived at
the Nash equilibrium point when a suitable controlling factor
is chosen.
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