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1. Introduction

Recently, mathematical models describing the dynamics of
human infectious diseases have played an important role in
the disease control in epidemiology. Researchers have pro-
posed many epidemic models to understand the mechanism
of disease transmission [1].

Usually, these classical epidemic models have only one en-
demic equilibrium when the basic reproduction number
Ry > 1, and the disease-free equilibrium is always stable when
Ry < 1 and unstable when R, > 1. So the bifurcation leading
from a disease-free equilibrium to an endemic equilibrium is
forward. For a forward bifurcation, the bifurcation curve is
as shown in Fig. 1 [1-5].
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But in recent years, the phenomenon of the backward bifur-
cations has caused interest in disease control (see [6—15]). In
this case, the basic reproduction number cannot describe the
necessary disease elimination effort any more. Thus, it is
important to identify backward bifurcations and establish
thresholds for the control of diseases.

When forward bifurcation occurs, the condition Ry < 1 is
usually a necessary and sufficient condition for disease eradica-
tion, whereas it is no longer sufficient when a backward bifur-
cation occurs. In fact, the backward bifurcation scenario
involves the existence of a subcritical transcritical bifurcation
at Ry =1 and of a saddle-node bifurcation at Ry = R < 1.
There may be multiple positive endemic equilibria for values
of Ry < 1 and a backward bifurcation at Ry = 1. This means
that the bifurcation curve has the form shown in Fig. 2 with
a broken curve denoting an unstable endemic equilibrium that
separates the domains of attraction of asymptotically stable
equilibria.

Differential equations of fractional order have been the
focus of many studies due to their frequent appearance in var-
ious applications in fluid mechanics, economic, viscoelasticity,
biology, physics and engineering. Recently, a large amount of
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Figure 1 Forward bifurcation.

literature has been developed concerning the application of
fractional differential equations in nonlinear dynamics [16].

In this paper we study some fractional order models for dis-
ease transmission with vaccination. The stability of equilib-
rium points is studied. Backward bifurcation in fractional
order systems is studied. Numerical solutions of these models
are given. Numerical simulations have been used to verify
the theoretical analysis.

The reason for considering a fractional order system in-
stead of its integer order counterpart is that fractional order
differential equations are generalizations of integer order
differential equations also fractional order calculus naturally
includes memory effects which are important.

We like to argue that the fractional order models are at
least as good as integer order ones in modeling biological,
economic and social systems (generally complex adaptive
systems) where memory effects are important.

In Section 2 the equilibrium points and their asymptotic
stability of differential equations of fractional order are
studied. In Sections 3-5 the models are presented and dis-
cussed. In Section 6 numerical solutions of the models are
given.

Now we give the definition of fractional-order integration
and fractional-order differentiation:

Definition 1. The fractional integral of order f € R" of the
function f{z), ¢ > 0 is defined by

C—s)
Ao = / ———f(s) ds 1
0= [ (M
and the fractional derivative of order o€ (n—1,n] of
A1), t> 0 is defined by
d
D=—. 2
Ul 2)
For the main properties of the fractional-orders derivatives
and integrals [17-22].

Df(1) = I"*D"f(1),

2. Equilibrium points and their asymptotic stability

Let « € (0,1] and consider the initial value problem [23,24]

stable endemic

\
\ unstable endemic
\

~
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Figure 2  Backward bifurcation.

D*x(t) = f(x(1)),t > 0 and x(0) = x,. (3)

To evaluate the equilibrium points of (3) let D*x(r) =0,
then f(x.,) =0 from which we can get the equilibrium
points.

To evaluate the asymptotic stability, let x(z) = x,, + &(%),
which implies that
D¥e(t) = f'(xeg)e(t), £ > 0 and £(0) = x, — Xq- (4)

Now let the solution &(¢) of (4) be exists. So if &(¢) is increas-
ing, then the equilibrium point x,, is unstable and if &(¢) is
decreasing, then the equilibrium point x,, is locally asymptot-
ically stable.

Let o € (0,1] and consider the system [25-29]

Dy (1) = fi(¥1,22),
Dy, () = fa(31,32)s (5)

with the initial values
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Figure 3  Stability region of the fractional-order system.
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Figure 4
11(0) =y, and »,(0) = y,,. (6)
To evaluate the equilibrium points, let

Dy, (1) = 0= f;,(0}",»5") = 0,i=1,2 from which we can get
the equilibrium points y{?, y57.

To evaluate the asymptotic stability, let y,(¢) = y + &(1),
so the equilibrium point (y{%,)57) is locally asymptotically
stable if both the eigenvalues of the Jacobian matrix

o o
dy Ay
4= 2
9 o
O

evaluated at the equilibrium point satisfies [25-29].
(larg(iy)| > am/2, |arg(4)| > om/2). (7)

The stability region of the fractional-order system with
order o is illustrated in Fig. 3 (in which o, w refer to the real
and imaginary parts of the eigenvalues, respectively, and
j=+/—1). From Fig. 3, it is easy to show that the stability
region of the fractional-order case is greater than the stability
region of the integer-order case.

The eigenvalues equation of the equilibrium point (y{7, y57)
is given by the following polynomial [25]:

p(A) =2 +ay)+a =0. (8)

The conditions for (7) are either Routh—Hurwitz conditions
or:

a; < 07 4612 > (Cll)z,

tan*‘< 4a2—(a1)2/a1>'>om/2. (9)

3. Fractional-order SIS model

Let S(¢) and I(r) denote the numbers of susceptible, infective
individuals at time ¢ respectively. The fractional-order SIS
model is given by [3]

D*S(t) = A — BSI— puS+ 1,
D*I(t) = BSI — (u+ 7)1, (10)

with the incorporation of a constant birth rate A in the suscep-
tible class and a proportional natural death rate u in each class
and no disease deaths, f§ is the infectious contact rate, y is the
recovery rate for the disease and 0 < o < 1.

In (10) the total population size N=S+171 and
D*N = A — uN.

Also we can reduce the dimension of the system (10) by
using S=N—1=K—1I where K= A/u is the population
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carrying capacity to give the single fractional order differential
equation

D*I(t) = B(K—DI— (p+y)1. (11)
To evaluate the equilibrium points, let D*I(r) =0, then
1, =0, K(l ) Ry = (ff” are the equilibrium points.
Now, to study the stability of the equilibrium points [3,24],
we have

= fUI(@), fU(2)
1(0)=pK -

Hence a disease-free equilibrium 7 = 0 is locally asymptotically
stable if Ry < 1.

Also for the equilibrium point = K(] — Rlo) we have
f(K(l —,%)) - —ﬁK(l —RLO) <0 if Ry>1. Hence if
Ry > 1 the disease-free equilibrium 7 = 0 is unstable but there

RLO) >0 which is locally

D7) = B(K = DI = (u+ )1,

(+7) <0if Ry < 1.

is an endemic equilibrium K(l —

asymptotically stable.

4. Existence of uniformly stable solution

Let x, (f) = S8(1), x2(1) = (1), f1(x1(1), X2(1)) = A = pxr(£)x
(1) = px1 (1) +9x2(1),  and  fo(xi (1), x2(1)) = fxy ) 2(1)—
(u+7y)x2(t). Let D={x;,xx € R:|x;(f)| <a,te[0,T],i=

1,2}, then on D we have |8x1f1 (x1,x2)| < kl,\aXzﬁ(xuxz)|
Sk lhfalxn )| <ksand [ 2 £ (x1,x2)
ki, ks, k3 and k4 are positive constants.

This implies that each of the two functions fi, f; satisfies the
Lipschitz condition with respect to the two arguments x; and
X,, then each of the two functions f}, /> is absolutely continu-
ous with respect to the two arguments x; and x,.

Consider the following initial value problem which repre-
sents the fractional-order SIS model (12) and (13)

< k4,  where

D“xl(t) :_fl(xl(l‘)7)€2(l‘))7 t> 0 and xl(O) = Xol, (12)
DaX2(l‘) :_fz(xl(l‘)7)€2(l))7 t>0 and )Cz(o) = Xp2- (13)

Definition 2. By a solution of the fractional-order SIS model
(12) and (13) we mean a column vector (x(¢) x2(¢)), x; and
X2 € C[0,T], T < co where C[0,T] is the class of continuous
functions defined on the interval [0,7] and t denote the
transpose of the matrix.
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Now we have the following theorem:

Theorem 1. The fractional-order SIS model (12) and (13) has a
unique uniformly Lyapunov stable solution.

Proof. Write the model (12) and (13) in the matrix form

D*X(r) = F(X(1)), >0 and X(0) =X, (14)

where X(7) = (x1(¢) x2(2))", and F(X(2)) = (fi(x1(2), x2(2))
So(x1(2),x2(7)))". Now applying Theorem 2.1 [30] we deduce that
the fractional-order SIS model (12) and (13) has a unique
solution. Also by Theorem 3.2 [30] this solution is uniformly
Lyapunov stable. [

5. Fractional-order vaccination model

According to the theory of asymptotically autonomous
systems, this result extends to the system [3]

D*S(1) = A(N) — B(N)SI — uS + 1,

D) = BT — (4 ), ()

where the population carrying capacity K is now defined by
A(K) = uK, A'(K) < u and the contact rate B(N) is now a
function of total population size with Nf(N) nondecreasing
and f(N) non-increasing.

To the model (15) we add the assumption that in unit time a
fraction ¢ of the susceptible class is vaccinated. The vaccina-
tion may reduce but not completely eliminate susceptibility
to infection. We model this by including a factor
0,0 < 0 < 1, in the infection rate of vaccinated members with
¢ = 0 meaning that the vaccine is perfectly effective and o = 1
meaning that the vaccine has no effect. We assume also that
the vaccination loses effect at a proportional rate 0. We
describe the new fractional order model by including a vacci-
nated class V, with [3]

D*S(t) = A(N) — B(N)SI — (u+ ¢)S + I+ 0V,

D*I(t) = B(N)ST+ af(N)VI— (u+ 7)1, (16)
D*V(t) = ¢S —af(N)VI— (u+0)V,

where 0 < o < 1

In (16) the total population size N=S+71+ 1V and
D*N = A(N) — uN.
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We may replace N by K and S by K—I—V to give the
qualitatively equivalent fractional order system

DI(1) = BIK T~ (1 = )W) — (u+ )L,
DV(1) = p[K— 1) — aBVI— (u+ 0+ P)V,

with 8 = B(K). The system (17) is the basic vaccination frac-
tional order model which we will analyze. We remark that if
the vaccine is completely ineffective, ¢ = 1, then (17) is equiv-
alent to the fractional order SIS model (11). If there is no loss
of effectiveness of vaccine, 6 = 0, and if all susceptibles are
vaccinated immediately (formally, ¢ — o), the model (17) is
equivalent to D*I(t) = ofI(K—1) — (u+y)l, which is the
same as (11) with f§ replaced by ¢ff and has basic reproductive
number R; = % < oRy < Ry.

For the fractional order model (17) to evaluate the equilib-
rium points, let

(17)

DI=0, D*V=0,
then there is a disease-free equilibrium (7, V,,) =
(O,U‘T‘/’W)K).
For (Ly, Veg) = (0, ;) we find that
4 [T =BV = () + BK 0
~(¢+apV) (e +0+¢)]

and its eigenvalues are

h=—(u+0+¢) <0,

_ ¢ .
_(ut0+09)

Hence the disease-free equilibrium (1., V) = (O,mK) is
locally asymptotically stable if R(¢$) < 1.

For ¢ =0 is that of no vaccination with R(0) = Ry, and if
¢ > 0 then R(¢) < Ry, that if Ry < 1 the disease-free equilib-
rium is locally asymptotically stable. We note that
lim(,HOCR(qS) =0dRy < Ry [3]

If ¢ = 1, meaning that the vaccine has no effect, we have
seen that (17) is equivalent to the fractional order SIS model
(11) and if Ry > 1 there is a unique endemic equilibrium which
is locally asymptotically stable. If 0 <o <1 there is an

endemic equilibrium (Z,,, V).
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An endemic equilibria are solutions of the pair of equations
BIK—1—(1—a)V]=p+7,
QK- =apVI+ (u+0+ )V,
which give an equation of the form
AP +BI+C=0 (18)
with
A=0p,B=(p+0+0¢)+a(p+y) —opk,

L+ p+0+9)
B

and its eigenvalues are given by an equation
2 +aA+a=0,

C= —(u+ 0+ oK,

where

a=[u+0+¢+(c+1)BI >0,
ay = BI2AI + B] > 0 if(2AI + B) > 0.

Hence if (241 + B) > 0 an endemic equilibrium (Z,, V,,) is lo-
cally asymptotically stable [25].

If o =0 Eq. (17) give [ = K[l — 5] > 0if R(¢) > 1. Thus
for ¢ = 0 there is a unique endemic équilibrium if R(¢p) > 1
which approaches zero as R(¢) — 1 and there cannot be an en-
demic equilibrium if R(¢) < 1. In this case it is not possible to
have a backward bifurcation at R(¢) = 1.

If 0 > 0 so that (18) is quadratic and if R(¢) > 1 (C <0),
then there is a unique positive root of (18)

;_—B+VB —44C
B 24

and thus there is a unique endemic equilibrium.

If R(¢p) =1 (C =0), we obtain
AP +BI=0
I1=0,—B/A4 > 0,if B<0.
Then if B < 0 when C = 0 (R(¢) = 1) there is a unique positive
endemic equilibrium.

If B=—-2vAC < 0, Then there is a unique positive ende-
mic equilibrium /= —B/2A.

If R(¢p) < 1 (C > 0), we obtain

—B+ VB> —44C
—>
24
B<0,B>4AC,

1= 0 if

or B< -2V AC.
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Then if B<0,B*>4A4C, or B< —-2\/AC when C>0
(R(¢) < 1) there are two positive endemic equilibrium and if
C >0 and either B > 0,B> < 44C, there are no endemic
equilibria.

Now we have the following theorem:

Theorem 2. The fractional order system (17) has a backward
bifurcation at R(¢) = 1 if and only if B < 0 when f is chosen to
make C =0 [3].

We can give an explicit criterion in terms of the parameters

uw,7,0,¢,0 for the existence of a backward bifurcation at
R(¢) =1[3]. When R(¢p) = 1,(C =0) so that

(L+0+0p)pK= (u+7)(n+ 0+ ), (19)

which reduces to

o(l = o) (u+7)p > (u+0+ap)’. (20)

A backward bifurcation occurs at R(¢p) = 1, with fK given by
(19) if and only if (20) is satisfied.

If (20) is satisfied, so that there is a backward bifurcation at
R(¢) = 1, there are two endemic equilibria for an interval of
values of f [3] from

(+y)(e+0+¢)

K= a0t 09)

corresponding to R(¢) =1
B = -2y AC so that

_o(uty)+2ye(l —o)(u+ )¢ — (u+0+09) (21)

to a value f, defined by

B.K

and the critical basic reproductive number R, is given by [3]

R Wt 0500) joluty) £2V (1 Z0)(RE0)d= (1t 0F0d)| | (9
© (ut0+9) o(u+7) '

6. Numerical methods and results

For the single fractional order SIS Eq. (11), the approximate
solutions are displayed in Figs. 4 and 5 for 7(0) = 5.0 and dif-
ferent 0 < o < 1.

In Fig. 4 we take f=0.1,u=0.5, K=20,y=0.5, and
found that the equilibrium point (qu = K(l - Rl(]) = 10.0) is
locally asymptotically stable where Ry = 2.0 > 1.
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In Fig. 5 we take f=0.1,4=0.5K=2.0,y=0.5, and
found that the equilibrium point (I, = 0) is locally asymptot-
ically stable where Ry = 0.2 < 1.

For the fractional-order vaccination model (17), the
approximate solutions are displayed in Figs. 6-9 for
1(0) = 6.0, 77(0) = 20.0 and different 0 < o0 < 1.

In Figs. 6 and 7 we take f=0.2,K=250,u=0.1,7 =
12.0,¢ = 3.0,0 = 0.5,0 = 0.2, and found that the equilibrium
point (17.1484,2.252) is locally asymptotically stable where
R(p) =1.37741 > 1.

In Figs. 8 and 9 we take f=1.0,K=250,u=0.1,y =
12.0,¢p = 3.0,0 = 0.5,06 = 0.2, and found that the equilibrium
point (0,20.8333) is locally asymptotically stable where
R(¢p) = 0.688705 < 1.

7. Conclusions

In this paper we study some fractional order models for disease
transmission with vaccination. The stability of equilibrium
points is studied. Backward bifurcation in fractional order sys-
tems is studied. Numerical solutions of these models are given.
Numerical simulations have been used to verify the theoretical
analysis.

The reason for considering a fractional order system in-
stead of its integer order counterpart is that fractional order
differential equations are generalizations of integer order
differential equations. Also bifurcation in fractional order
systems may differ from that of integer order.

We like to argue that fractional order equations are more
suitable than integer order ones in modeling biological, eco-
nomic and social systems (generally complex adaptive systems)
where memory effects are important.

To the best of my knowledge this is the first paper on back-
ward bifurcation in fractional order system.
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