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RESULTS ON SOLUTIONS OF CERTAIN DIFFERENCE

EQUATIONS

SHILPA N.

Abstract. In this article, we deal with the meromorphic solutions of certain
q-difference equations and obtain results which generalize as well as improve
the results of A. P. Singh and S. V. Dugane [2], Subhas S. Bhoosnurmath and
K. S. L. N Prasad [3].

1. Introduction

For a meromorphic function f in the complex plane we assume that the reader is
familiar with the standard notations of Nevanlinna theory such as, T (r, f), N(r, f)
and m(r, f) etc., as explained in [1].
Definition 1: If f is a meromorphic function of zero order, then we denote π(f(qz))
to be function which are polynomials in f(qz) where q ∈ C with co-efficients a(z)
such that T (r, a(z)) = o(T (r, f)), on a set of logarithmic density 1, such functions
will be called as ”q-difference polynomials” in f(qz).

π(f(qz)) =
s∑

j=1

ajf
n0jf(q1z)

n1jf(q2z)
n2j ...f(qνz)

nνj ,

where

d(π) = max1≤j≤s

ν∑
j=1

nij , d(π) = min1≤j≤s

ν∑
j=1

nij .

If d(π) = d(π) = n(say) then the q-difference polynomial is called Homogeneous
otherwise Nonhomogeneous.
In [2] A. P. Singh and S. V. Dukane proved the following result.
Theorem A. No transcendental meromorphic function f with N(r, f) = S(r, f)
will satisfy an equation of the form

a1(z)[f(z)]
nπk(f) + a2(z)πk(f) + a3(z) = 0,

where n ≥ 1, a1(z)(̸= 0) and πk(f) is a non-zero homogeneous differential polyno-
mial in f of degree k having p terms where p and k satisfy the relation (p−1)k < n.
Later in [3]. Subhas S. Bhoosnurmath and K. S. L. N Prasad improved Theorem
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A and obtained the following result.
Theorem B. No transcendental meromorphic function f with N(r, f) = S(r, f)
will satisfy an equation of the form

a1(z)[f(z)]
nπ(f) + a2(z)π(f) + a3(z) = 0

where n ≥ 1, a1(z)(̸= 0) and π(f) = Mi(f) +
∑i−1

j=1 aj(z)Mj(z) is a differential

polynomial in f of degree n and each Mi(f) is a monomial in f .
In this section we prove that in Theorem B, fn can be replaced by P (f), where

P (f) is a linear combination of powers of f and we also improve the above theorem
by considering any q-difference polynomial in f(qz).

Theorem 1.1. No non-constant zero-order meormorphic function f with N(r, f) =
S(r, f) will satisfy an equation of the form

a1(z)P (f(qz))π(f(qz)) + a2(z)π(f(qz)) + a3(z) = 0, (1.1)

where a1(z)(̸= 0), a2(z) and a3(z) are small functions of f , P (f) = bnf
n+bn−1f

n−1+
· · ·+ b1f + b0, where n is a positive integer, bn(̸= 0), bn−1, ..., b0 are small functions

of f and π(f) = Mi(f(qz)) +
∑i−1

j=1 aj(z)Mj(f(qz)) is a q-difference polynomial in

f(qz) of degree n and each Mi(f(qz)) is a monomial in f(qz).

2. Lemmas

In order to prove our main result, we need to prove the following Lemmas.

Lemma 2.1. Suppose that f is a non-constant zero-order meromorphic function
in the plane and that fnP (qz) = Q(qz), where P (qz) and Q(qz) are q-difference
polynomials in f(qz) and degree of Q(qz) is atmost n, then m(r, P (qz)) = S(r, f)
as r → ∞.

Proof. We have

2πm(r, P (qz)) =

∫ 2π

0

log+|P (reiθ)|dθ

≤
∫
E1

log+|P (reiθ)|dθ +
∫
E2

log+|P (reiθ)|dθ,

where E1 is the set of θ in 0 ≤ θ ≤ 2π for which |f(reiθ)| < 1 and E2 is the
complementary set.

By hypothesis P (qz) is the sum of finite number of terms of the type

F (qz) = a(z)fn0jf(q1z)
n1jf(q2z)

n2j ...f(qνz)
nνj , (2.1)

where n0j , n1j , n2j , ..., nνj are non-negative integers.
Hence in E1 ∫

E1

log+|F (reiθ)| ≤ m(r, a) + o

{
ν∑

t=0

m

(
r,
f(qtz)

f(qz)

)}
= S(r, f(qz)).

Therefore T (r, a(z)) = S(r, f(qz)) as r → ∞.
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Thus by addition∫
E

log+|P (reiθ)| ≤
∑
F

∫
E1

log+|F (reiθ)|dθ +O(1) = S(r, f(qz)).

Next let E2,

|P (qz)| =

∣∣∣∣∣ 1

(f(qz))n

ν∑
t=0

a(z)fn0jf(q1z)
n1jf(q2z)

n2j ...f(qνz)
ntj

∣∣∣∣∣
≤

∑
|a(z)|

∣∣∣∣f(q1z)f(qz)

∣∣∣∣n1j

...

∣∣∣∣f(qνz)f(qz)

∣∣∣∣nνj

.

Thus again∫
E2

log+|P (reiθ)|dθ ≤ O

[
ν∑

t=0

m

(
r,

f(t)

f(qz)

)
+m(r, a(z))

]
= S(r, f(qz)).

This proves the lemma.

Lemma 2.2. Suppose that f is a non-constant zero order meromorphic function in
the plane and g(qz) = [f(qz)]n + Pn−1(f(qz)) where Pn−1(f(qz)) is a q-difference

polynomial of degree atmost n − 1 in f(qz) and that N(r, f(qz)) + N
(
r, 1

g(qz)

)
=

S(r, f(qz)), then g(qz) = [h(qz)]n, h(qz), f(qz) + 1
na(z) and [h(qz)]n−1a(z) is

obtained by substituting h(qz) for f(qz), h′(qz) for f ′(qz) etc., in the terms of
degree n− 1 in Pn−1(f(qz)).

Proof. We have g(qz) of the form [f(qz) + a
n ]

n, where a is determined by the
terms of degree n − 1 in Pn−1(f(qz)) and by g(qz). We note the following special
cases.
If Pn−1(f(qz)) = a0(z)(f(qz))

n−1+terms of degree n− 2 atmost, then hn−1a(z) =

a0(z)h
n−1 so that a(z) = a0(z) and g(qz) = [f(qz) + a0(z)

n ]n.

In this case hn−1a(z) = a0(z)h
′hn−2 or a(z) = a0(z)

h′

h = a0(z)
n

g′(qz)
g(qz) ,

g(qz) =

[
f(qz) +

a0(z)

n2

g′(qz)

g(qz)

]n
.

Lemma 2.3. Let f(z) be a non-constant zero order meromorphic function and
π(f(qz)) be a q-difference polynomial in f(qz) of degree n ≥ 1 with coefficients a(z)
and degree d(π) and lower degree d(π) then,

m

(
r,
π(f(qz))

fd(π)

)
≤ [d(π)− d(π)]m

(
r,

1

f

)
+ S(r, f). (2.2)

Proof. Let F (qz) be defined as in (2.1) then,

F (qz)

fd(π)
= a(z)

(
f(qz)

f(qz)

)n0j
(
f(q1z)

f(qz)

)n1j

...

(
f(qkz)

f(qz)

)nνj

Case(i). When |f(qz)| ≤ 1∣∣∣∣π(f(qz))fd(π)

∣∣∣∣ = s∑
j=1

|aj |
∣∣∣∣Mj(f)

fγMj

∣∣∣∣ ∣∣∣∣ 1f
∣∣∣∣d(π)−γMj
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where γMj is the degree of the monomial Mj(f).

As |f | ≤ 1,
∣∣∣ 1f ∣∣∣ ≥ 1 and

∣∣∣ 1f ∣∣∣d(π)−γMj ≥ 1 and we have∣∣∣∣ 1f
∣∣∣∣d(π)−γMj

≤
∣∣∣∣ 1f

∣∣∣∣d(π)−min1≤j≤sγMj

=

∣∣∣∣ 1f
∣∣∣∣d(π)−d(π)

Hence, we get∣∣∣∣ π(f)fd(π)

∣∣∣∣ ≤ ∣∣∣∣ 1f
∣∣∣∣d(π)−d(π)

 s∑
j=1

|aj |
∣∣∣∣f(q1z)f

∣∣∣∣n1j

...

∣∣∣∣f(qkz)f

∣∣∣∣nνj


Using logarithmic derivative lemma we get (2.2).
Case(ii). When |f(z)| ≥ 1∣∣∣∣ π(f)fd(π)

∣∣∣∣ = s∑
j=1

|aj |
∣∣∣∣Mj(f)

fγMj

∣∣∣∣ ∣∣∣∣ 1f
∣∣∣∣d(π)−γMj

,

but as |f | ≥ 1,
∣∣∣ 1f ∣∣∣ ≤ 1 and

∣∣∣ 1f ∣∣∣d(π)−γMj ≤ 1. So log+
∣∣∣ 1f ∣∣∣d(π)−γMj

= 0 and

log+
∣∣∣∣π(f(qz))fd(π)

∣∣∣∣ ≤ s∑
j=1

log+
∣∣∣∣Mj(f)

fγMj

∣∣∣∣+ c

i.e.,

m

(
r,
π(f(qz))

fd(π)

)
≤ S(r, f).

Hence we get (2.2).

3. Proofs of the Theorem.

In this section we present the proof of our main result.
Proof of Theorem 1.1
We first consider the case when n ≥ 2.
Suppose there exists a transcendental meromorphic function f with
N(r, f) = S(r, f) satisfying (1.1) then

a1
[
bnf

n + bn−1f
n−1 + · · ·+ b0

]
π(f(qz)) + a2π(f(qz)) + a3 = 0

or

a1bnf
nπ(f(qz)) + P1(f(qz))π(f(qz)) + a3 = 0,

where P1(f(qz)) = a1bn−1f(qz)
n−1 + · · ·+ a1b0 + a2.

Since from our assumption we have N(r, f) = S(r, f), then by applying Lemma 2.1
to π(f(qz)), we get

N(r, π(f(qz))) = S(r, f). (3.1)

Now let,

H(z) = [f(z)]n +
P1(f(qz))

a1bn
= − a3

a1bnπ(f(qz))
(3.2)

from (3.1) and (3.2) we have

N

(
r,

1

H

)
= N

(
r,−a1bnπ(f(qz))

a3

)
= S(r, f).
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Also P1(f(qz))
a1bn

is a q-difference polynomial in f of degree n − 1. Hence by Lemma

2.2 H(z) = (h(z))n, where h(z) = f(z) + a(z)
n and (h(z))n−1a(z) is obtained by

substituting h(z) for f(z), h′(z) for f ′(z) etc., in the terms of degree n−1 in P1(f)
a1bn

.

Since n ≥ 2 and the term in P1(f)
a1bn

with degree n− 1 is bn−1

bn
fn−1.

Thus
(h(z))n−1a(z) = bn−1

bn
(h(z))n−1 or a(z) = bn−1

bn
.

Therefore

H(z) =

(
f(z) +

bn−1

nbn

)n

. (3.3)

From (3.2) and (3.3), we have(
f(z) +

bn−1

nbn

)n

π(f(qz)) = − a3
a1bn

.

Thus

T

(
r,

(
f(z) +

bn−1

nbn

)n

π(f(qz))

)
= S(r, f). (3.4)

From the first fundamental theorem of Nevanlinna, (3.1), (3.4) and Lemma 2.3, we
get

T

(
r, fd[π(f(qz))]

[
f(z) +

bn−1

nbn

]n)
= T

r,
1

fd[π(f(qz))]
[
f(z) + bn−1

nbn

]n
+O(1),

≤ T

(
r,

π(f(qz))

fd[π(f(qz))]

)
+ T

r,
1

π(f(qz))
[
f(z) + bn−1

nbn

]n
+O(1),

≤ N

(
r,

π(f(qz))

fd[π(f(qz))]

)
+m

(
r,

π(f(qz))

fd[π(f(qz))]

)
+O(1),

≤ N(r, π(f(qz))) + d[π(f(qz))]N

(
r,

1

f

)
+ [d[π(f(qz))]− d[π(f(qz))]]m

(
r,

1

f

)
+ S(r, f),

≤ d[π(f(qz))]N

(
r,

1

f

)
+ d[π(f(qz))]m

(
r,

1

f

)
+ S(r, f),

≤ d[π(f(qz))]T (r, f) + S(r, f).

(3.5)

But

T

(
r, fd[π(f(qz))]

[
f(z) +

bn−1

nbn

]n)
= T

(
r, fd[π(f(qz))]

)
+ T

(
r,

[
f(z) +

bn−1

nbn

]n)
= d[π(f(qz))]T (r, f) + nT

(
r, f(z) +

bn−1

nbn

)
+ S(r, f),

= [d[π(f(qz))] + n]T (r, f) + S(r, f).

(3.6)

Thus from (3.5) and (3.6), we get

[d[π(f(qz))] + n]T (r, f) = d[π(f(qz))]T (r, f) + S(r, f).
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Which is a contradiction to our assumption.
We shall now consider the case when n = 1.

If n = 1 then equation (3.1) becomes a1[b1f + b0]π(f(qz)) + a2π(f(qz)) + a3 = 0,
that is (

f +
(a1b0 + a2)

a1b1

)
π(f(qz)) = − a3

a1b1
.

Hence from lemma 2.2 and the equation (3.1), we have

T (r, π(f(qz))) = S(r, f).

Also

T

(
r,

(
f +

(a1b0 + a2)

a1b1

))
= T

(
r,− a3

π(f(qz))a1b1

)
+ S(r, f).

Thus
T (r, f) = S(r, f).

Which is again a contradiction to our assumption. Hence the theorem.
Acknowledgement. I would like to thank the referee for his/her valuable sugges-
tions towards the improvement of the paper.
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