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HERMITE POLYNOMIALS AND HAHN’S THEOREM WITH

RESPECT TO THE RAISING OPERATOR

BAGHDADI ALOUI

Abstract. Let {Hn}n≥0 be the monic Hermite polynomial sequence, It is
well known that H Hn(x) = Hn+1(x), n ≥ 0, where H is the raising operator
associated to the monic Hermite polynomial and given by H := xI− (1/2)D,
with I represents the identity operator. In this paper, we introduce the no-

tion of Hϵ-classical orthogonal polynomials, where Hϵ := xI + ϵD (ϵ ∈ C∗).
Then we show that the scaled Hermite polynomial sequence {a−nHn(ax)}n≥0,

where a2 = −(2ϵ)−1, is the only Hϵ-classical orthogonal sequence. As an il-
lustration, we give some properties related to this operator.

1. Introduction and main results

Let P be the linear space of polynomials in one variable with complex coefficients.
Let P′ be the algebraic linear dual of P. We write ⟨u, p⟩ := u(p) (u ∈ P′, p ∈ P).
A linear functional u ∈ P′ is said to be regular [10, 14] if it is quasi-definite,
i.e., det⟨u, xi+j⟩i,j=1,...,n ̸= 0 for n ≥ 0. This is equivalent to the existence of a
unique sequence of monic polynomials {pn}n≥0 of degree n such that ⟨u, pnpm⟩ =
rnδn,m, n, m ≥ 0, with rn ̸= 0 (n ≥ 0). Then the sequence {pn}n≥0 is said to be
the sequence of monic orthogonal polynomials (SMOP) with respect to u.

Proposition 1.1. (Favard’s Theorem[10]). Let {Pn}n≥0 be a monic polynomial
sequence. Then {Pn}n≥0 is orthogonal if and only if there exist two sequences of
complex number {βn}n≥0 and {γn}n≥0, such that γn ̸= 0, n ≥ 1 and satisfies the
three-term recurrence relation{

P0(x) = 1, P1(x) = x− β0,
Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0.

(1)

When {Pn}n≥0 is a SMOP, then {P̃n}n≥0, where P̃n(x) = a−nPn(ax+b), (a, b) ∈
C∗ × C, is also a SMOP and satisfies [12, 13]{

P̃0(x) = 1, P̃1(x) = x− β̃0,

P̃n+2(x) = (x− β̃n+1)P̃n+1(x)− γ̃n+1P̃n(x), n ≥ 0,

where β̃n = a−1(βn − b) and γ̃n+1 = a−2γn+1.
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An orthogonal polynomial sequence {Pn}n≥0 is called classical, if {P ′
n}n≥0 is

also orthogonal (Hermite, Laguerre, Bessel or Jacobi), (Hahn-property[7, 8]).
Next we collect some properties of the monic Hermite polynomials that we will

need in the sequel [4, 10].
The monic Hermite polynomial sequence {Hn}n≥0 can be expressed by the Ro-
drigues formula (see [11, 15])

Hn(x) =
(−1)n

2n
ex

2 dn

dxn
(e−x2

), n ≥ 0. (2)

The monic sequence of Hermite polynomials {Hn}n≥0 is an Appell sequence [4],
i.e.,

H ′
n+1(x) = (n+ 1)Hn(x), n ≥ 0. (3)

So {Hn}n≥0 also satisfies the three-term recurrence relation (1), where

βn = 0, n ≥ 0; γn+1 =
n+ 1

2
, n ≥ 0. (4)

By starting from (2), with n replaced by n+ 1, we obtain

Hn+1(x) =
(−1)n+1

2n+1
ex

2 dn

dxn

(
− 2xe−x2)

, n ≥ 0.

But according to the Leibniz rule

dn

dxn

(
f(x)g(x)

)
=

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x),

we have Hn+1(x) = xHn(x)− 1
2H

′
n(x), n ≥ 0, or equivalently

Hn+1(x) = H Hn(x), n ≥ 0, (5)

where H := xI − (1/2)D is called the raising operator associated to the monic
Hermite polynomials (for more details see [16]).

In view of (5), we can say that {Hn} is an H -classical polynomial sequence,
since it satisfies the Hahn-property with respect to the operators H i.e., it is an
orthogonal polynomial sequence, whose sequence of H is also orthogonal. See
further examples in [1, 2, 5, 7, 8, 9]

In this paper, we introduce the raising operator Hϵ := xI + ϵD, ϵ ̸= 0, and we
show that the scaled Hermite polynomial sequence {a−nHn(ax)}n≥0 where a2 =
−(2ϵ)−1, is actually the only monic orthogonal polynomial sequence which is Hϵ-
classical. As an illustration, we give some properties related to the above operator.
Finally, we represent certain sequences by a triple integrals in terms of Hermite
polynomials.

2. Raising operator associated to the Hermite polynomials

Recall the operator

Hϵ : P −→ P
f 7−→ xf + ϵf ′, ϵ ̸= 0.

Clearly, the operator Hϵ raises the degree of any polynomial. Such operator is
called raising operator.
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Definition 2.1. We call a sequence {Pn}n≥0 of orthogonal polynomials Hϵ-classical
if there exist a sequence {Qn}n≥0 of orthogonal polynomials such that HϵPn =
Qn+1, n ≥ 0.

The aim of this paper is to find the sequences of monic orthogonal polynomials
{Pn}n≥0 such that the monic sequence {Qn}n≥0, where

Qn+1(x) := xPn(x) + ϵP ′
n(x), n ≥ 0, (Q0(x) = 1), (6)

is also orthogonal.
Assume that {Pn}n≥0 and {Qn}n≥0 are SMOP satisfying{

P0(x) = 1, P1(x) = x− β0,
Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), γn+1 ̸= 0, n ≥ 0,

(7){
Q0(x) = 1, Q1(x) = x− ρ0,
Qn+2(x) = (x− ρn+1)Qn+1(x)− ϱn+1Pn(x), ϱn+1 ̸= 0, n ≥ 0.

(8)

We have the following fundamental result.

Theorem 2.1. the scaled Hermite polynomial sequence {a−nHn(ax)}n≥0 where
a2 = −(2ϵ)−1, is actually the only monic orthogonal polynomial sequence which is
Hϵ-classical. More precisely, Qn(x) = Pn(x) = a−nHn(ax) where a2 = −(2ϵ)−1.

Proof. By differentiating (7), we obtain

P ′
n+2(x) = (x− βn+1)P

′
n+1(x)− γn+1P

′
n(x) + Pn+1(x), n ≥ 0.

Multiplying the last equation by ϵ and the relation (7) by x, and we summarize,
we get

Qn+3(x) = (x− βn+1)Pn+2(x)− γn+1Qn+1(x) + ϵQn+1(x), n ≥ 0.

By using (8), we finally get

(βn+1 − ρn+2)Qn+2(x) + (γn+1 − ϱn+2)Qn+1(x) = ϵPn+1(x), n ≥ 0, (9)

and

(β0 − ρ1)Q1(x)− ϱ1Q0(x) = ϵP0(x). (10)

By comparing the degrees in(9) and (10), we obtain

ρn+1 = βn, n ≥ 0, (11)

ϱn+2 = γn+1 − ϵ, n ≥ 0. (12)

ϵ = −ϱ1. (13)

Then, (9) gives Qn(x) = Pn(x), n ≥ 0, since Q0(x) = P0(x). Hence, (11) gives
βn+1 = βn = β0 = ρ0 = 0, n ≥ 0 by using (6) for n = 0. On the other hand,
(12) gives, by induction, γn+1 = −(n + 1)ϵ, n ≥ 0. This implies that Qn(x) =
Pn(x) = a−nHn(ax) where a2 = −(2ϵ)−1, with {a−nHn(ax)}n≥0 is the scaled
Hermite polynomial sequence.

3. Some properties of the obtined polynomials

In this section, we firstly deduce some consequences of the operator H and
Hermite polynomials. Secondly, we represent some integer (or real) sequences by a
triple integral representations in terms of Hermite polynomials.
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3.1. Higher order H -differential relations. From (6) and as a consequence of
our problem, we have

H Hn(x) = Hn+1(x), n ≥ 0. (14)

In the other hand, the relation (3) of Appell property can be written as follow

DHn+1(x) = (n+ 1)Hn(x), n ≥ 0. (15)

Then, we obtain H ◦ DHn+1(x) = (n + 1)Hn+1(x), n ≥ 0 and D ◦ H Hn(x) =
(n + 1)Hn(x), n ≥ 0, or equivalently the Böchner’s charactrisation [6] of Hermite
polynomials

H ′′
n+1(x)− 2xH ′

n+1(x) + 2(n+ 1)Hn+1(x) = 0, n ≥ 0.

By using (15), we have

DmHn+1(x) = (n+ 1)n · · · (n+ 2−m)Hn+1−m(x), m ≤ n+ 1, n ≥ 0.

In particular, DnHn(x) = n!H0(x).
According to (14) we can obtain a similar result for the raising operator H

H mHn(x) = Hn+m(x), n, m ≥ 0. (16)

In particular, H n(H0(x)) = Hn(x), n ≥ 0, and then

H n ◦Dn
(
Hn(x)

)
= n!Hn(x), n ≥ 0.

In the following theorem, we prove that the SMP {H nHm}n, m≥0 can be ex-
pressed by the so-called Rodrigues formula.

Theorem 3.1. For every integer m ≥ 0, the following relation holds

H nHm(x) =
(−1)n

2n
ex

2 dn

dxn

(
Hm(x)e−x2)

, n ≥ 0. (17)

Proof. By induction, taking into account H n+1Hm(x) = H
(
H nHm(x)

)
, it

follows that

H n+1Hm(x) = H
( (−1)n

2n
ex

2 dn

dxn

(
Hm(x)e−x2))

= (xI− 1

2
D)

( (−1)n

2n
ex

2 dn

dxn

(
Hm(x)e−x2))

=
(−1)n+1

2n+1
ex

2 dn+1

dxn+1

(
Hm(x)e−x2)

, n ≥ 0.

Hence the desired result.

Corollary 3.2. By using (16), we have the following formula

Hn+m(x) =
(−1)n

2n
ex

2 dn

dxn

(
Hm(x)e−x2)

, n, m ≥ 0.

3.2. Representations in terms of Hermite polynomials. Let us recall the
integral relation between Laguerre and Hermite polynomials: Uspensky’s formula
[17]

L(α)
n (x) =

n!Γ(n+ α+ 1)
√
π(2n)!Γ(α+ 1

2 )

∫ 1

−1

(1− y2)α−
1
2H2n

(
y
√
x
)
dy, α > −1

2
, n ≥ 0,

which gives, with x replaced by tx and α = 1

L(1)
n (tx) =

n!(n+ 1)!

(2n)!

2

π

∫ 1

−1

(1− y2)
1
2H2n

(
y
√
tx
)
dy, n ≥ 0. (18)
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In the other hand, we have the following results.

Lemma 3.1. [3] The following representations in terms of Laguerre polynomials,
(with parameter α = 1), hold

n!(n+ 1)! =

∫ +∞

0

∫ +∞

0

te−(x+t)L(1)
n

(
t(x+ 1)

)
dxdt. (19)

(2n)!(n+ 1)
√
π

4n
=

∫ +∞

0

∫ +∞

0

t√
x

e−(x+t)L(1)
n

(
t(x+ 1)

)
dxdt. (20)

n! =

∫ +∞

0

∫ 1

0

te−tL(1)
n

(
t(x+ 1)

)
dxdt. (21)

(−1)nn! =

∫ +∞

0

∫ 1

0

te−tL(1)
n (tx) dxdt. (22)

(n+ 1)!(−1)n
(
ln 2 +

n∑
k=1

(−1)k

k

)
=

∫ +∞

0

∫ 1

0

te−t

1 + x
L(1)
n

(
t(x+ 1)

)
dxdt. (23)

n!(n+ 1)!(−1)n
(
e−

n∑
k=0

1

k!

)
=

∫ +∞

0

∫ 1

0

tex−tL(1)
n (tx) dxdt. (24)

Then, by inserting (18) in (19)−(24), we can easily obtain the following result.

Theorem 3.3. For n ∈ N, we have the following representations in terms of Her-
mite polynomials

(2n)!
π

2
=

∫ +∞

0

∫ +∞

0

∫ 1

−1

te−(x+t)(1− y2)
1
2H2n

(
y
√
t(x+ 1)

)
dydxdt.

[(2n)!]2

(n!)222n+1
π

3
2 =

∫ +∞

0

∫ +∞

0

∫ 1

−1

t√
x

e−(x+t)(1− y2)
1
2H2n

(
y
√
t(x+ 1)

)
dydxdt.

(2n)!

(n+ 1)!

π

2
=

∫ +∞

0

∫ 1

0

∫ 1

−1

te−t(1− y2)
1
2H2n

(
y
√
t(x+ 1)

)
dydxdt.

(−1)n
(2n)!

(n+ 1)!

π

2
=

∫ +∞

0

∫ 1

0

∫ 1

−1

te−t(1− y2)
1
2H2n

(
y
√
tx
)
dydxdt.

(−1)n(2n)!

n!

(
ln 2+

n∑
k=1

(−1)k

k

)π
2
=

∫ +∞

0

∫ 1

0

∫ 1

−1

te−t

1 + x
(1−y2)

1
2H2n

(
y
√
t(x+ 1)

)
dydxdt.

(−1)n(2n)!
(
e−

n∑
k=0

1

k!

)π
2
=

∫ +∞

0

∫ 1

0

∫ 1

−1

tex−t(1− y2)
1
2H2n

(
y
√
tx
)
dydxdt.

Corollary 3.4. For n = 0, we have the special cases

π

2
=

∫ +∞

0

∫ +∞

0

∫ 1

−1

te−(x+t)(1− y2)
1
2 dydxdt.

√
π

π

2
=

∫ +∞

0

∫ +∞

0

∫ 1

−1

t√
x

e−(x+t)(1− y2)
1
2 dydxdt.

π

2
=

∫ +∞

0

∫ 1

0

∫ 1

−1

te−t(1− y2)
1
2 dydxdt.
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ln 2
π

2
=

∫ +∞

0

∫ 1

0

∫ 1

−1

te−t

1 + x
(1− y2)

1
2 dydxdt.

(e− 1)
π

2
=

∫ +∞

0

∫ 1

0

∫ 1

−1

tex−t(1− y2)
1
2 dydxdt.
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