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D-HYPERCYCLIC AND D-CHAOTIC PROPERTIES OF

ABSTRACT DIFFERENTIAL EQUATIONS OF FIRST ORDER

CHUNG-CHUAN CHEN, MARKO KOSTIĆ, STEVAN PILIPOVIĆ AND DANIEL VELINOV

Abstract. The main aim of this paper is to contribute to the existing the-
ory of disjoint hypercyclic and disjoint topologically transitive abstract non-
degenerate differential equations of first order as well as to initiate the study
of disjoint chaoticity for strongly continuous semigroups and C-distribution

semigroups in Banach and Fréchet function spaces. We also investigate dis-
joint topologically mixing property for C-distribution semigroups, and prove
a disjoint analogue of the Desch-Schappacher-Webb criterion in this context.

Some new results on disjoint transitivity and disjoint chaoticity of strongly con-
tinuous families of composition operators and strongly continuous semigroups
induced by semiflows are shown, as well.

1. Introduction and Preliminaries

Let E be a Fréchet space. A linear operator T on E is said to be hypercyclic
iff there exists an element x ∈ D∞(T ), whose orbit {Tnx : n ∈ N0} is dense in
E. A periodic point for T is an element x ∈ D∞(T ) for which there exists n ∈ N
with Tnx = x. We say that T is chaotic iff T is hypercyclic and the set of periodic
points of T is dense in E.

The first examples of hypercyclic operators were given on the space of entire
functions H(C) equipped with topology of uniform convergence on compact sub-
sets of C. In 1929, G. D. Birkhoff proved that the translation operator is hypercyclic
in H(C) and, in 1952, G. R. MacLane proved that the derivative operator is hy-
percyclic in H(C). The first example of a hypercyclic operator on a Banach space
was given by S. Rolewicz [38] in 1969 (see the monographs [4] by F. Bayart, E.
Matheron and [23] by K.-G. Grosse-Erdmann, A. Peris for a comprehensive survey
of results on topological dynamical properties of linear operators). The first sys-
tematic study of hypercyclic and chaotic strongly continuous semigroups in Banach
spaces was conducted by W. Desch, W. Schappacher and G. F. Webb [20] in 1997.
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Also, hypercyclic behaviour of operators in a hypercyclic C0-semigroup was studied
deeply in [16].

On the other hand, L. Bernal-González [6] and J. Bés, A. Peris [7] have intro-
duced various notions of disjoint hypercyclicity for continuous linear operators in
Fréchet spaces (cf. [8]-[13], [27], [33]-[34], [37], [39] and [42] for more details on the
subject). The notion of disjoint hypercyclicity for strongly continuous semigroups
in Banach spaces and the notion of disjoint hypercyclicity for C-distribution cosine
functions (global fractionally integrated C-cosine functions) in Banach spaces have
been introduced by the second named author in [32] and [29], respectively. One of
the main aims of this paper is to fill the gap in the existing theory of disjoint hyper-
cyclic abstract PDEs by enquiring into the basic disjoint hypercyclic and disjoint
chaotic properties of C-distribution semigroups and global fractionally integrated
C-semigroups in Fréchet spaces (for further information about C-distribution semi-
groups and fractionally integrated C-semigroups in locally convex spaces, as well
as about hypercyclic and chaotic properties of various classes of abstract (degener-
ate) Volterra integro-differential equations in locally convex spaces, the reader may
consult the monographs [26]-[28] and references cited therein; in this paper, we will
focus our attention entirely on the abstract non-degenerate differential equations of
first order). We provide the first examples of abstract Cauchy problems of first or-
der whose solutions are not governed by strongly continuous semigroups and which
possess a certain disjoint hypercyclic behaviour.

The organization and main ideas of paper are briefly described as follows. In
the preliminary part, we remind ourselves of the basic properties of generalized
function spaces used, C-distribution semigroups and global fractionally integrated
C-semigroups in Fréchet spaces, and recall the assertion of d-Blow-up/Collapse
Criterion for single-valued linear operators (cf. [12, Proposition 3.7] for a slight
generalization); in Proposition 1.2, we transfer the assertion of [30, Lemma 6(i)] to
C-distribution semigroups in Fréchet spaces. The main purpose of Definition 2.1 is
to introduce various topological dynamical properties of C-distribution semigroups.
After that, we explain how these notions can be extended to arbitrary families of lin-
ear operators (Remark 2.2) and reformulate them for global fractionally integrated
C-semigroups (Definition 2.3). In [19], R. deLaubenfels, H. Emamirad and K.-G.
Grosse-Erdmann have initiated the study of hypercyclic and chaotic properties of
distribution semigroups and C-regularized semigroups. The main objective in The-
orem 2.4 and Theorem 2.5 is to prove d-Hypercyclicity Criterion for linear, not
necessarily continuous, operators (this is, actually, a disjoint analogue of [19, The-
orem 2.3]; see also [7, Definition 2.5, Proposition 2.6, Theorem 2.7] for continuous
case) and d-Hypercyclicity Criterion for C-distribution semigroups, respectively;
d-Blow-up/Collapse Criterion for C-distribution semigroups is stated in Proposi-
tion 2.6. In Theorem 2.7, we reconsider the Desch-Schappacher-Webb criterion for
C-distribution semigroups and prove its disjoint version following the analysis of
L. Bernal-González [6, Theorem 4.3]; to the best knowledge of the authors, this
statement is new even for strongly continuous semigroups of operators in Banach
spaces. After giving a few noteworthy observations in Remark 2.9-Remark 2.11,
we present some illustrative applications of our abstract results in Example 2.12
and Example 2.13. To motivate our investigations in Section 3, let us recall that T.
Kalmes [25] has scrutinized the hypercyclicity and chaoticity of strongly continuous
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semigroups induced by semiflows. In his analysis, the pivot function space is cho-
sen to be C0,ρ(X,K), resp. Lp(X,µ,K), where K ∈ {R,C}, X is a locally compact,
Hausdorff space and ρ : X → (0,∞) is an upper semicontinuous function, resp. X
is a locally compact, σ-compact Hausdorff space, p ∈ [1,∞) and µ is a locally finite
Borel measure on X (for the sake of simplicity and better exposition, we shall work
henceforth only with Fréchet spaces over the field of complex numbers). Disjoint
hypercyclicity of strongly continuous semigroups induced by semiflows has been
investigated in [32] (cf. also [27, Subsection 3.1.1]). In Section 3, our intention is to
continue the research studies raised in [25] and [32] by exploring disjoint transitivity
and disjoint chaoticity of strongly continuous families constituted of composition
operators (cf. Theorem 3.1, Theorem 3.2 for weighted Lp-spaces, and Theorem
3.7, Theorem 3.8 for weighted C0-spaces) and strongly continuous semigroups in-
duced by semiflows (cf. Corollary 3.3, Corollary 3.4, Theorem 3.5, Theorem 3.6 for
weighted Lp-spaces, and Corollary 3.9, Corollary 3.10, Theorem 3.11, Theorem 3.12
for weighted C0-spaces). We investigate disjoint chaoticity of strongly continuous
semigroups on Fréchet space C(Ω) in Theorem 3.13, and present several examples
of disjoint chaotic strongly continuous semigroups in Example 3.14.

We use the standard terminology throughout the paper. By E we denote a non-
trivial, separable, Fréchet space over the field of complex numbers. If X is also a
non-trivial, separable, Fréchet space over the same field of scalars as E, then we
denote by L(E,X) the space consisting of all continuous linear mappings from E
into X; L(E) ≡ L(E,E). By ~E (~, if there is no risk for confusion), we denote
the fundamental system of seminorms which defines the topology of E; the dual
space of E is denoted by E∗. Let us recall that a subset of E is called total iff its
linear span is dense in E.

Let 0 < τ ≤ ∞. In our framework, any strongly continuous operator family
(W (t))t∈[0,τ) ⊆ L(E,X) is locally equicontinuous, i.e., for every T ∈ (0, τ) and for
every p ∈ ~X , there exist qp ∈ ~E and cp > 0 such that p(W (t)x) ≤ cpqp(x),
x ∈ E, t ∈ [0, T ]; the notions of equicontinuity of (W (t))t∈[0,τ) and the exponential
equicontinuity of (W (t))t≥0 are defined similarly.

By B we denote the family consisting of all bounded subsets of E. Define
pB(T ) := supx∈B p(Tx), p ∈ ~E , B ∈ B, T ∈ L(E,X). Then pB(·) is a seminorm
on L(E,X) and the system (pB)(p,B)∈~X×B induces the Hausdorff locally convex
topology on L(E,X). Suppose that A is a closed linear operator acting on E. Then
we denote the domain, kernel space, range and point spectrum of A by D(A), N(A),
R(A) and σp(A), respectively. Since no confusion seems likely, we will identify A
with its graph. Set D∞(A) :=

∩
n∈ND(An). We will always assume henceforth

that C ∈ L(E) and C is injective. Put pC(x) := p(C−1x), p ∈ ~, x ∈ R(C).
Then pC(·) is a seminorm on R(C) and the calibration (pC)p∈~ induces a Fréchet
topology on R(C); we denote this space by [R(C)]~. Set C+ := {λ ∈ C : ℜλ > 0},
C− := {λ ∈ C : ℜλ < 0}, and, by common consent, 00 := 1. By Γ(·) we de-
note the Gamma function. Set Nn := {1, 2, · · ·, n}, N0

n := Nn ∪ {0} (n ∈ N),
gζ(t) := tζ−1/Γ(ζ) (ζ > 0, t > 0) and g0(t) := the Dirac δ-distribution. Given
s ∈ R in advance, set ⌈s⌉ := inf{l ∈ Z : s ≤ l}.

Suppose that V is a general topological vector space. As it is well-known, a
function f : Ω → V, where Ω is an open non-empty subset of C, is said to be
analytic iff it is locally expressible in a neighborhood of any point z ∈ Ω by a
uniformly convergent power series with coefficients in V. The reader may consult
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[1] and [27, Section 1.1] and references cited there for the basic information about
vector-valued analytic functions. In our framework, the analyticity of a mapping
f : Ω → E is equivalent with its weak analyticity.

In what follows, we will remind ourselves of the basic facts concerning vector-
valued distribution spaces used henceforth. The Schwartz spaces of test functions
D = C∞

0 (R) and E = C∞(R) are equipped with the usual inductive limit topologies;
the topology of space of rapidly decreasing functions S defines the following system
of seminorms pm,n(ψ) := supx∈R |xmψ(n)(x)|, ψ ∈ S, m, n ∈ N0. If ∅ ̸= Ω ⊆ R,
then we denote by DΩ the subspace of D consisting of those functions φ ∈ D for
which supp(φ) ⊆ Ω; D0 ≡ D[0,∞). If φ, ψ : R → C are measurable functions, the
convolution products φ ∗ ψ and φ ∗0 ψ are defined by

φ ∗ ψ(t) :=
∞∫

−∞

φ(t− s)ψ(s) ds and φ ∗0 ψ(t) :=
t∫

0

φ(t− s)ψ(s) ds, t ∈ R.

If φ ∈ D and f ∈ D′, or φ ∈ E and f ∈ E ′, then we define the convolution
f ∗ φ by (f ∗ φ)(t) := f(φ(t − ·)), t ∈ R. For f ∈ D′, or for f ∈ E ′, define f̌ by
f̌(φ) := f(φ(−·)), φ ∈ D (φ ∈ E). In general, the convolution of two distributions
f , g ∈ D′, denoted by f ∗ g, is defined by (f ∗ g)(φ) := g(f̌ ∗ φ), φ ∈ D. It is
well-known that f ∗ g ∈ D′ and supp(f ∗ g) ⊆supp(f)+supp(g). For every t ∈ R,
we define the Dirac distribution centered at point t, δt for short, by δt(φ) := φ(t),
φ ∈ D.

The space D′(E) := L(D, E) is consisted of all continuous linear functions D →
E; D′

Ω(E) denotes the subspace of D′(E) containing E-valued distributions whose
supports are contained in Ω. Set D′

0(E) := D′
[0,∞)(E). If E = C, then the above

spaces are also denoted by D′, D′
Ω and D′

0. For more details about vector-valued
distributions, we refer the reader to L. Schwartz [40]-[41].

Let α ∈ (0,∞) \ N, f ∈ S and n = ⌈α⌉. Let us recall that the Weyl fractional
derivative Wα

+ of order α is defined by

Wα
+f(t) :=

(−1)n

Γ(n− α)

dn

dtn

∞∫
t

(s− t)n−α−1f(s) ds, t ∈ R.

If α = n ∈ N0, then we set Wn
+ := (−1)n dn

dtn . It is well known that the following

equality holds: Wα+β
+ f =Wα

+W
β
+f , α, β > 0, f ∈ S.

Now we recall the definition of a C-distribution semigroup in Fréchet space (see
[31]):

Definition 1.1. Let G ∈ D′
0(L(E)) satisfy CG = GC. Then it is said that G is a

C-distribution semigroup, shortly (C-DS), if G satisfies the following conditions:

(i) G(φ ∗0 ψ)C = G(φ)G(ψ), for any φ, ψ ∈ D.

(ii) N (G) :=
∩

φ∈D0

N(G(φ)) = {0}.

A (C-DS) G is called dense if, in addition to the above,
(iii) R(G) :=

∪
φ∈D0

R(G(φ)) is dense in E.



EJMAA-2018/6(2) D-HYPERCYCLIC AND D-CHAOTIC PROPERTIES 5

Let G ∈ D′
0(L(E)) be a (C-DS) and let T ∈ E ′

0, i.e., T is a scalar-valued distri-
bution with compact support contained in [0,∞). Define

G(T ) :=
{
(x, y) ∈ E × E : G(T ∗ φ)x = G(φ)y for all φ ∈ D0

}
.

Then it can be easily seen that G(T ) is a closed linear operator. In general case,
for every ψ ∈ D, we have that ψ+ := ψ1[0,∞) ∈ E ′

0, where 1[0,∞) stands for the
characteristic function of [0,∞), so that the definition of G(ψ+) is clear. We define
the (infinitesimal) generator A of a pre-(C-DS) G by A := G(−δ′). We know that
C−1AC = A as well as that the following holds: Let S, T ∈ E ′

0, φ ∈ D0, ψ ∈ D and
x ∈ E. Then we have:

A1. G(S)G(T ) ⊆ G(S ∗ T ) with D(G(S)G(T )) = D(G(S ∗ T )) ∩D(G(T )), and
G(S) +G(T ) ⊆ G(S + T ).

A2. (G(ψ)x, G(−ψ′)x− ψ(0)Cx) ∈ A.

We denote by D(G) the set consisting of all elements x ∈ E for which x ∈
D(G(δt)) for all t ≥ 0 and the mapping t 7→ G(δt)x, t ≥ 0 is continuous. By A1.,
we have that

D
(
G(δs)G(δt)

)
=D

(
G(δs∗δt)

)
∩D
(
G(δt)

)
=D

(
G(δt+s)

)
∩D
(
G(δt)

)
, t, s≥0, (1.1)

which clearly implies G(δt)(D(G)) ⊆ D(G), t ≥ 0.
The notions of hypercyclicity, chaoticity, topological transitivity and topologi-

cally mixing property of G are introduced in the same way as in [26, Definition
3.1.29], where it has been assumed that the pivot space E is one of Banach’s:

(i) G is said to be hypercyclic iff there exists x ∈ D(G) such that the set
{G(δt)x : t ≥ 0} is dense in E (we call x a hypercyclic vector of G);

(ii) G is said to be chaotic iff G is hypercyclic and the set of periodic points of
G, Gper for short, defined by {x ∈ D(G) : G(δt0)x = x for some t0 > 0}, is
dense in E;

(iii) G is said to be topologically transitive iff for every two open non-empty
subsets U, V of E, there exist u ∈ D(G) and t ≥ 0 such that u ∈ U and
G(δt)u ∈ V ;

(iv) G is said to be topologically mixing iff for every two open non-empty subsets
U, V of E, there exists t0 ≥ 0 such that, for every t ≥ t0, there exists
ut ∈ D(G) such that ut ∈ U and G(δt)ut ∈ V , t ≥ t0.

In [26, Definition 3.1.29], we have introduced many other (subspace) topological
dynamical properties of C-distribution semigroups, which will not be considered in
the context of this paper.

Let us recall that the solution space for a closed linear operator A, denoted by
Z(A), is defined as the set of all x ∈ E for which there exists a continuous map-

ping u(·, x) ∈ C([0,∞) : E) satisfying
∫ t

0
u(s, x) ds ∈ D(A) and A

∫ t

0
u(s, x) ds =

u(t, x) − x, t ≥ 0. It should be worth noting that Z(A) = D(G), provided that A
generates a (C-DS) G :

Proposition 1.2. Suppose that A generates a (C-DS) G. Then Z(A) = D(G).

Proof. Let x ∈ D(G), and let u(t, x) := G(δt)x, t ≥ 0. Then t 7→ u(t, x), t ≥ 0 is

continuous and, to see that D(G) ⊆ Z(A), it suffices to show that A
∫ t

0
u(s, x) ds =
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u(t, x)− x, t ≥ 0, i.e.,∫ t

0

G
(
−φ′)G(δs)x ds = G(φ)

[
G(δt)x− x

]
, t ≥ 0, φ ∈ D0.

By A1., we have G(φ)G(δt)x = G(δt)G(φ)x = G(φ(· − t))x, t ≥ 0, φ ∈ D0. Hence,
we need to prove that∫ t

0

G
(
−φ′(· − s)

)
x ds = G(φ(· − t))x− G(φ)x, t ≥ 0, φ ∈ D0.

This simply follows from the continuity of G and the Newton-Leibniz formula,
since (G(φ(· − t))x)′ = −G(φ′(· − t))x in variable t ≥ 0, for φ ∈ D0. Suppose

now that x ∈ Z(A), u(·, x) ∈ C([0,∞) : E) satisfies
∫ t

0
u(s, x) ds ∈ D(A) and

A
∫ t

0
u(s, x) ds = u(t, x) − x, t ≥ 0. It remains to be proved that x ∈ D(G) and

u(t, x) = G(δt)x, t ≥ 0. In other words, we know that

G
(
−φ′) ∫ t

0

u(s, x) ds = G(φ)[u(t, x)− x], t ≥ 0, φ ∈ D0 (1.2)

and we need to prove that

G
(
φ(· − t)

)
x = G(φ)u(t, x), t ≥ 0, φ ∈ D0. (1.3)

Let T > 0 and φ ∈ D[T,∞). Put F (t) := G(φ(· + t))
∫ t

0
u(s, x) ds, 0 ≤ t ≤ T. Then

(1.2) in combination with the product rule and the continuity of G implies

F ′(t) = G(φ(·+ t))x, 0 ≤ t ≤ T.

Hence, F (t) = F (t)−F (0) =
∫ t

0
F ′(s) ds, 0 ≤ t ≤ T, whence we may conclude that

G(φ(·+ t))

∫ t

0

u(s, x) ds =

∫ t

0

G(φ(·+ s))x ds, 0 ≤ t ≤ T.

Applying the operator A on both sides of above equality, and using its closedness,
the commutation with the operators G(φ(· + t)) for 0 ≤ t ≤ T, and the property
A2., we get that

G(φ(·+ t))[u(t, x)− x] = −
∫ t

0

G(φ′(·+ s))x ds.

By the continuity of G and the Newton-Leibniz formula, we obtain from the above
equality that:

G(φ(·+ t))[u(t, x)− x] = −G(φ(·+ t))x+ G(φ)x. (1.4)

Suppose now that ψ ∈ D0. Then φ = ψ(· − T ) ∈ D[T,∞) and applying (1.4) with
t = T, we immediately get that (1.3) holds with φ and t replaced respectively by
ψ and T therein. Clearly, (1.3) holds for t = 0 and this completes the proof of
proposition. �

Remark 1.3. Since a Fréchet space valued distribution need not be of finite order
(see [31] for the notion), we cannot give an alternative proof of Proposition 1.2 by
using the theory of integrated C-semigroups, like it has been done in the Banach
space case [30, Lemma 6(i)]. Observe also that the argumentation contained in the
proof of inclusion Z(A) ⊆ D(G) shows that for each x ∈ Z(A) the function u(·, x)
obeying the properties prescribed above must be unique.
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Now we will recall the definition and basic properties of fractionally integrated
C-semigroups in Fréchet spaces (cf. [26]-[27] for further information):

Definition 1.4. Suppose A is a closed operator, α ≥ 0 and 0 < τ ≤ ∞. If there
exists a strongly continuous operator family (Sα(t))t∈[0,τ) (Sα(t) ∈ L(E), t ∈ [0, τ))
such that:

(i) Sα(t)A ⊆ ASα(t), t ∈ [0, τ),
(ii) Sα(t)C = CSα(t), t ∈ [0, τ) and

(iii) for all x ∈ E and t ∈ [0, τ):
∫ t

0
Sα(s)x ds ∈ D(A) and

A

t∫
0

Sα(s)x ds = Sα(t)x− gα+1(t)Cx,

then it is said that A is a subgenerator of a (local) α-times integrated C-semigroup
(Sα(t))t∈[0,τ). If τ = ∞, then it is said that (Sα(t))t≥0 is an exponentially equicon-
tinuous, α-times integrated C-semigroup with a subgenerator A iff, in addition to
the above, there is a constant ω ∈ R such that the operator family {e−ωtSα(t) : t ≥
0} ⊆ L(E) is equicontinuous.

The integral generator Â of (Sα(t))t∈[0,τ) is defined by

Â :=

{
(x, y) ∈ E × E : Sα(t)x− gα+1(t)Cx =

t∫
0

Sα(s)y ds, t ∈ [0, τ)

}
.

We know that the integral generator of (Sα(t))t∈[0,τ) is a closed linear operator

which extends any subgenerator of (Sα(t))t∈[0,τ) and satisfies C−1ÂC = Â. In global

case τ = ∞, which will be only considered in the sequel, the integral generator Â
of (Sα(t))t≥0 is always its subgenerator.

Suppose that α ≥ 0, n = ⌈α⌉ and Â is the integral generator of a global α-times
integrated C-semigroup (Sα(t))t≥0 on E. Then we have that:∫ ∞

0

Wα
+φ(t)Sα(t)x dt = (−1)n

∞∫
0

φ(n)(t)Sn(t)x dt, x ∈ E, φ ∈ D, (1.5)

where (Sn(t) ≡ (gn−α ∗0 Sα)(t))t≥0 is the global n-times integrated C-semigroup

generated by Â. Furthermore, the following holds ([31]):

Lemma 1.5. Assume that α ≥ 0 and Â is the integral generator of a global α-times
integrated C-semigroup (Sα(t))t≥0 on E. Set

GSα(φ)x :=

∫ ∞

0

Wα
+φ(t)Sα(t)x dt, x ∈ E, φ ∈ D. (1.6)

Then GSα is a (C-DS) whose integral generator is Â.

Let us recall ([17], [27]) that an entire C-regularized group is an entire family of
continuous linear operators (T (z))z∈C ⊆ L(E) such that T (0) = C and T (z+ω)C =
T (z)T (ω), z, ω ∈ C. The integral generator of (T (z))z∈C is said to be the integral
generator of C-regularized semigroup (T (t))t≥0.

We refer the reader to [26]-[27] for the notion and basic properties of inte-
grated C-cosine functions and exponentially equicontinuous, analytic integrated
C-semigroups.
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Let k ∈ N, let A be a linear operator on E, and let G be a C-distribution
semigroup on E. Then we define the linear operator A⊕ · · · ⊕A︸ ︷︷ ︸

k

and C-distribution

semigroup G ⊕ · · · ⊕ G︸ ︷︷ ︸
k

on X ⊕ · · · ⊕X︸ ︷︷ ︸
k

by D(A⊕ · · · ⊕A︸ ︷︷ ︸
k

) := D(A)⊕ · · · ⊕D(A)︸ ︷︷ ︸
k

,

A⊕ · · · ⊕A︸ ︷︷ ︸
k

(
x1, x2, · · ·, xk) :=

(
Ax1, Ax2, · · ·, Axk

)
,

for any x1, · · ·, xk ∈ D(A), and

G ⊕ · · · ⊕ G︸ ︷︷ ︸
k

(φ)
(
x1, x2, · · ·, xk) :=

(
G(φ)x1,G(φ)x2, · · ·,G(φ)xk

)
,

for any φ ∈ D and x1, · · ·, xk ∈ E.
In a joint research study with J. Alberto Conejero and M. Murillo-Arcila [12],

the first and third named author have recently extended various notions of hyper-
cyclicity and disjoint hypercyclicity to (sequences of) multivalued linear operators
(cf. [12, Definition 3.4] for the notion we will use henceforth). For our further
work, it will be necessary to recall the following special case of d-Blow-up/Collapse
Criterion for multivalued linear operators [12, Proposition 3.7]:

Lemma 1.6. Let N ∈ N, N ≥ 2, and let Aj be a linear operator in E (1 ≤ j ≤ N).
Suppose that (an)n∈N is a strictly increasing sequence of positive integers, as well
as that the following holds:

• The set E0, consisting of those elements y ∈ D∞(A1) ∩ · · · ∩ D∞(AN )
satisfying that for each j ∈ NN we have limn→∞Aan

j y = 0, is dense in E.
• For each j ∈ NN there exists a dense subset E∞,j of E, consisting of
those elements z ∈ E for which there exist elements ωn,i(z) ∈ D∞(Aj)
(n ∈ N, 1 ≤ i ≤ N) such that (ωn,j(z))n∈N is a null sequence in E, and
limn→∞Aan

j ωn,i(z) = δi,jz (1 ≤ i ≤ N).

Then the operators

A1 ⊕ · · · ⊕A1︸ ︷︷ ︸
k

, · · ·, AN ⊕ · · · ⊕AN︸ ︷︷ ︸
k

are d-topologically transitive (k ∈ N).

2. Disjoint Hypercyclic and Disjoint Topologically Mixing
C-Distribution Semigroups in Fréchet Spaces

We start this section by introducing the following definition:

Definition 2.1. Let N ∈ N, N ≥ 2 and Gi be a hypercyclic Ci-distribution semi-
group in E, i = 1, 2, · · ·, N . We say that (Gi)1≤i≤N are:

(i) disjoint hypercyclic, d-hypercyclic in short, iff there exists x ∈
∩

1≤i≤N D(Gi)
such that

{(G1(δt)x,G2(δt)x, · · ·, GN (δt)x) : t ≥ 0} = EN . (2.1)

An element x ∈
∩

1≤i≤N D(Gi) satisfying (2.1) is called a d-hypercyclic

vector associated to (Gi)1≤i≤N . If the set of all d-hypercyclic vectors is
dense in E, then we say that (Gi)1≤i≤N are densely d-hypercyclic.
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(ii) disjoint topologically transitive, d-topologically transitive in short, iff for
any open non-empty subsets V0, V1, V2, · · ·, VN of E, there exists t ≥ 0 such
that V0 ∩G1(δt)

−1(V1) ∩G2(δt)
−1(V2) ∩ · · · ∩GN (δt)

−1(VN ) ̸= ∅.
(iii) disjoint topologically mixing, d-topologically mixing in short, iff for any

open non-empty subsets V0, V1, V2, · · ·, VN of E, there exists t0 ≥ 0 such
that for every t ≥ t0 we have that V0 ∩G1(δt)

−1(V1)∩G2(δt)
−1(V2)∩ · · · ∩

GN (δt)
−1(VN ) ̸= ∅.

(iv) disjoint chaotic, d-chaotic in short, iff (Gi)1≤i≤N are d-transitive and the set
of periodic elements of (Gi)1≤i≤N , defined by P(G1,G2, ···,GN ) := {(f1, f2, ··
·, fN ) ∈ D(G1)×D(G2)× · · · ×D(GN ) : ∃ t > 0 with (G1(δt)f1, G2(δt)f2, · ·
·, GN (δt)fN ) = (f1, f2, · · ·, fN )}, is dense in EN .

Remark 2.2. The notions introduced in Definition 2.1 can be considered in a more
general framework. Speaking-matter-of-factly, let N ∈ N, N ≥ 2 and (Wi(t))t≥0 be
a family of linear operators in E, i = 1, 2, · · ·, N . Then we define the notion of a d-
hypercyclic vector for (Wi(·))1≤i≤N similarly as above: x ∈

∩
1≤i≤N, t≥0D(Wi(t)) is

said to be a d-hypercyclic vector for (Wi(·))1≤i≤N iff (2.1) holds withGi(δt) replaced
by Wi(t) therein (1 ≤ i ≤ N, t ≥ 0). Further on, we say that (f1, f2, · · ·, fN ) ∈∩

t≥0D(W1(t)) ×
∩

t≥0D(W2(t)) × · · · ×
∩

t≥0D(WN (t)) is a periodic element of

(Wi(·))1≤i≤N iff there exists t > 0 such that Wj(t)fj = fj , j ∈ N0
N . After that,

we can define the notions of (densely) d-hypercyclicity, d-topological transitivity,
d-topologically mixing property and d-chaoticity of (Wi(·))1≤i≤N in the same way
as above, with Gi(δt) replaced by Wi(t) therein (1 ≤ i ≤ N, t ≥ 0).

Besides, we would like to point out the possibility to define the notion of disjoint
chaos by considering the periodic points of the form (f, f, · · ·, f) instead of (f1, f2, · ·
·, fN ), and to start the new paper about these peculiar phenomena of disjoint
chaoticity for semigroups and fractional resolvent families.

The change of order in tuple (Gi)1≤i≤N does not have any influence on
d-hypercyclicity of semigroups (Gi)1≤i≤N . It can be almost trivially shown that
the d-hypercyclicity of (Gi)1≤i≤N implies hypercyclicity of each component Gi for
1 ≤ i ≤ N, and the relation Gi ̸= Gj for all i, j ∈ NN with i ̸= j.

Using Lemma 1.5, we can simply reformulate the above notions for fractionally
integrated Ci-semigroups (cf. also [26, Theorem 3.1.32(i)]):

Definition 2.3. Let N ∈ N, N ≥ 2, and let Ai be the integral generator of a global
αi-times integrated Ci-semigroup (Sαi(t))t≥0 on E, i = 1, 2, · · ·, N . We say that
(Sαi(·))1≤i≤N are d-hypercyclic (d-topologically transitive, d-topologically mixing)
iff (GSαi

)1≤i≤N are (cf. (1.6) with α = αi, C = Ci and Sα(·) = Sαi(·)). Set

P(Sα1 , Sα2 , · · ·, SαN ) := P(GSα1
,GSα2

, · · ·,GSαN
).

Before proceeding further, we would like to observe that we allow some reg-
ularizing operators Ci to be mutually different as well as that (1.5) yields that
(Sαi(·))1≤i≤N are d-hypercyclic (d-topologically transitive, d-topologically mixing)
iff (Sβi

(·))1≤i≤N are d-hypercyclic (d-topologically transitive, d-topologically mix-
ing), where βi ≥ αi for all i ∈ NN and Sβi(t)x = (gβi−αi ∗0 Sαi(·)x)(t), t ≥ 0,
x ∈ E.

Our first result reads as follows.

Theorem 2.4. Suppose that N ∈ N, N ≥ 2, T1, · · ·, TN are linear operators on E
(1 ≤ j ≤ N) and C ∈ L(E) is injective. Suppose that there exists a subset E0 of
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D∞(T1)∩ · · · ∩D∞(TN ), dense in E, as well as dense subsets E1, · · ·, EN of E and
mappings Sj,n : Ej → D∞(T1) ∩ · · · ∩D∞(TN ) (1 ≤ j ≤ N, n ∈ N) such that:

(i) limn→∞ Tn
j x0 = 0, x0 ∈ E0, 1 ≤ j ≤ N,

(ii) limn→∞ Sj,nxj = 0, xj ∈ Ej , 1 ≤ j ≤ N,
(iii) limn→∞[Tn

i Sj,nxj − δj,ixj ] = 0, xj ∈ Ej , 1 ≤ i, j ≤ N,
(iv) R(C) ⊆ D∞(T1) ∩ · · · ∩D∞(TN ) and Tn

j C ∈ L(E), 1 ≤ j ≤ N, n ∈ N,
(v) CTjx = TjCx, x ∈ D∞(Tj), 1 ≤ j ≤ N,
(vi) R(C) is dense in E.

Then the operators T1, · · ·, TN are densely d-hypercyclic.

Proof. It is clear that [R(C)]~ is a separable Fréchet space. Define the operators
Tj,n ∈ L([R(C)]~, E) by Tj,n(Cx) := Tn

j Cx, x ∈ E (cf. (iv)). By (vi), it suffices to
show that the sequences (T1,j)j∈N, · · ·, (TN,j)j∈N are densely d-hypercyclic. Since

the final conclusions of [7, Remark 2.8] also hold for sequences of continuous linear
operators acting between different Fréchet spaces, we need to prove the existence
of a dense subset E′

0 of [R(C)]~, dense subsets E′
1, · · ·, E′

N of E and mappings
S′
j,n : E′

j → [R(C)] (1 ≤ j ≤ N, n ∈ N) such that the following holds:

(a) limn→∞ Tj,nx
′
0 = 0, x′0 ∈ E′

0,
(b) limn→∞ S′

j,nx
′
j = 0, x′j ∈ E′

j , 1 ≤ j ≤ N, and
(c) limn→∞[Ti,nS

′
j,nx

′
j − δj,ix

′
j ] = 0, x′j ∈ E′

j , 1 ≤ i, j ≤ N.

Set E′
j := C(Ej), 0 ≤ j ≤ N and S′

j,n : E′
j → R(C) by S′

j,n(Cxj) := CSj,nx,
xj ∈ Ej (1 ≤ j ≤ N, n ∈ N). By (vi) and the density of Ej in E, we get that E′

0 is
dense in [R(C)]~ and that E′

j is dense in E (1 ≤ j ≤ N). The property (b) follows
immediately from (ii) and definition of S′

j,n. The property (a) follows by making
use the fact that E0 belongs to D∞(T1)∩· · ·∩D∞(TN ), as well as from (v), (i) and
definition of Tj,n. By (iii), (v) and inclusion R(Sj,n) ⊆ D∞(T1)∩ · · · ∩D∞(TN ), we
have

lim
n→∞

[
Tn
i S

′
j,nx

′
j − δj,ix

′
j

]
= lim

n→∞

[
Tn
i CSj,nxj − Cδj,ixj

]
= lim

n→∞
C
[
Tn
i Sj,nxj − δj,ixj

]
= C lim

n→∞

[
Tn
i Sj,nxj − δj,ixj

]
= 0,

provided that x′j = Cxj ∈ E′
j , 1 ≤ i, j ≤ N. The proof of the theorem is thereby

complete. �

Keeping in mind Theorem 2.4, it is very simple to prove the following
d-Hypercyclicity Criterion for Ci-distribution semigroups in Fréchet spaces.

Theorem 2.5. Suppose that N ∈ N, N ≥ 2, Gi is a Ci-distribution semigroup in
E (i = 1, 2, · · ·, N), and C ∈ L(E) is injective. Suppose that there exists a subset
E0 of D(G1) ∩ · · · ∩D(GN ), dense in E, as well as dense subsets E1, · · ·, EN of E
and mappings Sj,n : Ej → D(G1) ∩ · · · ∩D(GN ) (1 ≤ j ≤ N, n ∈ N) such that:

(i) limn→∞Gj(δn)x0 = 0, x0 ∈ E0, 1 ≤ j ≤ N,
(ii) limn→∞ Sj,nxj = 0, xj ∈ Ej , 1 ≤ j ≤ N,
(iii) limn→∞[Gi(δn)Sj,nxj − δj,ixj ] = 0, xj ∈ Ej , 1 ≤ i, j ≤ N,
(iv) R(C) ⊆ D(G1) ∩ · · · ∩D(GN ) and Gj(δn)C ∈ L(E), 1 ≤ j ≤ N, n ∈ N,
(v) CGj(δ1)x = Gj(δ1)Cx, x ∈ D(Gj), 1 ≤ j ≤ N,
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(vi) R(C) is dense in E.

Then (Gi)1≤i≤N are densely d-hypercyclic.

Proof. Put Tj := Gj(δ1), 1 ≤ j ≤ N. Then the prescribed assumptions in combi-
nation with the property A1. and (1.1) imply by Theorem 2.4 that the operators
T1, · · ·, TN are densely d-hypercyclic. This immediately implies that (Gi)1≤i≤N are
densely d-hypercyclic, as well. �

Now we will prove the following continuous analogue of Lemma 1.6:

Proposition 2.6. Suppose that N ∈ N, N ≥ 2, and Gi is a Ci-distribution semi-
group in E (i = 1, 2, · · ·, N). Suppose that (an)n∈N is a strictly increasing sequence
of positive integers, as well as that the following holds:

• The set E0, consisting of those elements y ∈ D(G1)∩ · · ·∩D(GN ) satisfying
that for each j ∈ NN we have limn→∞Gj(δan)y = 0, is dense in E.

• For each j ∈ NN there exists a dense subset E∞,j of E, consisting of
those elements z ∈ E for which there exist elements ωn,i(z) ∈ D(Gj)
(n ∈ N, 1 ≤ i ≤ N) such that (ωn,j(z))n∈N is a null sequence in E, and
limn→∞Gj(δan)ωn,i(z) = δi,jz (1 ≤ i ≤ N).

Then
G1 ⊕ · · · ⊕ G1︸ ︷︷ ︸

k

, · · ·,GN ⊕ · · · ⊕ GN︸ ︷︷ ︸
k

are d-topologically transitive (k ∈ N).

Proof. Keeping in mind A1., (1.1) and Lemma 1.6, it readily follows that the op-
erators

G1(δ1)⊕ · · · ⊕G1(δ1)︸ ︷︷ ︸
k

, · · ·, GN (δ1)⊕ · · · ⊕GN (δ1)︸ ︷︷ ︸
k

are d-topologically transitive (k ∈ N). This proves the claimed assertion. �
The subsequent theorem is a continuous version of [6, Theorem 4.3], which has

been proved by L. Bernal-González, and a disjoint version of the Desch-Schappacher-
Webb criterion for C-distribution semigroups [26, Theorem 3.1.36(i)] (the case in
which there exists an integer p ∈ N0

N such that the set Dp appearing below is not
total in E will be considered in Example 2.13).

Theorem 2.7. Let N ∈ N, N ≥ 2, and let Aj be the integral generator of a Cj-
distribution semigroup Gj (1 ≤ j ≤ N). Suppose that for each p ∈ N0

N there exists
a total subset Dp of E such that the following holds:

(i) Any element of the set Dp is an eigenvector of any operator Aj (p ∈ N0
N ,

j ∈ NN ); if e ∈ Dp, then there exists an eigenvalue λp,j(e) of the operator
Aj for which λp,j(e)e = Aje and (ii)-(iii) hold, where:

(ii) λ0,j(e) ∈ C−, j ∈ NN , e ∈ D0 and λj,j(e) ∈ C+, j ∈ NN , e ∈ Dj ;
(iii) Suppose i, j ∈ NN and i ̸= j. Then, for every e ∈ Di, we have ℜ(λi,j(e)) <

ℜ(λi,i(e)).
Then (Gi)1≤i≤N are d-topologically mixing.

First of all, we will state and prove the following auxiliary lemma.

Lemma 2.8. Suppose A generates a C-distribution semigroup G, λ ∈ C, x ∈ E
and Ax = λx. Then G(δt)x = eλtx, t ≥ 0.
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Proof. By definition of A, we have that

G
(
−φ′)x = λG(φ)x, φ ∈ D0. (2.2)

Fix a test function φ ∈ D0 and consider the function F : [0,∞) → E defined by

F (t) := e−λtG
(
φ(· − t)

)
x, t ≥ 0.

Since G is continuous and (2.2) holds, it readily follows that F ′(t) = 0, t ≥ 0.
This implies F (t) = F (0) for all t ≥ 0, i.e., G(e−λtφ(· − t))x = G(φ)x. Hence,
G(δt ∗ φ)x = eλtG(φ)x, t ≥ 0 and, by definition of G(δt), G(δt)x = eλtx, t ≥ 0. �

Proof. Owing to Lemma 2.8, we have that the assumption λj,p(e)e = Aje for some
p ∈ N0

N , j ∈ NN and e ∈ Dp implies

Gj

(
δt
)
e = etλj,p(e)e, t ≥ 0. (2.3)

Having in mind this fact, the proof can be deduced by slightly modifying the argu-
ments given in that of [6, Theorem 4.3]; we will include all relevant details for the
sake of clarity. Let open non-empty subsets V0, V1, V2, · · ·, VN of E be given. We
will have to prove that there exists t0 ≥ 0 such that, for every t ≥ t0, there exists a
vector xt ∈ V0 ∩D(G1)∩ · · · ∩D(GN ) such that Gj(δt)xt ∈ Vj for all j ∈ NN . Since
the linear span of Di is dense in E, i = 0, 1, 2, · · ·, N, it is enough to prove that for
given (N + 1)-vectors ui ∈ span(Di), i = 0, 1, 2, · · ·, N there is a net (xt)t≥0 in E
such that xt → u0 and Gi(δt)xt → ui, when t → ∞ for all i = 1, 2, · · ·, N . Let ui,
i = 0, 1, 2, · · ·, N be fixed. Then there are finite sets Ei = {ei,1, ei,2, · · ·, ei,m(i)} ⊆ Di

and scalars ci,1, ci,2, · · ·, ci,m(i) such that ui =
∑m(i)

l=1 ci,lei,l. Making use of (2.3)
and (ii), we obtain that, for every j = 1, 2, · · ·, N ,

Gj

(
δt
)
e0,l → 0, t→ ∞, l = 1, 2, · · ·,m(0) (2.4)

and

Gj

(
δt
)
ej,l → ∞, t→ ∞, l = 1, 2, · · ·,m(j). (2.5)

From (2.3) and (iii) we obtain that, for all i, j ∈ NN with i ̸= j,∥∥Gj

(
δt
)
ei,l
∥∥/∥∥Gi

(
δt
)
ei,l
∥∥→ 0, t→ ∞ (l = 1, 2, · · ·,m(i)). (2.6)

Define

xt := u0 +

N∑
j=1

m(j)∑
l=1

cj,l

etλj,j(ej,l)
ej,l, t ≥ 0.

Using (2.3)-(2.6) and the arguments already seen in the proof of [6, Theorem 4.3],
we get that xt → u0 and Gi(δt)xt → ui, when t → ∞ for all i = 1, 2, · · ·, N, as
claimed. The proof of the theorem is thereby complete. �

Remark 2.9. Let N ∈ N, N ≥ 2, and let Aj be the integral generator of a Cj-
distribution semigroup Gj (1 ≤ j ≤ N). Concerning the existence of d-periodic
points of semigroups (Gi)1≤i≤N , we have the following simple result: Suppose that
Ω is an open connected subset of C satisfying Ω ∩ iR ̸= ∅. Let f : Ω → E \ {0}
be an analytic mapping such that Ajf(λ) = λf(λ) for all λ ∈ Ω and j ∈ NN .

Set Ẽ := span{f(λ) : λ ∈ Ω}. Then Ẽ = span{f(λ) : λ ∈ Ω ∩ exp(2πiQ)}, which
implies without any substantial difficulties that the set P(G1,G2, · · ·,GN ) is dense

in ẼN .
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Remark 2.10. Connections between the imaginary point spectrum and hypercyclic-
ity of strongly continuous semigroups in Banach spaces have been analyzed by S.
El Mourchid in [21] (see also [5] for related results). It is clear that the condition
(iii) from the formulation of Theorem 2.7 seriously hinders our strivings to prove a
disjoint analogue of [21, Theorem 2.1] (cf. also [26, Theorem 3.1.42(i)]).

Remark 2.11. The class of C-ultradistribution semigroups of ∗-class in Fréchet
spaces has been recently introduced and analyzed in [31]; here, the asterisk ∗ stands
for the Beurling case or for the Roumieu case. We define the notion of integral
generator of a C-ultradistribution semigroup G of ∗-class, the notion of a closed
linear operator G(T ) and the notions from Definition 2.1 similarly as above (T is
now a scalar-valued ultradistribution of ∗-class with compact support contained in
[0,∞)). Then A1.-A2., Proposition 1.2, Theorem 2.5, Proposition 2.6, Lemma 2.8
and Theorem 2.7 continue to hold for C-ultradistribution semigroups in Fréchet
spaces.

Now we would like to illustrate Theorem 2.5 and Theorem 2.7 with two instruc-
tive examples which will be put into general form; a great number of concrete
applications can be provided by using differential operators appearing in [2]-[3],
[14]-[15], [19]-[20], [22], [24] and [35]-[36]. In the first example, we use C-regularized
semigroups and, in the second one, we use integrated semigroups.

Example 2.12. (cf. also [26, Theorem 3.1.38(i)]) Suppose that θ ∈ (0, π/2), −A
generates an exponentially equicontinouus, analytic strongly continuous semigroup
of angle θ, N ∈ N, N ≥ 2, Pj(z) =

∑nj

i=0 ai,jz
i is a non-zero complex polynomial

with anj ,j > 0 and nj(
π
2 −θ) <

π
2 (j ∈ NN ). Set Aj := Pj(A) (j ∈ NN ) and assume

further that there exist an open connected subset Ω of C and an analytic mapping
f : Ω → E \ {0} such that σp(−A) ⊇ Ω, f(λ) ∈ N(−A − λ) \ {0}, λ∈Ω and that
the supposition (x∗◦f)(λ) = 0, λ ∈ Ω, for some x∗ ∈ E∗, implies x∗ = 0.

Let α ∈ (1, π
njπ−2njθ

) for all j ∈ NN . Then [27, Theorem 2.2.10] (see also [17,

Theorem 8.2] for the concrete representation of operators Cj below) implies that
there exists ω ∈ R such that, for every j ∈ NN , Aj generates an entire Cj-regularized

group (Tj(z))z∈C with Cj ≡ e−(Pj(A)−ω)α ; furthermore, R(Cj) is dense in E for all
j ∈ NN . It can be easily checked that the set {f(λ) : λ ∈ Ω′} is total in E for any
non-empty subset Ω′ of Ω which has a cluster point in Ω, as well as that

Pj(−Ω) ⊆ Pj

(
σp(A)

)
⊆ σp

(
Aj

)
and Ajf(λ) = Pj(−λ)f(λ), λ ∈ Ω, j ∈ NN .

(2.7)

Suppose that, for every p ∈ N0
N , there exists a non-empty subset Ωp of Ω which has

a cluster point in Ω, as well as the following holds:

Pj(−λ) ∈ C−, 1 ≤ j ≤ N, λ ∈ Ω0 ; Pj(−λ) ∈ C+, 1 ≤ j ≤ N, λ ∈ Ωj (2.8)

and (
∀i, j ∈ NN

) (
i ̸= j ⇒ ℜ

(
Pj(−λ)

)
< ℜ

(
Pi(−λ)

)
, λ ∈ Ωi

)
. (2.9)

Keeping in mind (2.7)-(2.9), we can apply Theorem 2.7, with Dp := {f(λ) : λ ∈ Ωp}
(p ∈ N0

N ), in order to see that (Ti(·))1≤i≤N are d-topologically mixing; furthermore,
we can apply Theorem 2.5, with the operator C = C1C2 · · · CN , the set Ej being
the linear span of Dj for j ∈ N0

N , and the mappings Sj,n : Ej → E defined by

Sj,n

∑k
l=1 βlf(λl) :=

∑k
l=1 βle

−nPj(−λl)f(λl) for j ∈ N0
N , k, n ∈ N and λ ∈ Ωj , in
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order to see that (Ti(·))1≤i≤N are densely d-hypercyclic, as well. The existence of
real numbers r ∈ R and ϵ > 0 such that L(ir, ϵ) ≡ {z ∈ C : |z − ir| < ϵ} ⊆ Pj(−Ω),
j ∈ N0

N implies by the considerations given in Remark 2.9 that (Ti(·))1≤i≤N are
d-chaotic.

Example 2.13. Suppose that ζ ≥ 0, −A /∈ L(E), −A generates an exponentially
equicontinous ζ-times integrated cosine function (Cζ(t))t≥0, N ∈ N, N ≥ 2 and
Pj(z) =

∑nj

i=0 ai,jz
i is a non-zero complex polynomial with anj ,j > 0 (j ∈ NN ).

Assume that there exist an open connected subset Ω of C and an analytic mapping
f : Ω → E \ {0} such that σp(−A) ⊇ Ω and f(λ) ∈ N(−A − λ) \ {0}, λ ∈ Ω

(for example, let a > 0, let ρ(x) := e−a|x|, x ∈ R, E := Lp
ρ(R), D(B) := {f ∈

X | f(·) is loc. abs. continuous, f ′ ∈ E
}
and Af := f ′, f ∈ D(B), see [20]; then A

is the generator of a C0-group on E and the above requirements hold with A = −B2,
Ω = {z2 : |ℜz| < a} and f(z2) = ez· for |ℜz| < a).

Let A =
(

0 I
−A 0

)
, and let Ω′ be a non-empty open connected subset of C such that

λ2 ∈ Ω for all λ ∈ Ω′. Define F : Ω′ → (E×E)\{(0, 0)} by F (λ) := [f(λ2) λf(λ2)]T ,
λ ∈ Ω′. Then F (·) is analytic, σp(A) ⊇ Ω′ and F (λ) ∈ N(A− λ) \ {(0, 0)}, λ∈Ω′;
cf. [29, Lemma 32].

It is well known that the operator A generates an exponentially equicontinuous
(ζ + 1)-times integrated semigroup (Sζ+1(t))t≥0 in E × E, which is given by

Sζ+1(t) :=

( ∫ t

0
Cζ(s) ds

∫ t

0
(t− s)Cζ(s) ds

Cζ(t)− gζ+1(t)C
∫ t

0
Cζ(s) ds

)
, t ≥ 0.

Since A2 =
(−A 0

0 −A

)
generates an exponentially equicontinous ζ-times integrated

cosine function (Cζ(t) ⊕ Cζ(t))t≥0 (see also [1, Example 3.16.10]), the abstract
Weierstrass formula [27, Theorem 2.2.18(ii)] yields that the operator A2 generates
an exponentially equicontinuous, analytic (ζ/2)-times integrated semigroup of angle
π/2. Set Q1(z) := z and Qj(z) := −Pj(−z2) (z ∈ C, 2 ≤ j ≤ N), as well as Aj :=
Qj(A). Arguing as in the proof of [18, Theorem 9], we get that for each number
η > ζ/2, the operator Aj generates an exponentially equicontinuous, analytic η-
times integrated semigroup (Sj

η(t))t≥0 of angle π/2, for 2 ≤ j ≤ N (observe that
our choice of operator A1 = A is motivated by the fact that, in the Banach space
case, the operator A cannot generate a strongly continuous semigroup in E×E by
[1, Corollary 3.14.9]). Set

Ê := span({F (λ) : λ ∈ Ω′}).

Suppose that, for every p ∈ N0
N , there exists a non-empty subset Ω′

p of Ω′ which
has a cluster point in Ω′ (this obviously implies by the analyticity of F (·) that

Ê = span({F (λ) : λ ∈ Ω′
p})), as well as that (2.8)-(2.9) holds with the polynomials

Pj(−·), Pi(−·) and sets Ω0, Ωj , Ωi replaced therein by the polynomials Qj(·), Qi(·)
and sets Ω′

0, Ω′
j , Ω′

i, respectively. Then the proof of Theorem 2.7 shows that the

integrated semigroups (Sζ+1(·), (Sj
η(·))2≤j≤N ) are Ê-disjoint topologically mixing

in the following sense: For any open non-empty subsets V0, V1, V2, · · ·, VN of E,
there exists t0 ≥ 0 such that for every t ≥ t0 we have that (V0 ∩ Ê)∩G1(δt)

−1(V1 ∩
Ê)∩G2(δt)

−1(V2 ∩ Ê)∩ · · · ∩GN (δt)
−1(VN ∩ Ê) ̸= ∅; here, Gj denotes the induced

distribution semigroup generated by Aj , for 1 ≤ j ≤ N (notice that a similar
statement can be established in a general situation of Theorem 2.7, provided that
the set Dp is not total in E for all p ∈ N0

N , and Ê = span(Dp) = span(Dp′) for all
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p, p′ ∈ N0
N ). The existence of real numbers r ∈ R and ϵ > 0 such that L(ir, ϵ) ⊆

Qj(Ω
′), j ∈ N0

N implies that the set of all periodic points of (Sζ+1(·), (Sj
η(·))2≤j≤N )

is dense in ÊN . Finally, it should be noted that the case in which Ê = E is very
difficult to be satisfied if we consider disjoint topologically mixing properties of
ill-posed abstract Cauchy problems of first order whose solutions are governed by
integrated semigroups.

In [26, Theorem 3.1.32(ii)], we have reconsidered the assertion of [19, Theorem
4.6] for C-distribution semigroups in Banach spaces and characterized (subspace)
hypercyclicity, topological transitivity and chaoticity of a C-distribution semigroup
G in terms of bounded operators G(φ), for φ ∈ D; the extension of [26, Theorem
3.1.32(ii)] to C-(ultra)distribution semigroups in Fréchet spaces is obvious. It is
also possible to characterize disjoint topological dynamical properties introduced
above in a similar way; we leave this question to the interested reader to pursue.

3. Disjoint Transitivity and Disjoint Chaoticity of Strongly
Continuous Semigroups of Composition Operators

Let X be a locally compact, Hausdorff, and σ-compact topological space. Let µ
be a positive, locally finite, Borel measure on X. In particular, µ is σ-finite by the
fact X is σ-compact. For 1 ≤ p <∞, let Lp(µ) be the Lebesgue space with respect
to µ, with the norm ∥f∥ = (

∫
X
|f |pdµ)1/p ([25]).

Let I be a non-empty set, and let φ : I × X → X be a mapping such that
φ(t, ·) is injective and continuous for all t ∈ I. For given N ≥ 2, we define N -
families of composition operators on Lp(µ) by Tφk

(t)f := f ◦ φk(t, ·) := f(φk(t, ·))
for k = 1, 2, · · ·, N . We assume φk satisfies the condition in [25, Theorem 2.1] so
that Tφk

(t) is well defined and continuous for all t ∈ I.

Let νk,t := µφk(t,·) be the image measure of µ under φk(t, ·). Also, for a Borel
set B ⊆ X, let

νk,−t(B) := µ(φk(t, B)) =
(
µ |φk(t,X)

)φk(−t,·)
(B),

where φk(−t, ·) is the inverse mapping from φk(t,X) to X and µ |φk(t,X)= µ(· ∩
φk(t,X)) (cf. [25, Remark 2.3]). In order to study d-transitivity of Tφ1 , Tφ2 , ···, TφN ,
we put

λm,k,t(B) :=

∫
χB

(
φm(−t, φk(t, ·))

)
dµ

for a Borel set B of X with m ̸= k. We recall that Tφ1 , Tφ2 , · · ·, TφN
are disjoint

transitive iff for any non-empty subsets U, V1, V2, · · ·, VN of X, there exists t ∈ I
such that

U ∩ Tφ1(t)
−1(V1) ∩ Tφ2(t)

−1(V2) ∩ · · · ∩ TφN
(t)−1(VN ) ̸= ∅.

Before proceeding to analyze the results, we would like to mention that a suf-
ficient condition for weighted composition operators on general Lp spaces to be
disjoint topologically mixing was obtained in [10, Theorem 1.3, Proposition 2.5]
where the mapping φ, however, is defined in a different way.

Theorem 3.1. Under the general assumptions, we have that (ii) implies (i), where:

(i) Tφ1 , Tφ2 , · · ·, TφN are disjoint transitive.
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(ii) For each compact subset K of X, there are a sequence of measurable subsets
(Ln)n∈N in K and a sequence (tn)n∈N in I such that

lim
n→∞

µ
(
K \ Ln

)
= lim

n→∞
λm,k,tn

(
Ln

)
= 0,

and

lim
n→∞

νk,tn
(
Ln

)
= lim

n→∞
νk,−tn

(
Ln

)
= 0

for k = 1, 2, · · ·, N with m ̸= k.

Proof. For 1 ≤ k ≤ N , let U and Vk be non-empty open subsets of Lp(µ). Since
the space Cc(X) of continuous functions on X with compact support is dense in
Lp(µ), we can pick f, gk ∈ Cc(X) with f ∈ U and gk ∈ Vk for k = 1, 2, · · ·, N . Let
K be the union of the compact supports of f and all gk. Let (Ln)n∈N and (tn)n∈N
satisfy condition (ii) for K.

Let

vn = fχLn + g1
(
φ1(−tn, ·)

)
χφ1(tn,Ln) + g2

(
φ2(−tn, ·)

)
χφ2(tn,Ln) + · · ·

+ gN
(
φN (−tn, ·)

)
χφN (tn,Ln).

Since φk(−tn, ·)(φk(tn, Ln)) = Ln and µ|φk(tn,X) = (νk,−tn)
φk(tn,·), we have

∥∥gk(φk

(
−tn, ·)

)
χφk(tn,Ln)

∥∥p =

∫
φk(tn,Ln)

∣∣gk(φk(−tn, ·)
)∣∣p dµ

≤ ∥gk∥p∞
∫
φk(tn,Ln)

dµ

= ∥gk∥p∞
∫
φk(tn,Ln)

d
(
µ|φk(tn,X)

)
= ∥gk∥p∞νk,−tn

(
Ln

)
for each k = 1, 2, · · ·, N . By the inequality ∥f + g∥p ≤ 2p∥f∥p + 2p∥g∥p, we arrive
at

2−Np
∥∥vn − f

∥∥p
p

≤ ∥f∥p∞µ(K \ Ln) + ∥g1∥p∞ν1,−tn(Ln)

+ ∥g2∥p∞ν2,−tn(Ln) + · · ·+ ∥gN∥p∞νN,−tn(Ln)

which implies vn → f as n→ ∞. Moreover, one has the following estimates:

∥∥Tφk
(tn)(fχLn)

∥∥p =

∫ ∣∣f(φk(tn, ·)
)∣∣pχLn

(
φk(tn, ·)

)
dµ

≤ ∥f∥p∞
∫
φk(−tn,·)(Ln)

dµ

= ∥f∥p∞
∫
Ln

dµφk(tn,·)

= ∥f∥p∞νk,tn(Ln),



EJMAA-2018/6(2) D-HYPERCYCLIC AND D-CHAOTIC PROPERTIES 17

and ∥∥∥Tφk
(tn)

(
gm(φm(−tn, ·))χφm(tn,Ln)

)∥∥∥p
=

∫ ∣∣gm(φk(tn, φm(−tn, ·))
)∣∣pχφm(tn,Ln)(φk(tn, ·)) dµ

≤ ∥gm∥p∞
∫
χφm(tn,Ln)(φk(tn, ·)) dµ

= ∥gm∥p∞
∫
χLn

(
φm(−tn, φk(tn, ·))

)
dµ

= ∥gm∥p∞λm,k,tn

(
Ln

)
for m ̸= k. Hence, together with this equality

Tφk
(tn)

(
gk(φk(−tn, ·))χφk(tn,Ln)

)
= gkχLn ,

we obtain Tφk
(tn)vn → gk as n→ ∞, which follows from

2−Np
∥∥Tφk

(tn)vn − gk
∥∥p
p

≤ ∥f∥p∞νk,tn(Ln) + ∥g1∥p∞λ1,k,tn(Ln) + · · ·+ ∥gk−1∥p∞λk−1,k,tn(Ln)

+ ∥gk∥p∞µ(K \ Ln) + ∥gk+1∥p∞λk+1,k,tn(Ln) + · · ·+ ∥gN∥p∞λN,k,tn(Ln).

Therefore Tφ1 , Tφ2 , · · ·, TφN are disjoint transitive. �

Theorem 3.2. Under the general assumptions, we have that (i) implies (ii), where:

(i) Tφ1 , Tφ2 , · · ·, TφN
are disjoint transitive.

(ii) For each compact subset K of X, there are a sequence of measurable subsets
(Ln)n∈N in K and a sequence (tn)n∈N in I such that

lim
n→∞

µ
(
K \ Ln

)
= 0,

and

lim
n→∞

νk,tn
(
Ln

)
= lim

n→∞
νk,−tn

(
Ln

)
= 0

for k = 1, 2, · · ·, N .

Proof. The proof is similar to that of implication (i) ⇒ (ii) in [25, Theorem 2.4]
and therefore omitted. �

Let Ω be an open non-empty subset of Rd. A continuous function φ : [0,∞)×Ω →
Ω is called a semiflow iff φ(0, ·) = idΩ and φ(t, ·)◦φ(s, ·) = φ(t+s, ·) for all t, s ≥ 0,
and iff φ(t, ·) is injective for all t ≥ 0. In particular, φ is the solution semiflow of
some initial value problem (see [25]). Moreover, if µ is an (Lp)-admissible Borel
measure on Ω, then (Tφ(t))t≥0 is a well defined C0-semigroup (see [25, Definition
3.3, Theorem 3.16]).

Corollary 3.3. Given some N ≥ 2, let φk be a semiflow for 1 ≤ k ≤ N , and let
µ be an (Lp)-admissible Borel measure on Ω. Then we have that (ii) implies (i),
where:

(i) The C0-semigroups (Tφi(·))1≤i≤N are disjoint transitive.
(ii) For each compact subset K of Ω, there are a sequence of measurable subsets

(Ln)n∈N in K and a sequence of positive numbers (tn)n∈N such that

lim
n→∞

µ
(
K \ Ln

)
= lim

n→∞
λm,k,tn

(
Ln

)
= 0,
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and

lim
n→∞

νk,tn
(
Ln

)
= lim

n→∞
νk,−tn

(
Ln

)
= 0

for k = 1, 2, · · ·, N with m ̸= k.

Corollary 3.4. Given some N ≥ 2, let φk be a semiflow for 1 ≤ k ≤ N , and let
µ be an (Lp)-admissible Borel measure on Ω. Then we have that (i) implies (ii),
where:

(i) The C0-semigroups (Tφi
(·))1≤i≤N are disjoint transitive.

(ii) For each compact subset K of Ω, there are a sequence of measurable subsets
(Ln)n∈N in K and a sequence of positive numbers (tn)n∈N such that

lim
n→∞

µ
(
K \ Ln

)
= 0,

and

lim
n→∞

νk,tn
(
Ln

)
= lim

n→∞
νk,−tn

(
Ln

)
= 0

for k = 1, 2, · · ·, N .

In the following theorem, we turn our attention to give a sufficient condition for
C0-semigroups (Tφ1(t))t≥0, (Tφ2(t))t≥0, · · ·, (TφN

(t))t≥0 to be disjoint chaotic.

Theorem 3.5. Given some N ≥ 2, let φk be a semiflow such that for every compact
subset K of Ω, there is a number tK > 0 satisfying φk(t,K)∩K = ∅ for all t > tK
and k = 1, 2, · · ·, N . Let µ be an (Lp)-admissible Borel measure on Ω. Then we
have that (ii) implies (i), where:

(i) The C0-semigroups (Tφi(·))1≤i≤N are disjoint chaotic.
(ii) For each compact subset K of Ω, there are a sequence of measurable subsets

(Ln)n∈N in K and a strictly increasing sequence of positive numbers (tn)n∈N
tending to infinity such that, for k = 1, 2, · · ·, N with m ̸= k, we have

lim
n→∞

µ
(
K \ Ln

)
= lim

n→∞
λm,k,tn

(
Ln

)
= 0 and lim

n→∞
sk,n = 0,

where

sk,n :=
∞∑
l=1

νk,ltn
(
Ln

)
+

∞∑
l=1

νk,−ltn

(
Ln

)
.

Proof. By Corollary 3.3, the C0-semigroups (Tφ1(t))t≥0, (Tφ2(t))t≥0, ···, (TφN (t))t≥0

are disjoint transitive. We will show that P(Tφ1 , Tφ2 , · · ·, TφN
) is dense in (Lp(µ))N .

Choose f1, f2, · · ·, fN ∈ Cc(X) and a compact set K of Ω containing the union
support of f1, f2, · · ·, fN . Let (Ln)n∈N and (tn)n∈N be as in (ii) for K, where we
may assume w.l.o.g. that t1 > tK . For k = 1, 2, · · ·, N , set

vk,n := fkχLn +
∞∑
l=1

fk
(
φk(ltn, ·)

)
χφk(−ltn,Ln) +

∞∑
l=1

fk
(
φk(−ltn, ·)

)
χφk(ltn,Ln).

Using the equality φk(tn,K) ∩K = ∅, we get that:

∥∥vk,n − fk
∥∥p
p
≤ ∥fk∥p∞µ(K \ Ln) +

∞∑
l=1

∥fk∥p∞νk,ltn(Ln) +
∞∑
l=1

∥fk∥p∞νk,−ltn(Ln).
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Hence vk,n → fk as n→ ∞. Moreover, (v1,n, v2,n, · · ·, vN,n) ∈ P(Tφ1 , Tφ2 , · · ·, TφN
)

by the facts that φk(t, ·) ◦ φk(s, ·) = φk(t+ s, ·) and
Tφk

(tn)vk,n

= fk
(
φk(tn, ·)

)
χφk(−tn,Ln) +

∞∑
l=1

fk
(
φk((l + 1)tn, ·)

)
χφk(−(l+1)tn,Ln)

+

∞∑
l=1

fk
(
φk(−(l − 1)tn, ·)

)
χφk((l−1)tn,Ln)

=
∞∑
l=1

fk
(
φk(ltn, ·)

)
χφk(−ltn,Ln) + fkχLn +

∞∑
l=1

fk
(
φk(−ltn, ·)

)
χφk(ltn,Ln)

= vk,n.

�
Arguing similarly as in the proof of implication (ii) ⇒ (iii) in [25, Theorem 5.3],

we can deduce the following result.

Theorem 3.6. Given some N ≥ 2, let φk be a semiflow such that for every compact
subset K of Ω, there is a number tK > 0 satisfying φk(t,K)∩K = ∅ for all t > tK
and k = 1, 2, · · ·, N . Let µ be an (Lp)-admissible Borel measure on Ω. Then we
have that (i) implies (ii), where:

(i) The C0-semigroups (Tφi(·))1≤i≤N are disjoint chaotic.
(ii) For each compact subset K of Ω, there are a sequence of measurable subsets

(Ln)n∈N in K and a strictly increasing sequence of positive numbers (tn)n∈N
tending to infinity such that for k = 1, 2, · · ·, N ,

lim
n→∞

µ
(
K \ Ln

)
= 0 and lim

n→∞
sk,n = 0

where

sk,n :=

∞∑
l=1

νk,ltn
(
Ln

)
+

∞∑
l=1

νk,−ltn

(
Ln

)
.

Next, we consider the space of continuous functions C0,ρ(X), where C0,ρ(X) :=
{f : X → C continuous ; ∀ε > 0 the set {x ∈ X : |f(x)|ρ(x) ≥ ε} is compact} .
Equipped with the norm ∥f∥∞,ρ := supx∈X |f(x)|ρ(x), C0,ρ(X) becomes a Banach
space; here, ρ : X → (0,∞) is upper semicontinuous ([25]).

Now we give a sufficient condition for composition operators on C0,ρ(X) to be
disjoint transitive.

Theorem 3.7. Additionally to the general hypotheses, given some N ≥ 2, for
k = 1, 2, · · ·N , we assume that φk(t, ·) : X → X is an open mapping for all t ∈ I,
and infx∈K ρ(x) > 0 for all compact subsets K of X. Then (ii) implies (i), where:

(i) Tφ1 , Tφ2 , · · ·, TφN are disjoint transitive.
(ii) For each compact subset K of X, there is a sequence (tn)n∈N in I such that

for k = 1, 2, · · ·, N with m ̸= k, we have

lim
n→∞

sup
x∈φm(tn,φk(−tn,K))

ρ(x) = 0,

and

lim
n→∞

sup
x∈φk(tn,K)

ρ(x) = lim
n→∞

sup
x∈φk(tn,·)−1(K)

ρ(x) = 0.
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Proof. For 1 ≤ k ≤ N , let U and Vk be non-empty open subsets of C0,ρ(X).
Choose f, gk ∈ Cc(X) such that f ∈ U and gk ∈ Vk for k = 1, 2, · · ·, N . Let
K be the union of the compact supports of f and all gk. Then the mapping
gk ◦ φk(−t, ·) : φ(t,X) → C is continuous and its support is contained in the
compact set φ(t,K) so that gk ◦ φk(−t, ·) ∈ Cc(φ(t,X)). Further on, we extend
gk ◦φk(−t, ·) to a compactly supported continuous function g̃k,t by putting it to be
equal to 0 outside φ(t,X). Clearly, Tφk

(t)g̃k,t = gk.
Assume (tn)n∈N is as in the condition (ii) for compact set K, and let

vn = f + g̃1,tn + g̃2,tn + · · ·+ g̃N,tn .

Then∥∥vn − f
∥∥
∞,ρ

≤ sup
x∈φ1(tn,K)

∣∣g1(φ1(−tn, x)
)∣∣ρ(x) + sup

x∈φ2(tn,K)

∣∣g2(φ1(−tn, x)
)∣∣ρ(x)

+ · · ·+ sup
x∈φN (tn,K)

∣∣gN(φN (−tn, x)
)∣∣ρ(x)

≤ ∥g1∥∞ sup
x∈φ1(tn,K)

ρ(x) + ∥g2∥∞ sup
x∈φ2(tn,K)

ρ(x)

+ · · ·+∥gN∥∞ sup
x∈φN (tn,K)

ρ(x)

which says that vn → f as n→ ∞. Moreover,∥∥Tφk
(tn)f

∥∥
∞,ρ

= sup
x∈φk(tn,·)−1(K)

∣∣f(φk(tn, x)
)∣∣ρ(x) ≤ ∥f∥∞ sup

x∈φk(tn,·)−1(K)

ρ(x),

and ∥∥Tφk
(tn)g̃m,tn

∥∥
∞,ρ

=
∥∥Tφk

(tn)(gm(φm(−tn, ·))
∥∥
∞,ρ

=
∥∥gm(φk(tn, φm(−tn, ·))

)∥∥
∞,ρ

≤ sup
x∈φm(tn,φk(−tn,K))

∣∣gm(φk(tn, φm(−tn, ·))
)∣∣ρ(x)

≤ ∥gm∥∞ sup
x∈φm(tn,φk(−tn,K))

ρ(x).

for k = 1, 2, · · ·, N with m ̸= k. Together with the equality

Tφk
(tn)

(
gk(φk(−tn, ·)

)
= gk,

we obtain∥∥Tφk
(tn)vn − gk

∥∥
∞,ρ

≤ ∥f∥∞ sup
x∈φk(tn,·)−1(K)

ρ(x)

+ ∥g1∥∞ sup
x∈φ1(tn,φk(−tn,K))

ρ(x) + · · ·+ ∥gk−1∥∞ sup
x∈φk−1(tn,φk(−tn,K))

ρ(x)

+ ∥gk+1∥∞ sup
x∈φk+1(tn,φk(−tn,K))

ρ(x) + · · ·+ ∥gN∥∞ sup
x∈φN (tn,φN (−tn,K))

ρ(x),

proving that Tφk
(tn)vn → gk as n → ∞. Therefore Tφ1 , Tφ2 , · · ·, TφN

are disjoint
transitive. �

Applying a similar argument as in the proof of (i) ⇒ (ii) of [25, Theorem 2.9],
we obtain the following result immediately.
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Theorem 3.8. Additionally to the general hypotheses, given some N ≥ 2, for
k = 1, 2, · · ·, N , we assume that infx∈K ρ(x) > 0 for all compact subsets K of X.
Then (i) implies (ii), where:

(i) Tφ1 , Tφ2 , · · ·, TφN
are disjoint transitive.

(ii) For each compact subset K of X, there is a sequence (tn)n∈N in I such that
for k = 1, 2, · · ·, N , we have

lim
n→∞

sup
x∈φk(tn,K)

ρ(x) = lim
n→∞

sup
x∈φk(tn,·)−1(K)

ρ(x) = 0.

As in the case of Lp(µ)-space, if ρ is a C0-admissible weight function on an open
set Ω ⊆ Rd for the semiflow φk, then (Tφk

(t))t≥0 is a well-defined C0-semigroup
(see [25, Theorem 3.4, Definition 3.5]). In this case, one has the results below by
Theorem 3.7 and Theorem 3.8.

Corollary 3.9. Given some N ≥ 2, let φk be a semiflow for 1 ≤ k ≤ N , and let
ρ be a C0-admissible weight function for the semiflow φk. Then (ii) implies (i),
where:

(i) The C0-semigroups (Tφi(·))1≤i≤N are disjoint transitive.
(ii) For each compact subset K of X, there is a sequence of positive numbers

(tn)n∈N such that for k = 1, 2, · · ·, N with m ̸= k, we have

lim
n→∞

sup
x∈φm(tn,φk(−tn,K))

ρ(x) = 0,

and

lim
n→∞

sup
x∈φk(tn,K)

ρ(x) = lim
n→∞

sup
x∈φk(tn,·)−1(K)

ρ(x) = 0.

Corollary 3.10. Given some N ≥ 2, let φk be a semiflow for 1 ≤ k ≤ N , and
let ρ be a C0-admissible weight function for the semiflow φk. Then (i) implies (ii),
where:

(i) The C0-semigroups (Tφi(·))1≤i≤N are disjoint transitive.
(ii) For each compact subset K of X, there is a sequence of positive numbers

(tn)n∈N such that for k = 1, 2, · · ·, N with m ̸= k, we have

lim
n→∞

sup
x∈φk(tn,K)

ρ(x) = lim
n→∞

sup
x∈φk(tn,·)−1(K)

ρ(x) = 0.

Based on the above results, we give a sufficient condition for the C0-semigroups
(Tφ1(t))t≥0, (Tφ2(t))t≥0, · · ·, (TφN (t))t≥0 to be disjoint chaotic on C0,ρ(X).

Theorem 3.11. Given some N ≥ 2, let φk be a semiflow such that for every
compact subset K of Ω, there is a number tK > 0 satisfying φk(t,K) ∩K = ∅ for
all t > tK and k = 1, 2, · · ·, N . Let ρ be a C0-admissible weight function such that
infx∈K ρ(x) > 0 for all compact subsets K of Ω. Then (ii) implies (i), where:

(i) The C0-semigroups (Tφi(·))1≤i≤N are disjoint chaotic.
(ii) For each compact subset K of X, there is an integer p ∈ N such that for

k = 1, 2, · · ·, N with m ̸= k, we have

lim
n→∞

sup
x∈φm(np,φk(−np,K))

ρ(x) = 0,

and

lim
n→∞

sup
x∈φk(np,K)

ρ(x) = lim
n→∞

sup
x∈φk(np,·)−1(K)

ρ(x) = 0.
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Proof. By Corollary 3.9, the C0-semigroups (Tφ1(t))t≥0, (Tφ2(t))t≥0, ···, (TφN
(t))t≥0

are disjoint transitive. We will show that P(Tφ1 , Tφ2 , ···, TφN
) is dense in (C0,ρ(X))N .

Choose f1, f2, · · ·, fN ∈ Cc(X) and a compact set K of Ω containing the union
support of f1, f2, · · ·, fN . Let p be as in (ii) for K, we may assume that p > tK .

For k = 1, 2, · · ·, N , let

vk,n = fk +
∞∑
l=1

fk
(
φk(lnp, ·)

)
+

∞∑
l=1

fk
(
φk(−lnp, ·)

)
.

Then by φk(np,K) ∩K = ∅, we have∥∥vk,n − fk
∥∥
∞,ρ

= sup
x∈Ω

∣∣vk,n(x)− fk(x)
∣∣ρ(x)

= max

{
sup
l∈N

sup
x∈φk(lnp,·)−1(K)

∣∣fk(φk(lnp, x)
)∣∣ρ(x), sup

l∈N
sup

x∈φk(lnp,K)

∣∣fk(φk(−lnp, x)
)∣∣ρ(x)}

≤ ∥fk∥∞

{
sup
l∈N

sup
x∈φk(lnp,·)−1(K)

ρ(x) + sup
l∈N

sup
x∈φk(lnp,K)

ρ(x)

}
,

which implies vk,n → fk as n → ∞. Moreover, by a simple computation, one has
Tφk

(np)vk,n = vk,n. Therefore P(Tφ1 , Tφ2 , · · ·, TφN
) is dense in (C0,ρ(X))N . �

Again, we have the result below by using Corollary 3.10, and a similar argument
as in the proof of implication (ii) ⇒ (iii) in [25, Theorem 5.7].

Theorem 3.12. Given some N ≥ 2, let φk be a semiflow such that for every
compact subset K of Ω, there is a number tK > 0 satisfying φk(t,K) ∩K = ∅ for
all t > tK and k = 1, 2, · · ·, N . Let ρ be a C0-admissible weight function such that
infx∈K ρ(x) > 0 for all compact subsets K of Ω. Then we have that (i) implies (ii),
where:

(i) The C0-semigroups (Tφi(·))1≤i≤N are disjoint chaotic.
(ii) For each compact subset K of X, there is an integer p ∈ N such that

lim
n→∞

sup
x∈φk(np,K)

ρ(x) = lim
n→∞

sup
x∈φk(np,·)−1(K)

ρ(x) = 0.

Using [27, Theorem 3.1.40] and the proof of Theorem 3.11, we can simply clar-
ify some sufficient conditions for d-chaoticity of strongly continuous semigroups
induced by semiflows on the Fréchet space C(Ω).

Theorem 3.13. Suppose that N ∈ N, N ≥ 2, φi : [0,∞) × Ω → Ω is a semiflow
for all i = 1, 2, · · ·, N and, for every compact set K ⊆ Ω, there exists an integer
p ∈ N satisfying the following condition: For every compact set K ′ ⊆ Ω there exists
k0(K

′) ∈ N such that:

• φi(kp, ·)−1(φj(kp,K)) ∩ K ′ = ∅, i, j ∈ NN , i ̸= j, k ≥ k0(K
′) and

• φi(kp,K) ∩ K ′ = φi(kp, ·)−1(K) ∩ K ′ = ∅, i ∈ NN , k ≥ k0(K
′).

Then (Tφi(t))t≥0 is a strongly continuous semigroup in C(Ω) for every i ∈ NN and
(Tφi)1≤i≤N are d-chaotic in C(Ω).

We would like to recommend for the readers problem of finding some neces-
sary (sufficient) conditions for disjoint topologically mixing of strongly continuous
semigroups induced by semiflows. As pointed out in [32], it is a very non-trivial
problem to clarify a condition which would be both necessary and sufficient for
strongly continuous semigroups induced by semiflows to be disjoint topologically
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mixing (disjoint hypercyclic, disjoint topologically transitive). See also [10] for the
study on disjoint topologically mixing and stronger notions of other general semi-
groups.

We close the paper by verifying that strongly continuous semigroups appearing
in [27, Example 3.1.41, Example 3.1.42] are also d-chaotic.

Example 3.14. (i) Suppose p ∈ [1,∞), Ω = [1,∞), N ∈ N, N ≥ 2 and
0 < α1 < · · · < αN ≤ 1. Define φi : [0,∞) × Ω → Ω, i = 1, 2, · · ·, N and
ρ = ρ1 : Ω → (0,∞) by:

φi(t, x) :=
(
t+ xαi

)1/αi
and ρ1(x) := e−xα1

, t ≥ 0, x ∈ Ω.

We know that the strongly continuous semigroups (Tφi(·))1≤i≤N are
d-topologically transitive in Lp

ρ1
(Ω) and C0,ρ(Ω). Let a compact set K =

[a, b] ⊆ Ω be given. Let Lk = K, k ∈ N and let (tk)k∈N be any increasing
sequence of positive real numbers satisfying limk→∞ tk = ∞ and t1 ≥
max(bα1 , · · ·, bαn). In order to prove that (Tφi(·))1≤i≤N are d-chaotic in
Lp
ρ1
(Ω), it suffices to show by Theorem 3.5 (here µ = ρ1(x) dx with dx

being the Lebesgue measure) that, for every k ∈ NN , we have:

lim
n→∞

∞∑
l=1

[∫
φk(ltn,K)

ρ1(x) dx+

∫
φk(−ltn,K)

ρ1(x) dx

]
= 0, (3.1)

i.e., that

lim
n→∞

∞∑
l=1

∫
φk(ltn,K)

ρ1(x) dx = 0 (3.2)

since φk(−ltn,K) = ∅ for all l ∈ N and k ∈ NN . To show (3.2), it suffices
to observe that, for every k ∈ NN , there exists a finite constant ck > 0 such
that:

∞∑
l=1

∫
φk(ltn,K)

ρ1(x) dx

≤
∞∑
l=1

(
ltn + bαk

)1/αke−(ltn+bαk )1/αk

≤ ck

∞∑
l=1

[(
ltn
)1/αk + b

]
e−(ltn)

1/αk

≤ ckt
(m−1)/αk
n

∞∑
l=1

[
m!

l(m−1)/αk
+

bm!

lm/αk

]
,

where m ∈ N is chosen so that m − 1 > αk. One can similarly prove by
Theorem 3.11 that (Tφi(·))1≤i≤N are d-chaotic in C0,ρ(Ω).

(ii) Let p ∈ [1,∞), N ∈ N, N ≥ 2, ai > 0 for i ∈ NN and ai ̸= aj for
i ̸= j, q > 1/2 and Ω = (0,∞). Define semiflows φi : [0,∞) × Ω → Ω,
i = 1, 2, · · ·, N and the weight function ρ1 : Ω → (0,∞) by

φi(t, x) := eait and ρ1(x) :=
1

(1 + x2)q
, t ≥ 0, x > 0.

Then we know that (Tφi(·))1≤i≤N are d-topologically transitive strongly
continuous semigroups in Lp

ρ1
(Ω) (Lk = K, k ∈ N); in order to prove
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that (Tφi(·))1≤i≤N are also d-chaotic, it suffices to show that, for every
a > 0, b > 0 with a < b and for every strictly increasing sequence of
positive reals (tn)n∈N tending to infinity, one has (cf. (3.1)):

lim
n→∞

∞∑
l=1

[∫ eltnak b

eltnaka

dx

(1 + x2)q
+

∫ e−ltnak b

e−ltnaka

dx

(1 + x2)q

]
= 0, 1 ≤ k ≤ N.

This simply follows from the following elementary computation:

∞∑
l=1

[∫ eltnak b

eltnaka

dx

(1 + x2)q
+

∫ e−ltnak b

e−ltnaka

dx

(1 + x2)q

]

≤ (b− a)
∞∑
l=1

[
eakltn

(1 + a2e2akltn)q
+

e−akltn

(1 + a2e−2akltn)q

]

≤ (b− a)

∞∑
l=1

[
a−2qe(1−2q)akltn + e−akltn

]
→ 0, n→ ∞, 1 ≤ k ≤ N.

The same conclusion holds in the case that Ω = R but then we must
use an appropriate sequence (Lk) of measurable subsets of K satisfying
0 /∈ L◦

k, k ∈ N. Let us recall once more that, for every i ∈ NN , (Tφi(t))t≥0

is a non-hypercyclic strongly continuous semigroup in C0,ρ1(Ω) (C0,ρ1(R)).
(iii) Suppose that Ω = {(x, y) ∈ R2 : x2 + y2 > 1}, N ∈ N, N ≥ 2, 0 < p1 <

· · · < pN <∞, qi ∈ R for i ∈ NN , and:

φi(t, x, y) = epit
(
x cos qit− y sin qit, x sin qit+ y cos qit

)
,

for any t ≥ 0, (x, y) ∈ Ω and i ∈ NN . Applying Theorem 3.12 and the
arguments already seen in [27, Example 3.1.42], we get that the strongly
continuous semigroups (Tφi(·))1≤i≤N are d-chaotic in C(Ω).
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[28] M. Kostić, Abstract Degenerate Volterra Integro-Differential Equations: Linear Theory and

Applications, Book Manuscript, 2016.
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