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UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING
PRODUCT OF DIFFERENCE POLYNOMIALS

HARINA P. WAGHAMORE

ABSTRACT. In this paper, we deal with distribution of zeros of certain types
of difference polynomial and in addition to this we investigate the unique-

k
ness of product of difference polynomials f™P(f) [ ?:1 flz+ cj)sj]( ) and

. 1(R)
9" P(g9) [H?:l g(z + Cj)éf] which are sharing a fixed point z and f, g share
oo IM. I obtained some results which extends some recent results of Renukadevi
S. Dyavnal and Ashwini M. Hattikal[8].

1. INTRODUCTION AND MAIN RESULTS

A meromorphic function f(z) means meromorphic in the whole complex plane.
We assume that the reader is familiar with standard symbols and fundamental re-
sults of Nevanlinna Theory [3]. As usual, the abbrevation CM stands for counting
multiplicities, while IM means ignoring multiplicities. We use p(f) to denote the
order of f(z) and Ny(r, ﬁ) to denote the counting function of the zeros of f — a,
where an m-fold zero is counted m times if m < p and p times if m > p.

A meromorphic function a is called small function with respect to f if T'(r,a) =
S(r, f) and the order, hyper order of meromorphic function f are defined by
p(f) = limsup longM, p2(f) = limsup loglogT(r, f)
r—00 ogr r—00 logr
In 2010, J.F.Xu, F.Lu and H.X.Yi obtained the following result on meromorphic
function sharing a fixed point.

Theorem A.[7] Let f(z) and g(z) be two non-constant meromorphic functions
and let n, k be two positive integers with n > 3k + 10. If (f"(2))*) and (g"(z))*
share z CM, f and g share co IM, then either f(z) = c1e°*, g(2) = coe~* where
c1,c2 and ¢ are three constants satisfying 4n?(cico)"c? = —1, or f = tg for a con-
stant ¢ such that t" = 1.
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Further, Fang and Qiu investigated uniqueness for the same functions as in the
Theorem A, when k = 1.

Theorem B.[2] Let f(z) and g(z) be two non-constant meromorphic functions
and let n > 11 be a positive integer. If f(z)f’'(z) and ¢g™(z)g’(z) share z CM,
then either f(z) = 016622,9(2) = 026’022, where c1,cp and ¢ are three constants
satisfying 4(cjco)"Te? = —1, or f(z) = tg(z) for a constant t such that t"T1 = 1.

In 2012, Cao and Zhang replaced f’ with f*) and obtained the following theo-
rem.

Theorem C.[1] Let f(z) and g(z) be two transcendental meromorphic func-
tions, whose zeros are of multiplicities atleast k, where k is a positive integer. Let
n > max{2k —1,4+4/k+4} be a positive integer. If f(2)f*)(z) and ¢g"(2)g¥ (2)
share z CM, and f and g share co IM, then one of the following two conclusions
holds.
(1) F2(2) %) (2) = g (2)g™) ()
(2)f(2) = c1e°%", g(2) = c2e™°, where ¢y, ¢; and ¢ are constants such that 4(c;cy)"+1e? =
—1.

Recently, X.B.Zhang reduced the lower bond of n and relax the condition on
multiplicity of zeros in Theorem C and proved the below result.

Theorem D.[11] Let f(z) and g(z) be two transcendental meromorphic func-
tions and n, k two positive integers with n > k+6. If f*(2)f*)(2) and g"(2)g™¥ (2)
share z CM, and f and g share co IM, then one of the following two conclusions
holds.
(1) F1(2)fB(2) = ()9 (2);
(2)f(2) = c1e°%", g(2) = c2e~°, where ¢y, ¢; and ¢ are constants such that 4(c;c3)"+1c? =
—1.

In 2016, Renukadevi S. Dyavanal and Ashwini M. Hattikal proved the following
theorem.

Theorem E.[8] Let f and g be two transcendental meromorphic functions
of hyper order po(f) < 1 and pa(g) < 1. Let k,n,d, \ be positive integers and

n > maz{2d(k + 2) + A(k 4+ 3) + 7, A\, Ao }. If F(2) = f(2)” H?:1 f(z+¢;)% ®

and G(z) = g(2)™ {H‘;Zl g(z + cj)sf} “ share 2 CM an f, g share oo IM, then one
of the following two conclusions holds.

(D)F(z) = G(2)

(2)]_[?:1 flz+¢))% = Cre?, H?Zl 9(z + ¢;)% = Ce=9% where Cy,Cy and C
are constants such that 4(C1Co)""1C? = —1.

We define a difference product of meromorphic function f(z) as follows
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(k)

d
F(z) = f()"P() | T] /2 + )™ (1)
d
Fi(2) = f)"P(N) [ F(z+ )™ 2)

where ¢; € C\ {0}(j = 1,2, ...,d) are distinct constants. n,k,d,s;(j = 1,2,...,d)
S d
are positive integers and A =3 =155

For j =1,2,3,..d, A\ = Z;l:l ajs; and Ay = Z?:1 Bjs;, where f(z + ¢;) and
9(z + ¢;) have zeros with maximum orders a; and (; respectively.

In this article, we prove the theorem on product of difference-differential poly-
nomials sharing a fixed point as follows.

Theorem 1. Let f and g be two transcendental meromorphic functions of
hyper order pa(f) < 1 and pa(g) < 1. Let k,n,d,\ be positive integers and
n > mazx{2d(k + 2) + Mk +4) + T + 8 — m, A1, A\a}. If F(z) and G(z) share z
CM and f, g share co IM, then one of the following two conclusions holds.

(1)F(z) = G(2)
(2) H?:I flz+¢j)% = C1e07, H?zl g(z+¢;)% = Coe=C wher Cy,Cy and C are
constants such that 4(C,Cy)"1C? = —1.

Remark.
If m = 1 then Theorem 1 reduces to Theorem E.

Theorem 2. Let f and g be two transcendental meromorphic functions. Let
k,n,d, X be positive integers and n > max{ (3]“;5)’1 + (9+§’k)’\ +%F0+1—29 —m, A1, A2}

If F(z) and G(z) share “(a(z),1)” and f, g share co IM, then F(z) = G(z).

Theorem 3. Let f and g be two transcendental meromorphic functions. Let
k,n,d, X be positive integers and n > max{w +(T+4k)A+To+14—m, A1, A2}

If F(z) and G(z) share “(a(z),0)” and f, g share co IM, then F(z) = G(z).

2. Lemmas

In this section we present some lemmas needed in the sequel. Let F, G be two
non-constant meromorphic functions. Henceforth we shall denote by H the following
function.

F// 2F/ G// 2Gl
F Ffl) (G’ Gfl) 3)

Lemma 2.1.[9] Let f and g be two non-constant meromorphic functions, 'a’ be
a finite non-zero constant. If f and ¢ share 'a’ CM and oo IM, then one of the
following cases holds.

(1)T(T7 f) < NQ(T, %) + NQ(T7 %) + 3N(’I’7 f) + S(T, f) + S(T7 g)'
The same inequality holding for T'(r, g);

H=(
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(2)fg = a*;
B)f=g.

Lemma 2.2.[5] Let f(z) be a transcendental meromorphic functions of hyper
order pa(f) < 1, and let ¢ be a non-zero complex constant Then we have

T(r, f(z+¢)) = T(r, f(2)) + S(r, f(2)),
N(r, f(z +¢)) = N(r, f(2)) + S(r, f(2)),

N (nsts ) = N (ngi ) + 102D

Lemma 2.3.[10] Let f be a non-constant meromorphic function, let P(f) =
ag+arf+azf?+ ... +a,f", where ag, ay,as, ...a, are constants and a,, # 0. Then
T(r,P(f)) =nT(r,f)+ S(r, f).

Lemma 2.4.[10] Let f be a non-constant meromorphic function and p,k be
positive integers. Then

T(r, fP) <T(r, f) + kN(r, ) + S(r, f), (4)

N, (117t ) STOSO) =T + Ny (17 ) + 5. 6
N, (n f(lk)) <Nk (n ;) L kN f) + S(r 1), (6)

N <r, f(1k)> <N (r, J{) +EN(r, )+ SO f). 1)

Lemma 2.5.[3] Suppose that f is a non-constant meromorphic function, k& > 2
is an integer. If
1 f!

N(r. ) + N(r. %) +N(r, 77 = S0

then f(z) = e®**? where a # 0, b are constants.

);

Lemma 2.6.[12] If f, g be two nonconstant meromorphic functions such that
they share “(1,1)”, then

— — —(2 — —
QNL(Tv]-;f) +2NL(T1]-;g) +N(E(Ta]-af) - Nf>2(’r7]-;g) S N(Tal;g) - N(’I’,].;g).

Lemma 2.7.[12] Let f, g share “(1,1)”, Then

Wf>2(7’7 179) S %W(T,Oé f) + %N(ﬂ [ N f) - %WO(T7 0; f/) + S(r7 f)

Lemma 2.8.[12] Let f, g be two nonconstant meromorphic functions such that
they share “(1,0)”. Then N1 (r,1; f) +2N(r,1;9) +NS(T, L, f) = Nysa(r,159) —

Ng>2(rv 17f) < N(T7 179) - N(’I“, 1,9)

Lemma 2.9.[12] Let f, g share “(1,0)”. Then N (r, 1; f) < N(r,0; f)+N(r, 00; f)+
S(r, f).
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Lemma 2.10.[12] Let f, g share “(1,0)”. Then
(i)Nf>1(T, lag) < N(’/‘, Oa f) + N(’/‘ 003 f) NO(Ta Oa f/) + S(Tv f)a
(1)) Ng>1(r, 1:9) < N(r,0:g) + N(r, 00 f) = No(r, 0; f') + S(r,9);

Lemma 2.11. Let f(z) be a transcendental meromorphic function of hyper
order pa(f) < 1 and Fi(z) be stated as in (2). Then

(n4+m—=XNT(r, f) + S(r, f) <T(r, F1(2)) < (n+m+N)T(r, f) +5(r, f).

Proof. Since f is a meromorphic function with ps(f) < 1. From Lemma 2.2 and
Lemma 2.3 we have

T(r, F1(2)) < T(r, f(z)") +T(r, P(f ( Hferc] )+S( f) )

<(m+m+NT(r,f)+S(r, f)

On the other hand, from Lemma 2.2 and Lemma 2.3, we have

(n+m+NT(r, f)=T(r, f*f™ )+ S(r, f)
+ N(r, [+ S(r, f)

<T(r,F1(2)) + 2XT(r, ) + S(r, )
(n4+m+X=2\T(r, f) <T(r, F1(2)) + S(r, f)
= (n+m—ANT(r, f)+S(r, f) <T(r, F1(2)).

Hence we get Lemma 2.11.

3. Proof of the Theorem

Proof of the Theorem 1

F
Let F* = — and G*:g (10)
z z

From the hypothesis of the Theorem 1, we have F' and G share z CM and f, g
share co IM. It follows that F* and G* share 1 CM and oo IM.

By Lemma 2.1, we arrive at 3 cases as follows.

Case 1. Suppose that case (1) of Lemma 2.1 holds.

22+ Na(r, o)+ 3N(, F*) + S0 F*) + 5(r,G) (1)

T(r, F*) < No(r, =
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We deduce from (11) and obtained the following

T(r, F) < Na(r, %) + No(r, %) + 3N (r, F) + S(r, F) + S(r, G) (12)

From Lemma 2.2 and Lemma 2.6, we have S(r,F) = S(r, f) and S(r,G) =
S(r,g).

From (12), we have

T(r,F) = Na(r, %) + No(r, 5) +3N(r,F)+ S(r, f) + S(r, 9)

< (ngn) + (g ) < ( T cj>8f><k>> o) o2 ()

(
®)

1 NT —_
+N2(T’(Hleg(zﬂj)sj)(k))+3N(’"vf">+3N(nP( +3N( (Hfz-l—cj ) )

j=1
+5(r, )+ 5(r,9)-
Using (5) of Lemma 2.4 in (13) we have

d d
T(r, F) < 27(r, f) + Lol (r f) + T ( (qI7G+ cj)sw(’“) -7 ( [[rG+ ))

j=1
1 d
N T F T T S5 (k:)
+ Niyo (73 Hj‘:l f(Z+Cj)sj> +2T(r,g9) + ToT'(r,9) + (r, (EQ(Z+CJ) ) )

d 1 d
_T (r ]1_[19 z4¢j)% ) + Nigo <7‘ Hj_lg(ercj)sf) +6N(r, f)+ 3N (7“ Ef z+¢)° )
<@24T)T(rf)+T (T, (H f(z +cj)sa‘)(k)) +T(r, f™) = T(r, f*) — (
j=1

+S(r, f)+S(r,9)
z—i—cj )
d

+(k+2)dT(r,f)+(2+F1)T(rg)+T(rng—&-cj )+kN( ng+cj )

13)

d

u::g

Jj=1

d
-T (r, H g(z + cj)%') + (k+2)dT(r,g) + 6T (r, f) + 3\T(r, f) + S(r, f) + S(r, g)

Jj=1

T(r,F)<2+To)T(r,f)+T(r,F)—=T(r, Fy) + (k+2)dT(r, f)

(k+2)dT(r,g) + (6 +3N)T(r, f)+ S(r, f) + S(r, g)
(2+TL0)T(r, )+ (k+2)dT(r, f) + (2+To)T'(r, g)
(6 +3N)T(r,f)+S(r,f)+ S(r,g)

)T(
(24 T0)[T(r, f) +T(r,g)] + (k + 2)d[T(r, f) + T(r,9)] + kAT (r,g) + (6 + 3\)T'(r, f)
(r, f)+S(r,9)

+24T0)T(r,g) + kAT (r,9)

T(r, Fy) + (k+2)dT(r,g) + kAT (r, g)

+\/\+IA+\/\

O}
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From Lemma 2.11, we have
(m+m—=NT(r,f) < (k+2)d+2+To)[T(r,f)+T(r,g)] + kXT(r,g) + (6 + 3\)T(r, f)
+S(r, f)+ S(r,9)
Similarly for T'(r, g) we obtain the following
(n+m—NT(r,g) < (k+2)d+2+T)[T(r,f)+T(r,g)] + kXT(r, f) + (6 +3N)T(r,g)
+ S(r, f)+ S(r,9) (
From (14) and (15), we have
m4+m—=NT(r f)+T(rg)] <2((k+2)d+2+T)[T(r,f)+T(r,g)] + (kX + 6+ 3X)
(T(r, ) +T(r,g)l +S(r, f) + S(r,9)
Which is contradiction to n > 2d(k +2) +To + A(k +4) +8 — m.

(14)

15)

Case 2. Suppose that F'G = 22 holds.

d

(k) .
[IrG+ Cj)SJ'] 9" P(g) {H gl

j=1

i.e., f"P(f)

Now, (16) can be written as

S VT Y ) AR R
By using Lemma 2.2, Lemma 2.3 and (8) of Lemma 2.4, we derive

1
' f

(n+m)[N(r, f) + N(r,g)] < AIN(r, 2) + N(r, ;)] +RA[N(r, f) + N(r,9)] + 5(r, f) + S(r, 9) (17)

From (16), we can write

L I S+ ) )DL, gz + e)v)®

fPP(f)g"P(g) 22

Similarly, as (17), we obtain

\ —

(n+m)[N(r, )+ N(r, 1)] < A+ Ed)[N(r, [) + N(r,g)] + S(r, ) + S(r,9) (18)

—~ =

From (17) and (18), deduce
(ntm—(A+2kd))[N(r, /) +N (r, g)]+(n+m=N)[N(r, ;)+N(r, 1)} < S(r, f)+5(r,9)
Since n > 2d(k +2) + A(4 + k) + Ty + 8 — m, we have

~—

Nmﬁ+Nmm+N@5+Nm?<smﬂ+smm

o

Hence, we conclude that f and g have finitely many zeros and poles.

Let zg be a pole of f of multiplicity p, then z; is pole of f™ of multiplicity np,
since f and g share oo IM, then zj is pole of g of multiplicity gq.
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If 2y also zero of [szl f(z +¢;)%]*) and [H;Ll g(z + ¢;)%]%® then we have
from (16) that

SH

Z a8 —l—Zﬂjsj — 2k.

: ] 1
= 2n < n(p+q) < ijloéij +Zj:15j8j —2k =X+ X —2kk < A+ X <
2max{A1, A2}
= n < max{A1, A2}, which is contradiction to n > max{2d(k + 2) + A4 + k) +
F() +8— m, )\1,)\2}.
Therefore f has no poles.

Slmllarly, we can get contradiction for other two cases namely, if zy is zero of
z+cj)% (%) but not zero of z+cj)% (®)and other way. Therefore
J=1 j=19 ¥
f has no poles Slmllarly, we get that g also has no poles. By this we conclude that
f and g are entire functions and hence [H?zl f(z+¢;)%]®) and [H?zl g(z+c;)%]®
are entire functions.

Then from (16), we deduce that f and g have no zeros.
Therefore

f= eo‘(z), g= P and

d d d d
H (z+¢)° H alre)s H (z+¢)° H plrenys (19)
i=1 j=1 i=1 i=1

where «, 8 are entire functions with pa(f) < 1. Substituting f and ¢ into (16) we
get

(k) 7 (k)

d [ d
na(z H oz(z—&-cj sJ enﬁ(z) H ,B(z—i—cj) = 2’2 (20)
: j:l ]
If k=1, then
4 ’ w 97
ena(z) H(ea(z+cj))sj en,ﬁ(z) H(eﬁ(z+cj))sj = 22 (21)
j=1 =1 |
4 d d
= e@th) 2 (alztes)+B(2tes))s; Z(a’(z +¢j))s; Z (z+¢j))s; =22 (22)
j=1 j=1

Since a(z) and S(z) are non-constant entire functions, then we have

d 55\ A pa(ztes)s;y
T(r, (ITj=1 f(=+¢)) )>:T<7‘7 (Il (z+es) )> (23)

szl f(Z + Cj)sj Hj’:l ec(z+cj)s;

d ’ Neo . TTA a(z+cj)s; d
' (z+cj)s € a
T (7"7 23_1 ( J) ]H]—l ) =T\ E O/(Z"‘Cj)sj (24)
j=1

H;‘lfl ea(Z+C]‘ )s;



EJMAA-2018/6(2) ON THE FRACTIONAL-ORDER GAMES 35
Let

F
(Ht;:l f(z—i—cj)sj)(k)

J (k)
r (Hf(zﬂj)”) +5(r, f)
Jj=1

d
<T(r,F)+T (7’, Hf(z+cj)5f) + kN (

(n+m)T(r, f) <T(r,F)+ A+ kd)T(r, f) +S(r, f)

(n+m)T(r, f) =T(r, fr7) =T |,

<T(r,F)

9 ’,:]:~
Z\Z
+
QO
\_/
+
i’i
tﬁ

(n+m—=X=kd)T'(r,f) <T(r,F)+ S(r, f) (25)
We obtain from (24) that

T(r, f) = O(T(r, F)) (26)

as r € E and r — oo, where E C (0,400) is some subset of finite linear measure.
On the other hand, we have

. (k)
H z+c] ]

T(r F)=

(27)

.

J=1

<nT(r,f) +mT(r, f) + \T(r, ) + kN (r, fz+ cj)sf) +S(r, f)

< (n+m+kd+ NT(r, f) + S(r, f)
= T(r, F') = O(T(r, f))

as r € F and r — oo, where E C (0,400) is some subset of finite linear measure.

Thus from (25),(26) and the standard reasoning of removing exceptional set we
deduce p(f) = p(F). Similarly, we have p(g) = p(G). It follows from (16) that

p(F) = p(G). Hence we get p(f) = p(9g).

We deduce that either both o and 8 are polynomials or both o and 3 are tran-
scendental entire functions. Moreover, we have

1 1
: ( (- 76+ cj>8j><k>> < (n3) =oterr =
From (27) and (19), we have

d 1 1
N |, z4cj)% N |, N |, = O(logr).
( s+ )+ ( n;?_lf<z+cj>8j>+ ( (H?_lf(erCj)Sf)(’“)) foar)
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If & > 2, then it follows from (23),(27) and Lemma 2.5 that 2?21 o' (z4c¢j)sj is
a polynomial and therefore we have a(z) is a non-constant polynomial.

Similarly, we can deduce that 8(z) is also a non-constant polynomial. From this,
we deduce from (19) that

d (k) k7]
H (z+¢)° — X5 0G| B (o (2 4 ¢5)) ZO‘ z+¢5)s

] ® K]
Hg(z+cj)3j = 2= FEHe)s 1O (o (2 + ¢)) Zﬁ z+¢j)s
j=1

Where Py and Qy— are difference-differential polynomials in o'(z + ¢;) with
degree at most k — 1.
Then (20) becomes

k
d d
en(atB) 7y (a(z+e;)+B(2+¢;))s; Z a® (z 4 ¢;)s; + Z o' (2 +¢;)s;
i=1 ]
.
d d
Zﬁ()z+c] 55+ Z (z+¢j)s =22 (29)
j=1 j=1
We deduce from (28) that a(z) 4+ 8(z) = C for a constant C.
If k=1, from (22), we have
. d d
et B)+35- (alz+e;)+B(z+c)))s; Z (z+¢;))s; Z (z4¢j)) =22, (30)
j=1 j=1

Next, we let a + 8 = and suppose that «, 8 both are transcendental entire func-
tions.

If 7 is a constant, then o/ + 8’ = 0 and Z?zl o (z4¢) =— Z;lzl B'(z+ ¢;).
From (29) we have

(B (a(ete;)+B(+es))s; ZO‘ Z+¢j)s 22

2

ety &l Z o (z+¢) =2? (31)
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Which implies that o’ is a non-constant polynomial of degree 1. This together
with o/ + 8 = 0 which implies that 3’ is also non-constant polynomial of degree 1.
Which is contradiction to «, 8 both are transcendental entire functions.
If v is not a constant, then we have

a+B=yand Y0 a(z+cj)s; + 30 Blz+¢j)s; = 20 v(z +¢;)s;

From (29) we have

d d
Z o' (z +¢j)sj ny z+c¢j)s Z a'(z+¢ e"'y“‘zle vEte)si — 52 (32)

j=1
Since
d d d
T T,Z'y'(z—l—cj T,Z’Y/Z+C] S T,Z'y’z—i—cj
j=1 j=1 j=1 (33)
d ’
(€Zj:17 (Z+cj)5j)/ Z
< G=17(z+es)s;
- (73 ei—1 7 (2+¢))s; +0(1) = 5(r,e== )
And also we have
d d d
T r,n’y'—l—ny'(z—ch)sj =m T,n’}//—FZ’}/(Z“er)Sj +N r,n’y’—i—Z’y’(z—i—cj)sj
j=1 j=1 j=1 (34)

41 (z4c;)s;5
<m (r, (62; poTE—. ) > +0(1) =8 (r, em1 i ‘Y(ZJFCJ)SJ)
elui=1 ZTC5)8;5

From (31), we have

2
R A )w)
i (24 ¢)s D05 Y (2 + ¢j)sy — Doy of (24 ¢5) 8]
d d
=T(r,2>)+T T,Zo/(z—i—cj Z’y (z4¢j)s Za (z+¢))s +0(1)
j=1

d
< 2logr + 2T T,Zo/(z—i-cj)sj +0(1)

d
=T (h en'y-}-z}i:l ’Y(Z+Cg)sj) <O|T T, Z o/(z + Cj)Sj (35)
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Similarly, we have
d d
T\, Z a'(z+¢)sj | <O (T (r, M= ’Y(Z+C_7')S.7‘>) (36)
j=1
Thus, from (32)-(35) we have
d ., d
T(r,ny' + ) ¥ (z4¢)s;) =S (7‘, eIt W(ZJ“CJ')SJ') =S [r) o (z+¢)s;
j=1

J=1

By the second fundamental theorem and (31), we have

d
_ 1 — 1
T T,Za'(z—l— cj)sj | <N (7“, y ) + N (r, < < >
= Yo @ (2 +¢j)s; Yo (2t cg)si — iV (2t ¢g)s;

d d
+S ()Y d(z+¢)s; | <O(logr)+ S T,Za’(z—i—cj)sj
- =1

Jj=1

This implies Z;l:l o'(z+c;)s; is a polynomial, which leads to o/(z) is a polynomial.
Which contradicts that a(z) is a transcendental entire function.

Thus « and 8 are both polynomials and «a(z) 4+ 5(z) = C for a constant C.

Hence from (28) and using a4+ 8 = C we get

2k
(—1)F (Z;l:l o (z+ cj)sj) =22+ Po_1(c/ (2 + ¢5)s5) for j =1,2,....d.

Where Poj_1 is difference-differential polynomial in o/(z + ¢;)s; of degree at most
2k — 1. From (36) we have

d
2KT | r, Z o' (z+¢j)sj | =2logr + S (r,d (z 4 ¢j)s))
j=1

From (3.28), we can see that Z;l:l o/(z + ¢;)s; is a non-constant polynomial of
degree 1 and k = 1.
Which implies,

d
Y od(z+¢)s; =2l
j=1
Since o + ' =0, we get Z?Zl B'(z+cj)s; = — ijl o'(z + ¢;)sj. Which implies

Z?Zl B'(z 4 ¢;)s; is also a non-constant polynomial of degree 1. Hence we have
d
Zﬁ/(z +cj)sj = zlo
j=1

Hence, we get

f(Z + cj)sj — CleCZZ

d
=1

<

Similarly, we have

2

g(z+¢;)% = Coe™ ¢

—.

j=1
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where C1,Cy and C' are constants such that 4(C;C)" 1C? = —1.
This proves the conclusion (2) of Theorem 1.

Case 3. If F =G ® )
ie, f"P(f) [H;l:l f(z+¢j)% = g"P(g) [H;l:l g(z + Cj)sj:|

This proves the conclusion (1) of Theorem 1.

Proof of Theorem 2
Let F,G be given by from the assumption of Theorem 2, we know that F' and G
share “(1,1)”.
Let H be defined as in (3) Suppose that H # 0. Since F,G share “(1,1)”, we can
get

N(r,00; H) < N(r,00; F) + N(r,1; F > 2) + N(r,0; F > 2) + N(r,0;G |> 2) + No(r,0; F’) 37
+NO(T70;G1) + S(T,f)

and
N(rLF|=1) < N(r,0;H) + S(r, f) < N(r,c0; H) + S(r, f) (38)

where No(r,0; F') is the reduced counting function of those zeros of F’ which
are not the zeros of FI(F — 1) and Ng(r,0; G) is similarly defined.
By the second fundamental theorem, we see that

T(r,F)+T(r,G) < N(r,o0; F) + N(r,0; F) + N(r,00; G) + N(r,0;G) + N(r,1; F) + N(r,1;G)
— N,

(39)
o(r,0; F') — No(r,0;G') + S(r, F) + S(r, G).

Using Lemmas 2.6 and 2.7, (37) and (38) we can get

N(r, ,F) + N(r,1;G) < N(r, ,F |= 1) + Np(r, 1 F) + Np(r, 1;6) + Ny (r, 1 F) + N(r, 15G)
< N(Tv 17F |: 1) + N(’l", 1aG) _NL(Tv ]-,F) _NL(Ta 17G) +NF>2(T7 17G)
<N(rLF|>2)+ N(r LG |> 2) + N(r,00; F) + Nu(r, , F,G) + T(r, G) (40)
1— _ _ 1—
—m(r,l;G)—i—O(l)—i—iN(r,oo;F)—NL(T,l;F)—NL(r,l;G)+§N(r,0,F)
+ No(r,0; F') + No(r,0;G') + S(r, F) + S(r, G).

Combining (39) and (40), we can obtain

_ 1—
T(r,F) < ;N(T, 00; F') + Na(r,0; F) + Na(r,0; G) + §N(T70;F) (41)
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By the definition of F, G we have

d d
T(TvF)SQT(Tmf)_'_FO H Z+CJ _T(T7Hf(z+cj)5j)
j=1 j=

=

1
+ Nk+2 (7’7 d

d
S5\ (k)
[T f(z+cj) ) +21(r, 9) + LoT'(r, g) + T(T,Jl;[l g(z +¢;)%)

d 1 1— 1

53 T ri -N(r
T Lot )+Nk+2<,H?_lf(z+cj)sj>+ RV )+ N By

j=1

— 1 7 7 s
N m) eV )+ N ( [1/G+e) ) + 8, )+ S(r,9).

j=1
d d

T(r,F) < (2+To)T(r, f) + T(r, H (z+¢) ) ) + T, f7) = T(r, f7) = T(r, [ ] £z + ¢)™)
] ':

+(k+2)dT(r, )+ 24T0)T(r,g9) + kAT (r,9) + (k + 2)dT(r,g) + (7T + f/\) (r, f)

d
+%T(r,f)+%T(r,f) L ]Hlfz+c )*1)M) I:[1 (2 +¢;)™)
1
+N”k01ﬁ f@+qrn®)y+ﬂ“ﬂ+swﬂ)

(T NG D)+ (U ToT(r, £) 4 S (kA + (14 BT, 1) + S0, f) + S(r,0)
< 2+ To)T(r, f) + (k +2)dT(r, f) + (24 T)T(r,g) + (kA + (k + 2)d)T(r, g)

S ATOT(r, f) + 5 (14 TO)T(r, £) + 2 (kA + (1 + KT, f)

From Lemma 2.11, we have

n+m—=XNT(r,f) <2+To+ (k+2))[T(r, f)+T(r,g9)] + kAT (r, g)

+ [15+ gl By <1+k)d] T(r, f) + S(r. f) + S(r. 9)

2 2 2 2

(42)

Similarly for T'(r, g) we obtain the following
(n-+m — NT(r,g) < 2+ o + (k + DAT(r, £) + T(r,0)] + kAT (r, f)

LR “*“ﬂTmm+smﬁ+smmM$

Sttty T

From (42) and (43), we have

(n+m—=N)[T(r, f)+T(r,g)] < (2+To+ (k+2)d)[T(r, f) +T(r,g)] + [EX + ? + ;)\ + I;)\ )
Lo OERdy g by L T g) + S(r 1) + S(r.g)

2 2

T(r, F)=T(r,F1)+ (k+2)dT(r, f) + (2+To)T(r,g9) + (kXA + k + 2)dT(r, g)
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which is contradiction to n > %9 + w + %Fo + W -

Proof of Theorem 3

Let F,G be given by (1), from the assumption of Theorem 3, we know that F'
and G share “(1,0)”.
Let H be defined as in (3) Suppose that H # 0. Since F,G share “(1,0)”, we can
get

N(r,00; H) < N(r,00; F) + N(1,F |[>2) + N(r,0; F |[>2) + N(r,0;G |> 2)

N
_ _ _ _ 45
NL(Tal;F)+NL<T71;G)+NO(T70;F/)+N0(T70;G/)+S(Tuf)( )

and

NP (r,1;F) < N (r,1;G)
NZ(r,1;F) < NZ(r1;G)
Ny (r,1;F) < N(r,

(r, f) (46)

Using Lemmas 2.8-2.10 and (45) and (46), we get

N LF)+ N 1;G) < Np(r1;F) + No(r, 1;G) + Noe(r, 1, F) + N(r, 1, G)
< NP (r1;F)+ N(r,1;G) = Np(r, 1;G) + Nps1(r, 1;G) + Nasa (1, 1; G)
<N(r,0;F [>2) + N(r,0;G |> 2) + N(r,00; F) + N.(r, 1; F,G) + T(r,G) (47)
m(r,1;G) +O(1) = Np(r,1;G) + Np>1(r,1;G) + Ngs1(r, 1;G) + No(r, 0; F')
No(r,0;G') + S(r, F) + S(r,G).

Combining (39) and (47) and by Lemma we can obtain

T(r,F) < 6N(r,00; F) + Ny(r,0; F) + 2N (r,0; F) + 2N (2(r,0; G) + S(r, )
§Ng(T,O;F)—i—QN(T,O;F)+2N(2(T,O;G)+6N(T,OO;F)

d d
T(r,F) < 2T(r, f) + ToT(r, f) + T(r, (] | (2 + ¢)*) H (z+¢;)
1 = d B d
+ Niyo (T, H?—1f(z+ci)sj> +2[T(r,j1;[1f(z+0j)sj) +kW(r,j1;[1f(z+cj)sf)
d d d
—T(er(z—i—cj)SJ) (1 + k)dT(r, f)] + 2[T H Z4¢;)%) H z4¢j)
J; j=1 ; Jj=1
—T(r,H 9(z+¢j)%) + (14 k)dT(r,g)] + 6[N(r, f) + N(r, n flz+¢)%)]+S8(r, f)

<
Il

—
<.
Il

—
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d
Fz+c) )N 4 T, 1) = T, f7) = T, [ [ £z + ¢5)

j=

< (2 + FO)T(T’ f) + T(T, (

u::]&
I
I

J

.

d
+ (k+2)dT(r, f) + 2(T(r, [] f(z+¢)*) + kEN(r, [ £z + ¢5)
Jj=1

1

J

d d
flz+¢)%)+ A+ Ek)dT(r, f H Z2+4¢;)%) + kN(r H z+cj)
e i

\
=
3
s

<.
Il
-

9(z+¢;)%) + A+ k)dT (r, 9)] + 12T (r, f) + 6XT (r, f) + S(r, f)

|
g
=3
=

j=1
Tr,F)<24To)T(r,f)+T(r,F)=T(r,F1) + (k+2)dT(r, f) + (2kXA + 2(1 + k)d)T (7, f)
+ (2kA+2(1 + k)A)T(r,g) + (12 4+ 6T (r, f) + S(r, f) (48)
T(r, F1) < 24T0)T(r, )+ (k+2)dT(r, f) + 2(kA+ (1 + k)A)[T(r, f) + T(r,g)]
+ A2+ 6N)T(r, )+ S(r, f)
From Lemma 2.11 we have

m4+m—=NT(r, ) <2+To+ (k+2))T(r, f) +2(kA+ 1+ k)D[T(r, f) + T(r,9)] (49)

+ (124 6N)T(r, f) + S(r, f)
Similarly for T'(r, g) we obtain the following
(n+m—NT(r,g) < 2+To+ (k+2)d)T(r,g) + 2(kXA+ (1 + k)d)[T(r, f) + T(r, 9)] (50)

+ (124 6N)T(r,9)+ S(r,9)

from (49) and (50), we have
m+m—=NT(r, f)+T(r,g)] <24+To+ (k+2))|T(r, f) +T(r,g9)] +4(kX+ (1 + k)d) (51)

(T(r, ) +T(r,g)l + (124 6N)[T(r, f) + T(r, )] + S(r, [) + 5(r,9)
which is contradiction to n > d(5k 4+ 6) + T'o + A4k + 7) + 14 — m.
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