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SOME INEQUALITIES FOR THE RATIO OF CONFLUENT
HYPERGEOMETRIC FUNCTION OF THE SECOND KIND

B. RAVI AND A. VENKAT LAKSHMI

ABSTRACT. In this paper, the authors establish some inequalities for the ratio
of the Confluent hypergeometric function of the second kind using the method
of analysis and theory of inequality and the integral representation. We also
establish some completely monotonic functions involving the ratio of confluent
hypergeometric function of the second kind.

1. INTRODUCTION

In this paper, we study the completely monotonic properties for the confluent
hypergeometric functions of the second kind denoted by ¥(a,c, z) also known as
Tricomi confluent hypergeometric functions. This function is a particular solution
of Kummers differential equation [Il p. 504].

zy’ () + (¢ — 2)y'(z) — ay(z) = 0,
and for a > 0,c € R, and > 0 has the following integral representation [T, p. 505]
1 / % a1 —a—1_—at
—— [ A4 et (1)
I'(a) Jo
We recall that a function f is said to be completely monotonic on an interval I
if f has derivatives of all orders on I which alternate successively in sign, that is,

(1" ™ (@) >0 (2)

for all x € I and for all n > 0. If inequality is strict for all x € I and all

n > 0, then f is said to be strictly completely monotonic. Completely monotonic

functions play an eminent role in areas like mathematical analysis [5], probability

theory [3], numerical analysis [4], physics [2], and the theory of special functions (see

[6] - [22] and references therein). The celebrated Bernstein-Widder’s Theorem [5]

characterizes that a necessary and sufficient conditions that f should be completely
monotonic for 0 < z < oo is that

f(x) = / " e tdat) (3)

w(a7 C’ x) =
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where a(t) is non-decreasing and the integral converges for 0 < x < oo. This
expresses that a completely monotonic function on (0,00) is a Laplace transform
of the measure a. The Stieltjes-type transforms [19]

- [ L0

(z+1)°
are completely monotonic for any non-negative function f under the convergence
conditions of the integral. In this paper, we prove our main results based on the

integral representation of quotients of the confluent hypergeometric function of the
second kind [25] and ideas from [23] and [24].

2. INEQUALITIES INVOLVING RATIO OF CONFLUENT HYPERGEOMETRIC
FUNCTION OF THE SECOND KIND

Theorem 1 If ¢ > 0,2 < ¢ < a+ 1 and x > 0 then the following inequality is

valid
T(c)T'(c—2) 1

z/J(a,c—l,x)<< r2(c—1) —a+1)$¢(a707$) 4)

Proof. Consider the integral representation [24] for |arg z| < «
-1 o0
Plac—Lz) / T g, (1)t (5)
Z/J(a, ¢, l‘) o T +1 7

where,
tce"p(a, e te'™)| 2

O,..(t) = T(@)a—ct2) ,a>01<c<a+1
by equation (5]), we have
. 1/J(G7C - 1,.’17) _
.71:1310 Y(a,c,r) 0 (©)
and
Y(a,c—1,2) '_ e t
(¢ o ) _ /O s @)
Now,
w(a‘ac_ 1,33) ' _ w(a/vcax)wl(avc_ 1,$) _¢(aa0— 1,.73)1#/(0170,.13)
( Y(a,c, ) ) B Y2(a, ¢, x)
(w(a + e+ 1, z)(a,c—1,x) —(a+1,¢,2)¢(a,c, :1:))
= a
77[}2(CL7 C7 '1:)
and in view of the asymptotic expansion [Il, p. 508]
Y(a,c,z) ~ F(l_c‘(;)l)xl_c,c >1,z — 0. (8)

we obtain that
Vla,e—1,2)\ I'(a) \>/T(c)T(c—2) I'2(c—1)
<¢<w>) - “(nc - 1>> <r<a>r<a +1)  T(a)T(a+ 2>>
where a > 0 and 2 < ¢ < a+ 1 are fixed and = — 0. After some algebra we get

Yla,c— L)\ T(Ql(c-2) 1
< 1/J(a70,37) > - FQ(C—l) 7@-{-1 (9)
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where a > 0 and 2 < ¢ < a + 1 .Now, using () we obtain
/ [
lim Y(a,c—1,2) :/ D, (1) dt
z—0 QZJ(CL, & ‘T) 0 3

thus we have

= &, .t T(e)(c—2 1
[ Bl M=) "
0 t I2(e¢-1) a+1
where ¢ > 0 and 2 < ¢ < a+1. Now in view of and the inequality (z+t)? > 2

we have

Y(a,c—1,z)\ B <z T Pae(t) ,  T(l(c—2) 1
( ¥(a,c, ) > B /0 mth)“’C(t)dK/o ;o= Mc—1) a+1

L(e)(c—2) 1 !
— X
I2(c-1) a+1
thus the function

Y(ac—1,z) (D()l(c-2) 1 .
T P(a,c,x) <F2(c—1) a—|—1>

is strictly decreasing on (0, 00) for a > 0 and 2 < ¢ < a+1. Thus we have inequality

A

. 0
Theorem 2 If a > 0,2 <c<a+1and 0 < x <1 then the following inequality
n P(e)l(e—2) o )
c)l'(c—2 1 a,c—1,x 1
— . ] 11
( I2(c—1) a+ 1) < Y(a, e, x) 2 n(z) (11)
and the inequality reversed if z > 1.
Proof. For a > 0,1 <c<a+1and z >0 we have
-1 o0
Ylac—Lz) / T g, (H)dt (12)
P(a,c,x) 0o T+t "

Fora>0,2<c<a+1,z>0, and the inequality (1 + ¢) > ¢t we have

. Y(la,e—1,2) T Pae(t) [T Pae(t) T((c—=2) 1
ilaml P(a,c,x) </0 1+t dt_/o t de = I(c—1) a+1 (13)

Fora > 0,2 <c<a+1, > 0,and the inequality (z +t)? > 22t we have

<W) . /OOO ﬁfbw(t)dt < /OOO %dt — (;m(x))/ (14)

thus the function

—1 1
g Yaezbo) Lo
Y(a,c,x) 2
is strictly decreasing on (0,00) fora >0 and 2 <c<a+ 1.
. Yla,c—1,2) 1 Yla,e—1,2) 1
lim ( 20728 2y neem L8 2
b (e - g < S - g
Thusforinviewof and fora > 0,2 <c<a+1and 0 <z <1 we have

(r(c)r(c_z) 1 ><¢(a,c—1,x) 1

-1 a+1 ¥(a,c,x) —§ln(:c)

which is same as the equation . [
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3. COMPLETELY MONOTONIC FUNCTIONS INVOLVING RATIO OF CONFLUENT
HYPERGEOMETRIC FUNCTION OF THE SECOND KIND

Theorem 3 If ¢ > 0 and 2 < ¢ < a + 1 then the following function is

L(e)l(c—=2) 1 . Y(a,c—1,2) (15)
I2(c—1) a+1 Y(a, e, x)
is strictly completely monotonic on (0, 00).
Proof. Let
T'(c)l'(c— 2 1 Yla,c—1,x
ooy = (FODE=2) LY plae—La)
I2(e-1) a+1 Y(a,c, )
using the integral representation we have
© nltd, (1)
—1)" faclx) = ——=dt >0
(1 fucla) = [ e
for all x > 0,a >0 and 2 < ¢ < a + 1. Thus the function
I'(e)['(c —2 1 Pla,c—1,x
footoy = (DOTE=2) 1) e 1)
I2(ec—1) a+1 Y(a, e, )
is strictly completely monotonic on (0,00) for a >0 and 2 < ¢ < a + 1. |

Ifa> 0,2 <c<a+1 then the following function is

Yla,c—1,x) %ln(x) B <F(C)I‘(c— 2) 1 > (16)

Y(a,c,x) -1 a+1
is strictly completely monotonic on (0, 1).
Proof. Let
Y(a,c—1,z) 1 L(c)T'(c—2) 1
a,c =~  — = 1 - -
Gae (@) Y(a,c,x) 2 n(z) I2(c—1) a+1

then we have,
a,c—1 ! 1
g(’l,c(x) = <w( , 7.%')) —— <0

implies that
(—1)'gh () >0, forall0<z<1l,a>0 and2<c<a+1.
It is easy to see that the function % — t®,.(t) is positive on (0,00). using the
integral representation and
1

o 1
f:/ Atz >0
T o (x+1)?

e t 1 /> 1
! :v:/ 7<I>actdt—f/ ———dt
ga,c( ) 0 (.T+t)2 , () 2 0 (I—Ft)Q
differentiating n — 1 times and for all 0 < < 1,a > 0 and 2 < ¢ < a + 1 we have

<4ﬁﬂﬂmzémm@—ﬂ%ﬂ»

(z 1)+t

we have

dt >0

thus the function
Y(a,c—1,z) 1 L(c)T'(c—2) 1
w(aa C, I‘) 2 " ( >
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is strictly completely monotonic for all 0 < x < 1,6 >0 and 2 < c < a+ 1. a
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