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HARDY-SOBOLEV-MAZ’ YA INEQUALITY ON TIME SCALE

AND APPLICATION TO THE BOUNDARY VALUE PROBLEMS

F. Z. LADRANI AND A. BENAISSA CHERIF.

Abstract. In this paper, we will prove some new dynamic inequalities of
Hardy-Sobolev-May’ze type on time scales. An application in the boundary

value problems for dynamic equation.

1. Introduction

The classical Hardy inequality states that for f ≥ 0 and integrable over any
finite interval (0, x) and fp is integrable and onvergent over (0,∞) and p > 1, then∫ ∞

0

(
1

x

∫ x

0

f (t) dt

)p

≤
(

p

p− 1

)p ∫ ∞

0

fp (t) dt (1)

holds and the constant
(

p
p−1

)p
is the best possible. Inequality (1) which is usually

referred to in the literature as the classical Hardy inequality, was proved in 1925
by Hardy [17]. More general Hardy integral inequalities have been studied in con-
tinuous. The inequalities of Hardy and Sobolev have a pivotal role in analysis and
continue to be topics of intensive study. In its familiar basic form in Lp(Ω); the
Hardy inequality takes the form∫

Ω

|∇f (x)|p dx ≥ C (n, p)

∫
Ω

|f (x)|p

|x|p
dx, for all f ∈ W 1,p

0 (Ω) , (2)

where Ω is a bounded domain in Rn, containing the origin, p > 1 and C (n, p) is
constant > 0.

Indeed, Rupert l. Frank and Michael loss [20] have obtained the following im-

proved Hardy inequalities valid for any f ∈ W 1,p
0 ((a, b))∫ b

a

∣∣∣f ′
(x)
∣∣∣2 dx ≥ 1

4

∫ b

a

∣∣∣∣f (x)

x

∣∣∣∣2 dx+Kp ∥f∥2Lp((a,b)) . (3)

where a, b ∈ R, a ≤ 0 < b, p > 1 and Kp is constant > 0.
Hardy type inequalities on time scales not only give a unification of continuous

inequalities of Hardy type but also can be extended to different types of time scales.
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In 2005, Řehàk [8] stated that if a > 0, P > 1, and f be a nonnegative function
such that the delta integral

∫∞
a

fp (s)∆s exists as a finite number, then∫ ∞

a

(
1

σ (t)− a

∫ σ(t)

a

f (s)∆s

)p

≤
(

p

p− 1

)p ∫ ∞

a

fp (t)∆t (4)

unless f ≡ 0. If, in addition,
µ (t)

t
→ 0 as t → ∞, then the constant

(
p

p−1

)p
is the

best possible.
The aim of this paper is to extend a Hardy-Sobolev inequality (2) and Hardy-

Sobolev-Maz’ye inequality (3) on time scales and we give an application of our
extension of the Hardy inequality in the boundary value problems.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers. For
t ∈ T, we define the forward jump operator σ : T → T by σ (t) = inf {s ∈ T : s > t},
and the backward jump operator ρ (t) = sup {s ∈ T : s < t}. (supplemented by
inf ∅ := supT and sup ∅ := inf T) are well defined. If σ (t) > t we say that t
is right-scattered, while if ρ (t) < t we say that t is left-scattered. Points that are
simultaneously right-scattered and left-scattered are said to be isolated. If σ (t) = t,
then t is called right-dense; if ρ (t) = t, then t is called left-dense. Points that are
right-dense and left-dense at the same time are called dense. If T has a left-scattered
maximum M , define Tk := T− {M}; otherwise, set Tk := T.

The graininess function for a time scale T is defined by µ (t) = σ (t)− t, and for
any function f : T → R the notation fσ (t) denotes f (σ (t)).

Let f : T → R be a real valued function on a time scale T. Then, for t ∈ Tk,
we define f∆ (t) to be the number, if one exists, such that for all ε > 0, there is a
neighborhood U of t such that for all s ∈ U ,∣∣fσ (t)− f (s)− f∆ (t) (σ (t)− s)

∣∣ ≤ ε |σ (t)− s| .

We say that f is delta differentiable on T provided f∆ (t) exists for all t ∈ Tk. We
will make use of the following product and quotient rules for the derivative of the

product fg and the quotient
f

g
(where ggσ ̸= 0) of two differentiable function f

and g

(fg)∆ = f∆gσ + fg∆, and

(
f

g

)∆

=
f∆g − fg∆

ggσ
. (5)

A function f : T → R will be called rd-continuous provided it is continuous at each
right-dense point and has a left-sided limit at each point, we write f ∈ Crd (T) =
Crd (T,R) .

The set of functions that are differentiable and whose derivative is rd-continuous
is denoted by C1

rd (T) = C1
rd (T,R) .

We will work with the Lp
∆ ([a, b]T) spaces, where [a, b]T = [a, b] ∩ T, a, b ∈ T,

a < b, is an arbitrary closed subinterval of T and [a, b)T = [a, b)∩T; we state some
of their properties whose proofs can be found in [6, 3, 10] .

Lemma 2.1. The set of all right-scattered points of T is at most countable, that
is, there are I ⊂ N and {ti}i∈I such that

R := {t ∈ T : σ (t) > t} = {ti}i∈I .
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Proposition 2.2. Let A ⊂ T. Then A is a ∆−measurable if and only if, A is
Lebesgue measurable. If b /∈ A, then

µ∆ (A) = µL (A) +
∑
i∈IA

µ (ti) ,

where IE := {i ∈ I : ti ∈ E}.

Definition 2.3. Let E ⊂ T be a ∆-measurable set and let p ∈ R be such that
p ≥ 1 and let f : E → R be a ∆-measurable function. Say that f belongs to Lp

∆ (E)
provided that either ∫

E

|f (s)|∆ ∆s < ∞ if p ∈ R,

or there exists a constant C ∈ R such that

|f | ≤ C ∆− a.e.on E if p = +∞.

Theorem 2.4. Let p ∈ R be such that p ≥ 1. Then, the set Lp
∆ ([a, b]T) is a Banach

space together with the norm defined for every f ∈ Lp
∆ ([a, b]T) as

∥f∥Lp
∆
:=


(∫

[a,b)T
|f (t)|∆ ∆t

) 1
p

, if p ∈ R,
inf {C ∈ R : |f | ≤ C ∆− a.e.on [a, b]T} if p = +∞.

Moreover, L2
∆ ([a, b]T) is a Hilbert space together with the inner product given for

every f, g ∈ Lp
∆ ([a, b]T) by

(f, g)L2
∆
:=

∫
[a,b)T

f (s) .g (s)∆s.

Definition 2.5. Assume n ∈ N, n ≥ 1, p ∈ R and p ≥ 1. Let f : [a, b]T →
R. Say that f belongs to Wn,p

∆ ([a, b]T) if and only if f ∈ Lp
∆ ([a, b]T) and f∆j ∈

Lp
∆

(
[a, ρj (b)]T

)
, for all j ∈ [1, n− 1]Z.

Where

ρj (b) = ρ
(
ρj−1 (b)

)
and f∆j

=
(
f∆j−1

)∆
, for all j ∈ [1, n− 1]Z .

Theorem 2.6. Assume n ∈ N, n ≥ 1, p ∈ R and p ≥ 1. The set W 1,p
∆ ([a, b]T) is a

Banach space together with the norm defined for every f ∈ Wn,p
∆ ([a, b]T) as

∥f∥W 1,p
∆

:=
n∑

j=0

∥∥∥f∆j
∥∥∥
Lp

∆

,

where f∆0

= f. Furthermore, the set Hn
∆ ([a, b]T) = Wn,2

∆ ([a, b]T) is a Hilbert space
together with the inner product given for every f, g ∈ Hn

∆ ([a, b]T) by

(f, g)Hn
∆
:=

n∑
j=0

(
f∆j

, g∆
j
)
L2

∆

.

Definition 2.7. Assume n ∈ N, n ≥ 1, p ∈ R and p ≥ 1, define the set
Wn,p

0,∆ ([a, b]T) as the closure of the Cn
0,rd ([a, b]T) in W 1,p

∆ ([a, b]T).

Denote as Hn
0,∆ ([a, b]T) = Wn,2

0,∆ ([a, b]T).
Where

Cn
0,rd ([a, b]T) =

{
f ∈ Cn

rd ([a, b]T) : f (a) = f
(
ρj (b)

)
= 0, for all j ∈ [1, n− 1]Z

}
.
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Proposition 2.8. Assume n ∈ N, n ≥ 1, p ∈ R and p ≥ 1. Let f ∈ Wn,p
∆ ([a, b]T).

Then, f ∈ Wn,p
0,∆ ([a, b]T) if and only if f (a) = f

(
ρj (b)

)
= 0, for all j ∈ [1, n− 1]Z .

Proposition 2.9. Let p ∈ R be such that p ≥ 1. Then, there exists a constant
L > 0, only dependent on (b− a), such that

∥f∥W 1,p
∆

≤ L.
∥∥f∆

∥∥
Lp

∆

, for all f ∈ W 1,p
0,∆ ([a, b]T) .

that is, in W 1,p
0,∆ ([a, b]T), the norm defined for every f ∈ W 1,p

0,∆ ([a, b]T) as
∥∥f∆

∥∥
Lp

∆

is equivalent to the norm ∥f∥W 1,p
∆

.

3. Main Results

In this paper, we suppose that T is a particular time scale, a < b < ∞ are points
in T.

Now, we are ready to state and prove the main results in this paper. We gener-
alize the Hardy-Sobolev-Maz’ya inequality (3) on time scales.

Theorem 3.1. Let q ≥ 2. Then there exist constant Cq only on q such that the
inequality∫ b

a

∣∣f∆ (t)
∣∣2 ∆t ≥ 1

4

∫ b

a

|f (t)|2

(b− t)
2∆t+ Cq

(∫ b

a

|f (t)|q ∆t

) 2
q

, (HSM)

holds for all f ∈ W 1,q
0,∆ ([a, b]T).

If, in addition, t → µ (t)

b− t
is a function nonincreasing.

Proof. Let g is function define by:

f (t) = η (t) g (t) , t ∈ [a, b]T .

Where η (t) =
√
b− t, for all t ∈ [a, b]T. Then η ∈ C1

rd ([a, b]T) and

η∆ (t) =
−1

η (t) + ησ (t)
. (6)

Using propertie (6), we obtain that

ησ (t) g∆ (t) = f∆ (t) +
f (t)

η2 (t) + η (t) ησ (t)
. (7)

By (6), we have ησ (t) ≤ η (t) , and∣∣ησ (t) g∆ (t)
∣∣2 =

∣∣f∆ (t)
∣∣2 + f2 (t)

(η2 (t) + η (t) ησ (t))
2 +

2f∆ (t) f (t)

η2 (t) + η (t) ησ (t)

≤
∣∣f∆ (t)

∣∣2 + 2f (t)

(η2 (t) + η (t) ησ (t))

{
f (t)

(η2 (t) + η (t) ησ (t))
+ f∆ (t)

}
− |f (t)|2

4 (b− t)
2

≤
∣∣f∆ (t)

∣∣2 + ξ (t) g∆ (t) g (t)− |f (t)|2

4 (b− t)
2 . (8)

Where ξ (t) := −2η∆ (t) ησ (t), for all t ∈ [a, ρ (b)]T. Then ξ is ∆-differentiable for
all the points right-scattered. Let t ∈ [a, b]T such that t is point right-dense, then t
is point accumulation, we have two cases.
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(a) First case, there exists c, d ∈ [a, b]T such that t ∈ [c, d] ⊂ [a, b]T, then ξ is
∆-differentiable in t and ξ∆ (t) = 0.

(b) Second case, there exists a sequence (tk)k∈N ∈ R∩ [a, b]T, such that, for all
k ∈ N one has tk is point isolat and tk −→ t as k −→ ∞. In this case,
ξ∆ (t) do not exist.

By the proposition 2.2, we get

µ∆

({
t ∈ [a, b]T : σ (t) = t and t = lim

k−→∞
tk, (tk)k∈N ⊂ R

})
= 0.

Consequently, we obtain that ξ∆ is ∆-differentiable a.e on [a, b]T .
Let t, s ∈ [a, ρ (b)]T shch that t > s, we have

ξ (t)− ξ (s) =
1

2
ξ (t) ξ (s)

{
η (s)

ησ (s)
− η (t)

ησ (t)

}
=

1

2
ξ (t) ξ (s)

{√
1 +

µ (s)

b− σ (s)
−

√
1 +

µ (t)

b− σ (t)

}
.

Then ξ is function increasing.
Therefore,∫ b

a

ξ (t) g∆ (t) g (t)∆t = −
∫ b

a

[ξ.g]
∆
(t) gσ (t)∆t

= −
∫ b

a

ξ∆ (t) |gσ (t)|2 ∆t−
∫ b

a

ξ (t) g∆ (t) gσ (t)∆t

≤ −
∫ b

a

ξ (t) g∆ (t) g (t)∆t−
∫ b

a

ξ (t)µ (t)
∣∣g∆ (t)

∣∣2 ∆t

≤ −
∫ b

a

ξ (t) g∆ (t) g (t)∆t.

Using the above inequality we have∫ b

a

∣∣ησ (t) g∆ (t)
∣∣2 ∆t ≤

∫ b

a

(∣∣f∆ (t)
∣∣2 − |f (t)|2

4 (b− t)
2

)
∆t (9)

Bötzsche rule [1], we see that

|g (t)|
q+2
2 ≤

q+2

2

∣∣g∆ (t)
∣∣ ∫ 1

0

|hg (t) + (1− h) gσ (t)|
q
2 dh

≤
q+2

2

∣∣g∆ (t)
∣∣ |g1 (t)| q2 .

Using the fact that η is decreasing and we find that

|f (t)|
q+2

2 = |η (t)|
q+2
2

∫ t

a

(
|g (s)|

q+2

2

)∆

∆s

≤ q + 2

2

∫ t

a

|η (t)|
q+2
2
∣∣g∆ (s)

∣∣ |G (s)|
q
2 ∆s

≤ q + 2

2

∫ b

a

∣∣g∆ (s)
∣∣ |G (s)|

q
2 |η (s)|

q+2
2 ∆s.
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Where G := max {|g| , |gσ|} .
Using the Hölder inequality we find

|f (t)|q+2 ≤ mq

(∫ b

a

∣∣g∆ (t)
∣∣2 η2 (t)∆t

)(∫ b

a

|G (t)|q ηq (t)∆t

)

≤ mq

∫ b

a

(∣∣f∆ (t)
∣∣2 − |f (t)|2

4 (b− t)
2

)
∆t

(∫ b

a

|F (t)|q ∆t

)
.

Where mq = 1
4 (q + 2)

2
and F := max {|f | , |fσ|} .

Then∫ b

a

|f1 (t)|q ∆t ≤ (mq)
q

q+2

(∫ b

a

(∣∣f∆ (t)
∣∣2 − |f (t)|2

4 (b− t)
2

)
∆t

) q
q+2
(∫ b

a

|F (t)|q ∆t

) q
q+2

.

Thus ∫ b

a

∣∣f∆ (t)
∣∣2 ≥ 1

4

∫ b

a

|f (t)|2

(b− t)
2∆t+

1

mq

(∫ b

a

|F (t)|q ∆t

) 2
q

.

The intended inequality (HSM) is proved. �

4. Application

We are concerned with the existence of positive solutions of the p-Laplacian
dynamic equation on a time scale

[
rϕp

(
u∆
)]∆

+
ξ

(σ (t)− a)
pϕp (u

σ) = −f in
[
a, ρ2 (b)

]
T ,

u (a) = u (b) = 0,
(10)

where ϕp (s) is p-Laplacian operator, i.e., ϕp (s) = |s|p−1
s, p > 1, f ∈ Lq

∆ ([a, b]T),
1
p + 1

q = 1, r ∈ Crd ([a, b]T) and αξ ≥ Cp (Define in the Theorem 3.1).

Consider again the functional

Ep (u) :=
1

p

∫ b

a

r
∣∣u∆

∣∣p ∆t− 1

p

∫ b

a

h |uσ|p ∆t−
∫ b

a

fuσ∆t,

is then well de ned on the Sobolev space W 1,p
0,∆ ([a, b]T). The (weak) solutions of the

problem (10) are then the critical points of the functional (Ep).
The classical results in the Calculus of Variations characterize the weak. Then, the
problem (10) has weak solution in W 1,p

0,∆ ([a, b]T) ∩W 2,p
0,∆ ([a, b]T) .
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