
Electronic Journal of Mathematical Analysis and Applications

Vol. 6(1) Jan. 2018, pp.109-116.

ISSN: 2090-729X(online)

http://fcag-egypt.com/Journals/EJMAA/

————————————————————————————————

A NEW COMMON FIXED POINT THEOREM IN

INTUITIONISTIC FUZZY METRIC SPACES

J.JEYACHRISTY PRISKILLAL AND P.THANGAVELU

Abstract. In this article, we prove a common fixed point theorem for com-
patible mapping in intuitionistic fuzzy metric spaces. An example is given to
support the main result.

1. Introduction

Gerald Jungck[5] introduced the concept of compatible mapping which is the
generalization of the commuting mapping. Mishra et al.[8] generalized this con-
cept to fuzzy metric spaces. The fuzzy version of the result of Pant[10] was proved
by Vasuki. She proved a common fixed point theorem using R-weakly commut-
ing. Common fixed point theorems for weakly commuting maps are given by so
many authors[13],[15],[21]. Y.J.Cho introduced the concept of compatible mapping
of type (α)[2] and compatible mapping of type (β)[3]. Further some Mathemati-
cians proved common fixed point theorem for compatible mappings in fuzzy metric
spaces[18],[17],[19] and intuitionistic fuzzy metric spaces[9],[11],[16],[20],[22]. In this
article, we prove a common fixed point theorem for compatible mapping in intu-
itionistic fuzzy metric spaces.
Definition 1 [14] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is called a t-norm if
the following conditions hold:
(i)∗ is associative and commutative;
(ii)a ∗ 1 = a,∀a ∈ [0, 1];
(iii)a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d,∀a, b, c, d ∈ [0, 1].
If ∗ is continuous then it is called a continuous t-norm.
Definition 2 [14] A binary operation ⋄ : [0, 1]× [0, 1] → [0, 1] is called a t-conorm
if the following conditions hold:
(i)⋄ is associative and commutative;
(ii)a ⋄ 0 = a,∀a ∈ [0, 1];
(iii)a ⋄ b ≤ c ⋄ d whenever a ≤ c and b ≤ d,∀a, b, c, d ∈ [0, 1].
If ⋄ is continuous then it is called a continuous t-conorm.
Definition 3 [12] Let X be an arbitrary set, ∗ be a continuous t-norm, ⋄ be a
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continuous t-conorm and Let X be an arbitrary set, ∗ be a continuous t-norm, ⋄
be a continuous t-conorm and M,N be fuzzy sets on X2 × (0,∞). Consider the
following conditions ∀u, v, w ∈ X and t > 0,
(i)M(u, v, t) +N(u, v, t) ≤ 1;
(ii)M(u, v, 0) = 0;
(iii)M(u, v, t) = 1 if and only if u = v;
(iv)M(u, v, t) =M(v, u, t);
(v)M(u,w, t+ s) ≥M(u, v, t) ∗M(v, w, s);
(vi)M(u, v, .) : (0,∞) → [0, 1] is left continuous;
(vii)N(u, v, 0) = 1;
(viii)N(u, v, t) = 0 if and only if u = v;
(ix)N(u, v, t) = N(v, u, t);
(x)N(u,w, t+ s) ≤ N(u, v, t) ⋄N(v, w, s);
(xi)N(u, v, .) : (0,∞) → [0, 1] is left continuous.
If M satisfies conditions (ii)-(vi), then the pair (M, ∗) is called fuzzy metric on
X. In this case, the triple (X,M, ∗) is called a fuzzy metric space. If N satisfies
conditions (vii)-(xi), then the pair (N, ⋄) is called dual fuzzy metric on X. Then
the triple (X,N, ⋄) is called a dual fuzzy metric space.
If (M, ∗) is a fuzzy metric on X and (N, ⋄) is a dual fuzzy metric on X satisfying
condition (i), then the 4-tuple (M,N, ∗, ⋄) is called an intuitionistic fuzzy metric on
X. In this case, the 5-tuple (X,M,N, ∗, ⋄) is called an intuitionistic fuzzy metric
space.
Example 4 [1] Let (X, d) be a metric space. Denote a ∗ b = ab and a ⋄ b =
min{1, a + b},∀a, b ∈ [0, 1] and let Md and Nd be fuzzy sets on X ×X × (0,+∞)

defined as follows:Md(u, v, t) = t
t+d(u,v) and Nd(u, v, t) = d(u,v)

t+d(u,v) ,∀t > 0, then

(X,Md, Nd, ∗, ⋄) is an intuitionistic fuzzy metric space.
Definition 5 [6] Let (X,M,N, ∗, ⋄) be an intuitionistic fuzzy metric space. A se-
quence {un} in X is called
(a)convergent to a point u ∈ X if and only if limn→+∞M(un, u, t) = 1, and
limn→+∞N(un, u, t) = 0,∀t > 0,
(b)Cauchy if limn→∞M(un, un+p, t) = 1, and limn→+∞N(un, un+p, t) = 0,∀t > 0
and p > 0.
Definition 6 An intuitionistic fuzzy metric space (X,M,N, ∗, ⋄) is said to be com-
plete if every Cauchy sequence in X is convergent.
Definition 7 [8] In an intuitionistic fuzzy metric space (X,M,N, ∗, ⋄), two self
mappings A and B are said to be compatible if limn→∞M(ABun, BAun, t) = 1
and limn→∞N(ABun, BAun, t) = 0 whenever un is a sequence in X such that
limn→∞Aun = limn→∞Bun = w for some w ∈ X.

2. Main Results

Definition 1 Let Ψ be the class of all non decreasing mappings ψ : [0, 1] → [0, 1]
and η : [0, 1] → [0, 1] such that
(i)limn→∞ ψn(s) = 1,∀s ∈ (0, 1];
(ii)ψ(s) > s,∀s ∈ (0, 1);
(iii)ψ(1) = 1;
(iv)limn→∞ ηn(r) = 0,∀r ∈ [0, 1);
(v)η(r) < r,∀r ∈ (0, 1);
(vi)η(0) = 0.
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Example 2 Define ψ : [0, 1] → [0, 1] by ψ(s) = 2s
s+1 ,∀s ∈ [0, 1].

ψ2(s) = 4s
3s+1 , ψ

3(s) = 8s
7s+1 , . . . , ψ

n(s) = 2ns
(2n−1)s+1 ,∀s ∈ [0, 1].

limn→∞ ψn(s) = limn→∞
2ns

(2n−1)s+1 = 1,∀s ∈ (0, 1).

Clearly, ψ(s) > s,∀s ∈ (0, 1) and ψ(1) = 1.
Define η : [0, 1] → [0, 1] by η(r) = r

2−r∀r ∈ [0, 1].

η2(r) = r
4−3r , η

3(r) = r
8−7r , . . . , η

n(s) = r
2n(1−r)+r ,∀r ∈ [0, 1].

limn→∞ ηn(r) = limn→∞
r

2n(1−r)+r = 0,∀r ∈ [0, 1).

Clearly, η(r) < r,∀r ∈ (0, 1) and η(0) = 0.
Proposition 3 Let A and B be compatible mappings of an intuitionistic fuzzy
metric space (X,M,N, ∗, ⋄) into itself. If Aw = Bw for some w ∈ X, then ABw =
BAw.
Proof. Suppose that {un} is a sequence in X defined by un = w, n = 1, 2, ... for
some w ∈ X and Aw = Bw. Then we have Aun, Bun → Aw as n → ∞. Since A
and B are compatible mapping,

M(ABw,BAw, t) = lim
n→∞

M(ABun, BAun, t) = 1,

N(ABw,BAw, t) = lim
n→∞

N(ABun, BAun, t) = 0.

Hence, we have ABw = BAw.
Proposition 4 If A and B are compatible maps on an intuitionistic fuzzy metric
space X and Aun, Bun → w for some w ∈ X,(un being a sequence in X) then
ABun → Bw provided B is continuous (at w).
Proof. Since B is continuous at w, BAun → Bw and BBun → Bw. Since A
and B are compatible maps, M(ABun, BAun, t) → 1 and N(ABun, BAun, t) → 0
as n→ ∞.

M(Bw,ABun, t) ≥M(Bw,BAun,
t

2
) ∗M(BAun, ABun,

t

2
),

N(Bw,ABun, t) ≤ N(Bw,BAun,
t

2
) ⋄N(BAun, ABun,

t

2
).

Taking limit as n→ ∞, we get
limn→∞M(Bw,ABun, t) = 1 and limn→∞N(Bw,ABun, t) = 0.
Hence, ABun → Bw.
Theorem 5 Let A and B be self maps on a complete intuitionistic fuzzy metric
space X and ψ ∈ Ψ such that satisfy the following conditions:
(I)A(X) ⊂ B(X),
(II)M(A(u), A(v), t) ≥ ψ(M(Bu,Bv, t)) andN(A(u), A(v), t) ≤ η(N(Bu,Bv, t))∀u, v ∈
X and t > 0,
(III)A or B is continuous.
Assume that A and B are weakly compatible. Then A and B have a unique com-
mon fixed point in X.
Proof. Let u0 ∈ X and A(X) ⊂ B(X) define a sequence un in X,∀n ∈ N as
follows:

Aun = B(un+1)
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Then for all t > 0,

M(Aun, Aun+1, t) ≥ ψ(M(Bun, Bun+1, t))

= ψ(M(Aun−1, Aun, t))

≥ ψ2(M(Bun−1, Bun, t))

. . .

≥ ψn(M(Au0, Au1, t)).

That is,M(Aun, Aun+1, t) ≥ ψn(M(Au0, Au1, t)).

N(Aun, Aun+1, t) ≤ η(N(Bun, Bun+1, t))

= η(N(Aun−1, Aun, t))

≤ η2(N(Bun−1, Bun, t))

. . .

≤ ηn(N(Au0, Au1, t)).

That is,N(Aun, Aun+1, t) ≤ ηn(N(Au0, Au1, t)).
By taking limit as n→ ∞, and since limn→∞ ψn(s) = 1,∀s ∈ (0, 1] and limn→∞ ηn(r) =
0,∀r ∈ [0, 1), limn→∞M(Aun, Aun+1, t) = 1 and limn→∞N(Aun, Aun+1, t) = 0.
Now for any positive integer p,

M(Aun, Aun+p, t) ≥M(Aun, Aun+1,
t

p
) ∗ . . . ∗M(Aun+p−1, Aun+p,

t

p
).

N(Aun, Aun+p, t) ≤ N(Aun, Aun+1,
t

p
) ⋄ . . . ⋄N(Aun+p−1, Aun+p,

t

p
).

Taking limit n→ ∞, we have,

lim
n→∞

M(Aun, Aun+p, t) ≥ lim
n→∞

M(Aun, Aun+1,
t

p
) ∗ . . . ∗ lim

n→∞
M(Aun+p−1, Aun+p,

t

p
)

≥ 1 ∗ . . . ∗ 1
= 1.

That is,

lim
n→∞

M(Aun, Aun+p, t) = 1.

lim
n→∞

N(Aun, Aun+p, t) ≤ lim
n→∞

N(Aun, Aun+1,
t

p
) ⋄ . . . ⋄ lim

n→∞
N(Aun+p−1, Aun+p,

t

p
)

≤ 0 ⋄ . . . ⋄ 0
= 0.

That is,

lim
n→∞

N(Aun, Aun+p, t) = 0.

Hence,{Aun} is a Cauchy sequence in X.
Since (X,M,N, ∗, ⋄) is a complete intuitionistic fuzzy metric space, there ex-

ists w ∈ X such that limn→∞M(Aun, w, t) = 1, limn→∞M(Bun, w, t) = 1 and
limn→∞N(Aun, w, t) = 0, limn→∞N(Bun, w, t) = 0 for each t > 0.
Suppose A is continuous. Since A and B are compatible and A is continuous, by
Proposition 4, BAun → Aw.
Now,

M(Aun, AAun, t) ≥ ψ(M(Bun, BAun, t)),
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N(Aun, AAun, t) ≤ η(N(Bun, BAun, t)).

Taking limit as n→ ∞, we get

M(w,Aw, t) ≥ ψ(M(w,Aw, t)) ≥M(w,Aw, t),

M(w,Aw, t) ≤ η(N(w,Aw, t)) ≤ N(w,Aw, t).

This is possible only when M(w,Aw, t) = 1 and N(w,Aw, t) = 0. That is Aw = w.
Since A(X) ⊂ B(X), there exists w1 in X such that w = Aw = Bw1. Now,

M(AAun, Aw1, t) ≥ ψ(M(BAun, Bw1, t)),

N(AAun, Aw1, t) ≤ η(N(BAun, Bw1, t)).

Taking limit as n→ ∞, we get

M(Aw,Aw1, t) ≥ ψ(M(Aw,Bw1, t)) = ψ(1) = 1,

N(Aw,Aw1, t) ≤ η(N(Aw,Bw1, t)) = η(0) = 0.

That is Aw1 = Bw1.
Now, we have Aw = Aw1. By Proposition 3, ABw1 = BAw1.

M(Aw,Bw, t) =M(ABw1, BAw1, t) = 1,

N(Aw,Bw, t) = N(ABw1, BAw1, t) = 0.

Hence, Aw = Bw = w. Hence A and B have a common fixed point in X. Unique-
ness:
Assume w ̸= w for some w ∈ X, is another common fixed point in X. Then for
t > 0, we have,

M(w,w, t) =M(A(w), A(w), t)

≥ ψ(M(B(w), B(w), t))

. . .

≥ ψn(M(B(w), B(w), t)),

N(w,w, t) = N(A(w), A(w), t)

≤ η(N(B(w), B(w), t))

. . .

≤ ηn(N(B(w), B(w), t)).

Taking limit as n→ ∞ and by our assumption,
M(u, v, t) ≥ limn→∞ ψn(M(u, v, t)) = 1,
N(u, v, t) ≤ limn→∞ ηn(N(u, v, t)) = 0.
That is, M(u, v, t) = 1 and N(u, v, t) = 0.
Therefore, u = v.
Hence T has a unique fixed point in X.
Example 6 Let X = [0,∞) with the metric d defined by d(u, v) = |u− v|, define
M(u, v, t) = t

t+d(u,v) , and N(u, v, t) = d(u,v)
t+d(u,v)∀u, v ∈ X and t > 0. Note that,

(X,M,N, ∗, ⋄) where a∗b = ab and a⋄b = min{1, a+b} is a complete intuitionistic
fuzzy metric space.
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The maps A,B : X → X is defined by A(u) = 2+u
3 and B(u) = u. Let un = 1− 1

n

lim
n→∞

M(ABun, BAun, t) = lim
n→∞

M(Aun, B
2 + un

3
, t)

= lim
n→∞

M(
2 + un

3
,
2 + un

3
, t)

= 1.

lim
n→∞

N(ABun, BAun, t) = lim
n→∞

N(Aun, B
2 + un

3
, t)

= lim
n→∞

N(
2 + un

3
,
2 + un

3
, t)

= 0.

limn→∞M(ABun, BAun, t) = 1 and limn→∞N(ABun, BAun, t) = 0.

limn→∞Aun = limn→∞
2+un

3 = limn→∞
2+(1− 1

n )

3 = 1.

limn→∞Bun = limn→∞ un = limn→∞ 1− 1
n = 1.

Therefore, A and B are compatible mapping. Also AX ⊂ BX and B is continuous.

Define the map ψ : [0, 1] → [0, 1] by ψ(s) = 2s
s+1 for each s ∈ [0, 1] and ψ ∈ Ψ.

M(A(u), A(v), t) ≥ ψ(M(B(u), B(v), t))

if M(
2 + u

3
,
2 + v

3
, t) ≥ ψ(M(u, v, t))

That is if
t

t+ d( 2+u
3 , 8−v

3 )
≥

2t
t+d(u,v)

t
t+d(u,v) + 1

That is if
t

t+
∣∣ 2+u

3 − 2+v
3

∣∣ ≥ 2t
t+|u−v|
t

t+|u−v| + 1

That is if
t

t+ |u−v|
3

≥ t

t+ |u−v|
2

That is if t+
|u− v|

2
≥ t+

|u− v|
3

That is if 3 ≥ 2.
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Define the map η : [0, 1] → [0, 1] by η(r) = r
2−r for each r ∈ [0, 1] and η ∈ Ψ.

N(A(u), A(v), t) ≤ η(N(B(u), B(v), t))

if N(
2 + u

3
,
2 + u

3
, t) ≤ N(u, v, t)

2−N(u, v, t)

That is if
d( 2+u

3 , 2+u
3 )

t+ d( 2+u
3 , 2+u

3 )
≤

d(u,v)
t+d(u,v)

2− d(u,v)
t+d(u,v)

That is if

∣∣ 2+u
3 − 2+v

3

∣∣
t+

∣∣ 2+u
3 − 2+v

3

∣∣ ≤
|u−v|

t+|u−v|

2− |u−v|
t+|u−v|

That is if
|u−v|

3

t+ |u−v|
3

≤ |u− v|
2t+ |u− v|

That is if 2t+ |u− v| ≤ 3t+ |u− v|
That is if 2 ≤ 3.

All the conditions of the previous theorem are verified.
Then 1 is the unique fixed point.
Hence A and B have the unique common fixed point in X.
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