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MULTIPLE SOLUTIONS FOR THE NONHOMOGENOUS GJMS’S

OPERATOR

KAMEL TAHRI

Abstract. Let (M, g) be a closed Riemannian maniflold, under some assump-
tions on f, Pk

g and h we show the existence and multiplicity of solution by The
Pass Montain Theorem and Ekeland’s Variational Principle of the semi-linear

elliptic equation:

Pk
g (u) = f(x) |u|2

♯
k
−2 u+ h(x) on M

In the case of Eisteinian manifold, we obtain the existence of positive and
negative solutions.

1. Introduction and Notation

Let (M, g) be a compact Riemannian manifold of dimension n > 2k with-
out boundary with k ≥ 1. In this decade, there has been extensive analyze of
the relationship between the conformally covariant operators which satisfy some
invariance properties under conformal change of metric on M and their associated
partial differential equations. However, in 1992 Graham, Jenne, Mason & Sparling
have defined a family of conformally convariant differential operators in [6] (GJMS-
operators in short). More precisely, GJMS-operators based on the ambiant metric
of Graham-Fefferman [3].

Moreover, for any Riemannian metric g on M , there exists a local differential
operator named: P k

g : C∞(M) → C∞(M) such that:

P k
g := ∆k

g + lower-order terms

where ∆g := −divg(∇g) is the Laplacian Beltrami operator. One of the pertinent
geometric behavior of P k

g which is conformally convariant in the sense that: for all

φ ∈ C∞(M), φ > 0 and g̃ := φ
4

n−2k g :

P k
g (φu) = φ

n+2k
n−2k .P k

g̃ (u)

Moreover, P k
g is self-adjoint with respect to the L2-scalar product. A scalar in-

variant is associated to this operator, namely the Q-curvature, denoted as Qk
g ∈
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C∞(M). When k = 1, P k
g is the conformal Laplacian and Q-curvature: Qk

g is the

scalar curvature multiplied by a constant. When k = 2, P k
g is the Paneitz-Branson

operator defined in [11]. The Q-curvature has been introduced by Branson in [12]
and generalized by Paneitz in [8]. Therefore, this geometric quantity has been
obtained when we take φ ≡ 1 as

Qk
g :=

2

n− 2k
P k
g (1)

Furthermore, to figure out the problem of the prescribed Q-curvature in conformal
class amounts to solve a nonlinear elliptic partial differential equations of 2kth order.
In recent years, many authors proved the prescription of the Q-curvature in k = 2,
as Djadli-Ledoux and Hebey in [14] and also Gursky and Malchiodi in [5].

However, in the specific case of GJMS-operators Mazumdar has proved in [7]
the existence of u ∈ C∞(M), u > 0 and f ∈ C∞(M) given and he established the
following results of the following equation:

P k
g (u) = f(x). |u|2

♯
k−2

u in M (1)

We define the standard norm

∥u∥H2
k(M) =

m=k∑
m=0

∥∥∇m
g u

∥∥
L2(M)

and the space H2
k (M) as the completion of C∞(M) for the norm ∥.∥H2

k(M) .

Theorem 1.1 Let (M, g) be compact Riemannian manifold of dimension n > 2k
without boundary with k ≥ 1. Let f ∈ C0,α(M) positive function. We assume that
P k
g is coercive on H2

k(M). Suppose that

inf
u∈Sf

∫
M

P k
g (u).udµg <

1

K(n, k). (maxx∈M f(x))
2

2
♯
k

where

Sf :=

{
u ∈ H2

k(M) :

∫
M

f(x). |u|2
♯
k dµg = 1

}
and

K(n, k) := inf
u∈Dk,2(Rn)−{0}

∫
Rn

(
∆

k
2 u

)2

dx(∫
Rn |u|2

♯
k dx

) 2

2
♯
k

Then there exists a solution u ∈ C2k(M) to the equation (1)
Recently, the author in has considered the Q-curvature problem with perturba-

tion of the form:

P k
g (u) = f(x) |u|2

♯
k−2

u+ h(x) (2)

Where f is a C∞-function on M with f > 0 and h belongs to
(
H2

k(M)
)∗

such that
h ̸= 0 satisfies

∃m > 0,∀u ∈ Sf :

∫
M

h(x).udµg < m. ∥u∥
1+

2
♯
k

2
♯
k
−2

Pk
g

(3)

with

Sf :=

{
u ∈ H2

k(M) :

∫
M

f(x). |u|2
♯
k dµg = 1

}



EJMAA-2018/6(1) MULTIPLE SOLUTIONS FOR GJMS. 3

and

m :=
2♯k − 2(

2♯k − 1
)1+ 1

2
♯
k
−2

Then, he established the following results:
Theorem 1.2 Let (M, g) be compact Riemannian manifold of dimension n > 2k

without boundary with k ≥ 1. Let f ∈ C∞(M) positive function and h ∈
(
H2

k(M)
)∗

such that h ̸= 0 satisfies the condition (3). We assume that P k
g is coercive on

H2
k(M). Suppose that

sup
t≥0

J (uo + tuϵ) < co +
k

n [K (n, k)]
n
2k [maxx∈M f(x)]

n−2k
2k

and at a point a where f atteints its maximum the following condition

∆f(a)

f(a)
<

2 (k + 4)n2 − 8 (k + 1)n− 24k

3 (n− 2k) (n+ 2)(n− 6)
Sg(a)

holds. Then, the equation (2) has two non trivial solutions.
In this paper, we consider the multiplicity results of solutions of the following

nonhomogenous 2kth order elliptic equation involving GJMS’s operator:

P k
g (u) = f(x) |u|2

♯
k−2

u+ h(x) (4)

Where f is a C∞-function on M with f > 0 and h belongs to Lq(M) such that

q :=
2♯k

2♯k − 1
=

2n

n+ 2k

and also, 2♯k = 2n
n−2k is the critical Sobolev’s exponent for the embedding H2

k (M) ⊂
L2♯k (M).

Now we define when P k
g is coercive, our working norm as follow: for all u ∈

H2
k (M) :

∥u∥2Pk
g
:=

∫
M

P k
g (u).udµg

In recent years, there are some results of existence in certain cases concerning
the GJMS-operator. The object of this paper is to establish the existence and
multiplicity of solutions throughout the Ekeland’s Variational Principle [4] and the
Mountain Pass Theorem [1] in the critical theory, we prove the following theorem:
Theorem 1.3 Let (M, g) be a Riemannian compact smooth manifold of dimension
n > 2k without boundary with k ≥ 1. Let f is a C∞-function on M with f > 0 and
h ∈ Lq(M) such that h ̸= 0 satisfying ∥h∥q < mo and supposing that the operator

u → P k
g (u) is coercive. Then, the equation (4) has at least two nontrivial solutions

u, v ∈ H2
k(M) satisfying:

J(u) < 0 < J(v).

2. Some Preparatory Lemmas

Throughout this section, we consider the energy functional J , for each u ∈
H2

k (M),

J(u) =
1

2
∥u∥2Pk

g
−
∫
M

h(x).udµg −
1

2♯k

∫
M

f(x). |u|2
♯
k dµg
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Define:

Φ(u) := ⟨∇J(u), u⟩

Φ(u) = ∥u∥2Pk
g
−

∫
M

h(x).udµg −
∫
M

f(x). |u|2
♯
k dµg

and

⟨∇Φ(u), u⟩ = 2 ∥u∥2Pk
g
−

∫
M

h(x).udµg − 2♯k

∫
M

f(x). |u|2
♯
k dµg

Now, we use the following Sobolev inequalities proved in [7].
Theorem 2.1 Let (M, g) be compact Riemannian manifold of dimension n > 2k
without boundary with k ≥ 1. Then for any ϵ > 0, there exists Aϵ ∈ R such that
for all u ∈ H2

k(M) :(∫
M

|u|2
♯
k dµg

) 2

2
♯
k ≤ (K(n, k) + ϵ)

∫
M

(
∆

k
2
g u

)2

dµg +Aϵ ∥u∥2H2
k−1(M)

Lemma 2.1 Let (M, g) be a Riemannian compact smooth manifold of dimension
n > 2k without boundary with k ≥ 1. Let f is a C∞-function on M with f > 0 and
h ∈ Lq(M) such that h ̸= 0, then there exists some constants α, ρ and mo > 0 such
that J(u) ≥ α > 0 with ∥u∥Pk

g
= ρ for all u ∈ H2

k(M) and h satisfying ∥h∥q < mo.

Proof. Let u ∈ H2
k(M) :

J(u) =
1

2
∥u∥2Pk

g
− 1

2♯k

∫
M

f(x). |u|2
♯
k dµg −

∫
M

h(x).udµg

Using Hölder inequality, we have:

J(u) ≥ 1

2
∥u∥2Pk

g
− 1

2♯k
max
x∈M

f(x) ∥u∥2
♯
k

2♯k
− ∥h∥q . ∥u∥2♯k

Using Sobolev inequality, we deduce:

J(u) ≥ 1

2
∥u∥2Pk

g
− 1

2♯k
max
x∈M

f(x). (max ((K(n, k) + ϵ) , Aϵ))
2
♯
k
2 . ∥u∥2

♯
k

H2
k(M)

−

∥h∥q . (max ((K(n, k) + ϵ) , Aϵ))
1
2 . ∥u∥H2

k(M)

Again the coercivity of P k
g implies that there is Λ > 0, such that:

J(u) ≥ 1

2
∥u∥2Pk

g
− 1

2♯k
max
x∈M

f(x).

(
max ((K(n, k) + ϵ) , Aϵ)

Λ

) 2
♯
k
2

. ∥u∥2
♯
k

Pk
g
−

∥h∥q .
(
max ((K(n, k) + ϵ) , Aϵ)

Λ

) 1
2

. ∥u∥Pk
g

Thus,

J(u) ≥

1

2
∥u∥Pk

g
− 1

2♯k
max
x∈M

f(x).

(
max ((K(n, k) + ϵ) , Aϵ)

Λ

) 2
♯
k
2

. ∥u∥2
♯
k−1

Pk
g

−

∥h∥q .
(
max ((K(n, k) + ϵ) , Aϵ)

Λ

) 1
2

]
. ∥u∥Pk

g
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Setting for t ≥ 0 :

F (t) :=
1

2
t− 1

2♯k
max
x∈M

f(x).

(
max ((K(n, k) + ϵ) , Aϵ)

Λ

) 2
♯
k
2

.t2
♯
k−1

By continuity argument of the function F (.), we see that

max
t≥0

F (t) = F (ρ) > 0 where ρ2
♯
k−2 :=

1

2.
(
2♯k − 1

) (
Λ

max ((K(n, k) + ϵ) , Aϵ)

) 2
♯
k
2

(5)
Then, it follows from (5) that if ∥h∥q < mo such that

mo :=

(
max ((K(n, k) + ϵ) , Aϵ)

Λ

)− 1
2

.F (ρ)

there exists α > 0 such that

J(u)|∥u∥
Pk
g
=ρ ≥ α > 0.

�

Lemma 2.2 Let (M, g) be a Riemannian compact smooth manifold of dimension
n > 2k without boundary with k ≥ 1. Let f is a C∞-function on M with f > 0
and h ∈ Lq(M) such that h ̸= 0 satisfying ∥h∥q < mo. Then there exists a function

v ∈ H2
k(M) with ∥v∥Pk

g
> ρ such that J(v) < 0, where ρ is given by the previous

lemma.

Proof. Let v ∈ H2
k(M), for any t > 0 we have:

J(t.v) =
t2

2
∥v∥2Pk

g
− t2

♯
k

2♯k

∫
M

f(x). |u|2
♯
k dµg − t

∫
M

h(x).udµg

Since 2♯k > 2, so we deduce that,

lim
t→+∞

J(t.v) = −∞

Consequently, there exists a point v ∈ H2
k(M) with ∥u∥Pk

g
> ρ such that J(v) <

0. �

Lemma 2.3 Let (M, g) be a Riemannian compact smooth manifold of dimension
n > 2k without boundary with k ≥ 1. Let f is a C∞-function on M with f > 0
and h ∈ Lq(M) such that h ̸= 0 satisfying ∥h∥q < mo. Assume (um)m is (PS)c
sequence with

c <
k

n.K
n
2k (n, k). (max f(x))

2

2
♯
k

Then, (um)m is bounded in H2
k(M).



6 K. TAHRI EJMAA-2018/6(1)

Proof. Consider a sequence (um)m which satisfies J(um) → c and ∇J(um) → 0.
We obtain,

J(um)− 1

2♯k
⟨∇J(um), um⟩ =

2♯k − 2

2.2♯k
∥um∥2Pk

g
−

2♯k − 1

2♯k

∫
M

h(x).umdµg = c+ o (1)

Using Holder and Sobolev’s inequalities and by the coercivity of P k
g implies that

there is Λ > 0, such that:

c+ o (1) ≥
2♯k − 2

2.2♯k
∥um∥2Pk

g
−

2♯k − 1

2♯k
∥h∥q .

(
max ((K(n, k) + ϵ) , Aϵ)

Λ

) 1
2

∥um∥Pk
g

If ∥um∥Pk
g
> 1, then:

c+ o (1) ≥

[
2♯k − 2

2.2♯k
−

2♯k − 1

2♯k
∥h∥q .

(
max ((K(n, k) + ϵ) , Aϵ)

Λ

) 1
2

]
. ∥um∥Pk

g

And since,

∥h∥q < mo :=
2♯k − 2

2.
(
2♯k − 1

) (
max ((K(n, k) + ϵ) , Aϵ)

Λ

)− 1
2

Then the sequence (um)m is bounded in H2
k(M). �

Lemma 2.4 Let (M, g) be a Riemannian compact smooth manifold of dimension
n > 2k without boundary with k ≥ 1. Let f is a C∞-function on M with f > 0
and h ∈ Lq(M) such that h ̸= 0 satisfying ∥h∥q < mo. Assume (um)m is a bounded
Palais-Smale sequence at level c of J with

c <
k

n.K
n
2k (n, k). (max f(x))

2

2
♯
k

Then, (um)m has a strongly convergent sub-sequence in H2
k(M).

Proof. Using the previous lemma, let (um)m be a bounded (PS)c in H2
k(M) and

from the reflixivity of H2
k(M) and the compact embedding theorem, up to a subse-

quence noted (um)m there exists u ∈ H2
k(M) such that

(1). um → u weakly in H2
k(M).

(2). um → u strongly in Lp(M) for 1 < p < 2♯k.
(3). um → u a.e in M.
Then we deduce that:∣∣∣∣∫

M

h(x) (um − u) dµg

∣∣∣∣ ≤
(∫

M

|h(x)|2 dµg

) 1
2

.

(∫
M

(um − u)
2
dµg

) 1
2

≤ ∥h∥2 . ∥um − u∥2 = o(1).

After these preliminaries, we can prove that wm := um − u converges to 0 strongly
in H2

k(M).
Using Brézis-Lieb Lemma in [2], we obtain

∥um∥2Pk
g
− ∥u∥2Pk

g
= ∥wm∥2Pk

g
+ o(1)
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and ∫
M

f(x)
(
|um|2

♯
k − |u|2

♯
k

)
dµg =

∫
M

f(x) |wm|2
♯
k dµg + o(1)

Then,

J(um)− J(u) =
1

2
∥wm∥2Pk

g
− 1

2♯k

∫
M

f(x) |wm|2
♯
k dµg + o(1)

We obtain:

⟨∇J(um)−∇J(u), (um − u)⟩ = ∥wm∥2Pk
g
−
∫
M

f(x) |wm|2
♯
k dµg = o(1)

That is to say

∥wm∥2Pk
g
=

∫
M

f(x) |wm|2
♯
k dµg + o(1) (6)

Put

ℓ := lim sup
m

∥wm∥Pk
g

Using Sobolev’s inequality, we have for all wm ∈ H2
k(M) :∫

M

f(x) |wm|2
♯
k dµg ≤ max

x∈M
f(x).

∫
M

|wm|2
♯
k dµg = max

x∈M
f(x). ∥wm∥2

♯
k

2♯k

≤ max
x∈M

f(x). [max ((K(n, k) + ϵ) , Aϵ)]
2
♯
k
2 . ∥wm∥2

♯
k

H2
k(M)

Taking account that P k
g : C∞(M) → C∞(M) is coercive, there exists a constant

Λ > 0 such that:∫
M

f(x) |wm|2
♯
k dµg ≤ max

x∈M
f(x). [Λ.max ((K(n, k) + ϵ) , Aϵ)]

2
♯
k
2 . ∥wm∥2

♯
k

Pk
g

(7)

Consequently, we obtain from (6) and (7) that:

∥wm∥2Pk
g
≤ max

x∈M
f(x). [Λ.max ((K(n, k) + ϵ) , Aϵ)]

2
♯
k
2 . ∥wm∥2

♯
k

Pk
g

Letting n → +∞, we get:

ℓ ≤ max
x∈M

f(x). [Λ.max ((K(n, k) + ϵ) , Aϵ)]
2
♯
k
2 .ℓ2

♯
k

Then,

ℓ = 0 or..ℓ ≥ 1

[maxx∈M f(x)]
n−2k
n+2k . [Λ.max ((K(n, k) + ϵ) , Aϵ)]

n
n+2k

We deduce that: ℓ = 0 and then wn → 0 strongly in H2
k(M).

i.e. wn := un − u → 0 in H2
k(M). �
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3. Main Result

The following theorem is our main result.
Theorem 3.1 Let (M, g) be a Riemannian compact smooth manifold of dimension
n > 2k without boundary with k ≥ 1. Let f is a C∞-function on M with f > 0 and
h ∈ Lq(M) such that h ̸= 0 satisfying ∥h∥q < mo and supposing that the operator

u 7−→ P k
g (u) is coercive. Then, the equation (4) has at least two nontrivial solutions

u, v ∈ H2
k(M) satisfying:

J(u) < 0 < J(v).

The proof is based on The Mountain Pass Theorem, namely,
Theorem 3.2 Let E be a Banach space, and J ∈ C1

(
H2

k(M);R
)
satisfies (P.S)c

condition. We suppose:
(1). There exist α > 0, β > 0 such that

J(u) |∂B(0;β)≥ J(0) + α

Where

Bβ =
{
u ∈ H2

k(M) : ∥u∥H2
k(M) ≤ β

}
(2). There is an e ∈ H2

2 (M) and ∥ e ∥H2
k(M)> β such that:

J(e) ≤ J(0)

Then, J(.) has a critical value c which can be characterized as

c := inf
γ∈Γ

max
t∈[0;1]

J(γ(t))

Where
Γ :=

{
γ ∈ C([0; 1];H2

k(M)) : γ(0) = 0 and γ(1) = e
}

Then there is a sequence (um)m in H2
k(M) such that:{

J(um) → c in R
∇J(um) → 0 in

(
H2

k(M)
)∗

Proof. We prove this theorem, by the following two steps:
Step 1: There exists v ∈ H2

k(M) satisfies:

J(v) > 0 and ∇J(v) = 0

Using Lemmas 2.1 and 2.2 and The Mountain Pass Theorem, there exists a sequence
(um)m ∈ H2

k(M) satisfying:

J(um) → c+ and ∇J(um) = 0

Then, it follows from Lemmas 2.3 and 2.4 that there exists v ∈ H2
k(M) such that

J(v) = c > 0 and ∇J(v) = 0 if ∥h∥q < mo.

Consequenly, v is a weak solution of the equation (4).
Step 2: There exists u ∈ H2

k(M) such that: J(u) < 0 and ∇J(u) = 0. Since
h ∈ Lq(M) such that h ̸= 0, we can choose a function φ ∈ H2

k(M) such that:∫
M

h(x).φ(x)dµg > 0

Letting t > 0, we have:

J(t.φ) =
t2

2
∥φ∥2Pk

g
− t2

♯
k

2♯k

∫
M

f(x). |φ|2
♯
k dµg − t

∫
M

h(x).φ(x)dµg
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Then for t > 0 small enough, we get J(t.φ) < 0.
Put

c− = inf
u∈Bρ

J(u)

Where

Bρ :=
{
u ∈ H2

k(M) : ∥u∥Pk
g
≤ ρ

}
It seems that:

c− = inf
u∈Bρ

J(u) < 0

Now, applying Ekeland’s Variational Principle, there exists a (PS)c− sequence
(vm)m ∈ B̄ρ satisfying:

J(vm) → c− and ∇J(vm) = 0

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we obtain a sub-sequence of (vm)m which
converges strongly to u ∈ H2

k(M).
Consequenly, v is a weak solution of the equation (4).

�

4. Geometric Application and Multiplicity Results

When (M, g) is closed Einsteinian manifold, the GJMS operator has constant
coefficients. It expresses as

P k
g (u) :=

i=k
i=1

(
−∆gu+

(n+ 2i− 2) . (n− 2i)Sg

4n(n− 1)
u

)
where ∆g := ∇i∇i is the Laplace-Beltrami operator and Sg is the scalar curvature
of g. As a geometric application of the study of the GJMS operator, we obtain some
existence and multiplicity results of weak positive solutions on closed Einsteinian
manifold under some additional assumptions as stated in the following theorem:
Theorem 4.1 Let (M, g) be a Riemannian Einsteinian compact smooth n-manifold
and of positive scalar curvature with n ≥ 5. Let f is a C∞-function on M with
f > 0 and h ∈ Lq(M) such that h > 0 satisfying ∥h∥q < mo. Then, the equation

(4) has at least two non trivial solutions u+, u− ∈ H2
k(M) satisfying:

J(u−) < 0 < J(u+).

where

u+ = max (u, 0) and u− = max (−u, 0) .

Proof. We define the modified energies in H2
k(M) by:

J+(u) =
1

2
∥u∥2Pk

g
−
∫
M

h(x).u+dµg −
1

2♯k

∫
M

f(x).
(
u+

)2♯k dµg

and

J−(u) =
1

2
∥u∥2Pk

g
−
∫
M

h(x).u−dµg −
1

2♯k

∫
M

f(x).
(
u−)2♯k dµg

where

u+ = max (u, 0) and u− = max (−u, 0)
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Applying the coercitivity of P k
g on Eisteinian Manifold (M, g) and the above similar

arguments involving Montain Pass Theorem for the energies J+ and J− to show
there exists a non trivial solution u satisfying:

P k
g (u) = h(x) + f(x).

(
u+

)2♯k−1
on M.

Together with Sg = constant > 0, the factorization of GJMS as:

P k
g (u) :=

i=k
i=1

(
−∆gu+

(n+ 2i− 2) . (n− 2i)Sg

4n(n− 1)
u

)
We employ strong maximum principle for elliptic equations of second order for k
times to show that u > 0 on M and solves the equations (4) from this and Lemmas
2.1, 2.2, 2.3, 2.4 and Theorems 3.1, 3.2, we conclude that u ∈ C∞ (M). This
completes the proof. �

5. Perspective

Problem 5.1 Let (M, g) be a Riemannian compact smooth manifold of dimen-
sion n > 2k without boundary with k ≥ 1. We set Isom(M, g) the isometry group
of M, and G a subgroup of Isom(M, g).We assume that f and h are two smooth
G-invariant functions such that f > 0 and h ∈ Lq(M). We are concerned with
existence of smooth G-invariant solution u to the equation:

P k
g (u) = f(x) |u|2

♯
k−2

u+ h(x).

Acknowledgement: The author was delighted with the recognition of these con-
tributions.
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