Electronic Journal of Mathematical Analysis and Applications
Vol. 7(2) July 2019, pp. 332-344.

ISSN: 2090-729X (online)
http://math-frac.org/Journals/EJMAA/

UNICITY THEOREM FOR HIGHER ORDER DERIVATIVES OF
MEROMORPHIC FUNCTIONS ON ANNULI

DILIP CHANDRA PRAMANIK AND JAYANTA ROY

ABSTRACT. In this paper, we deal with the uniqueness problem for higher
order derivatives of meromorphic functions on annuli. Our results generalize
the result given by H. Y. Xu and H. Wang [18].

1. INTRODUCTION AND MAIN RESULTS

The purpose of this paper is to study the uniqueness of two meromorphic func-
tions sharing five or more values. Thus, we always assume that the reader is familiar
with the notations of the Nevanlinna theory, such as T'(r, f), m(r, f), N(r, f) and
so on (see [6, 19, 20, 23]). We use C to denote the open complex plane, C to denote
the extended complex plane and X to denote the subset of C.

In 1929, R. Nevanlinna first investigated the uniqueness of meromorphic func-
tions in the whole complex plane and obtained the well-known theorem: the five
IM theorem.

Theorem 1. [14] If f and g are two non-constant meromorphic functions that
share five distinct complex values a1, ag, a3, as, a5 IM, then f(z) = g(z).

After five IM theorem, there are vast references on the uniqueness of meromorphic
functions sharing values and sets in the whole complex plane [20]. It is an interest-
ing topic how to extend some important uniqueness results in the complex plane
to an angular domain or the unit disc. In the past several decades, the uniqueness
of meromorphic functions in the value distribution attracted many investigations.
For example, I. Lahiri, H.X. Yi, X.M. Li and A. Banerjee [20, 10, 12, 1] studied
the uniqueness of meromorphic functions on the whole complex plane sharing one,
two, three or some sets; M.L. Fang, H.F. Liu, Z.Q. Mao and H.Y.Xu [5, 13, 15]
investigated the shared value of meromorphic functions in the unit disc; J.H. Zheng,
Q.C. Zhang, T.B. Cao and W.C. Lin [21, 22, 3, 11] considered many uniqueness
problem of meromorphic functions on the angular domain.

However, the whole complex plane, the unit disc and the angular domain can all
be regarded as a simply-connected region; in other words, the theorems stated in the
above references are only regarded as the uniqueness results in a simply-connected
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region. In fact, there exists many sub-regions in the whole complex plane, such as
the annuli, the m-punctured complex plane, etc.

Recently, there have been some results focusing on the Nevanlinna theory of
meromorphic functions on the annulus [8, 9, 7, 16]. The annulus can be regarded
as the doubly-connected region. From the doubly-connected mapping theorem, we
can get each doubly-connected domain is conformally equivalent to the annulus
{z:r<|z| <R}, 0<r < R< +o0. For two cases: r = 0, R = oo, simultaneously,
and 0 < r < R < +o0; the latter case, the homothety z — \/%% reduces the given

domain to the annulus A = {z : i < |z| < Ro}, where Ry = \/é Thus, every

annulus is invariant with respect to the inversion z % in two cases. In 2005,

Khrystiyanyn and Kondratyuk [8, 9] proposed the Nevanlinna theory on annuli.
Now we will introduce the basic notations and definitions used in the uniqueness
theory of meromorphic functions on annuli.

For a meromorphic function f on whole plane C, the classical notations of the
Nevanlinna theory are denoted as follows

N(r, f) = /T Mdt—i—n(o,fﬂogn
0

2T

where log™ = max{logz,0}, and n(t, f) is the counting function of poles of the
function f in {z : |z| < t}. Let f be a meromorphic function on the annulus

= {z: R% < |z| < Ro}, where 1 < r < Ry < +oo; the notations of the
Nevanlinna theory on annuli will be introduced as follows. Let

Nl(r,f)—/l I, Nt p) = /1"2% et )y,

mo(r, £) = mr, f) +m(>, f) = 2m(1, 1), No(r, f) = Na(r, f) + No(r, ),

where ni (¢, f) and na(t, f) are the counting functions of poles of the function f in
{z:t<|z| <1} and {z: 1 < |z| <t} respectively. Similarly, for a € C we have

T2 = W) Rl

27
mr, f) =~ / log™ | f(ré)|d8, T(r, f) = N(r, ) + m(r, f),

_ 1 1
No(r F=a) TN )

/1 nl(tv = a)dt—F/ n2(taf a)dt
% t 1 t

in which each zero of the function f — a is counted only once, where by zeros of
f —o0 we mean poles of f. In addition, we use ﬁ]f)(t fia)(or ﬁgk (t, ﬁ)) to denote
the counting function of poles of the function ﬁ with multiplicities < k( or > k)
in {z: ¢ < |z| <1}, each point counted only once. Similarly, we have the notations
—k) —(k —k) —(k —k) —(k
Nl (tvf)7 Nl (t7f)7 N2 (tvf)u N2 (t7f)7 NO (t’f)7 NO (thf)

The Nevanlinna characteristic of f on the annulus A is defined by

TO(rv f) = mo(’/‘, f) + N()(?", f)

Definition 1. We write E(a, f) = {# € A : f(2) — a = 0}, where each zero

with multiplicity m is counted m times. If we ignore the multiplicity, then the set




334 DILIP CHANDRA PRAMANIK AND JAYANTA ROY EJMAA-2019/7(2)

is denoted by E(a, f). We use Ey(a, f) to denote the set of zeros of f — a with
multiplicities no greater than k, in which each zero is counted only once.

In 2009 and 2011, Cao [2, 4] investigated the uniqueness of meromorphic func-
tions on annuli sharing some values and some sets and obtained an analog of Nevan-
linna’s famous five-value theorem.

Theorem 2. Let f; and fs be two transcendental or admissible meromorphic

1

functions on the annulus A = {z : z- < [2[ < Ro}, where 1 < Ry < 4o00. Let

aj (j = 1,2,...,q) be g distinct complex numbers in C and k; (j = 1,2,...,q) be
positive integers or co, such that

by > ko > >k,

Ekj)(ajmfl) = Ek?j)(ajaf2)7 fO'I" (.] = 1727"'7(])'

(i) if ¢ =7, then f1(z) = fa(2).

(ii) if ¢ = 6 and k3 > 2, then f1(2) = fa(2).

(iii) if ¢ =5, k3 > 3 and ks > 2, then f1(z) = fa(2).

(iv) if ¢ = 5 and k4 > 4, then fi(z) = fa(2).

(v)if ¢ =5, ks > 5 and kg4 > 3, then fi(z) = f2(2).

(vi) if ¢ =5, k3 > 6 and kg > 2, then fi1(z) = fa(2).

From the above theorem we can get the following theorem immediately,
Theorem 3. [2] Let f; and f2 be two transcendental or admissible meromorphic

functions on the annulus A = {z : 7= < |z[ < Ro}, where 1 < Rg < +o0. Let

aj (j =1,2,3,4,5) be five distinct complex numbers in C. If E(aj, f1) = E(a;, f2)
for j =1,2,3,4,5, then f1 = f5.
Definition 2. For B C A and a € C, we denote by Nf(r, ﬁ) the reduced
counting function of those zeros of f — a on A, which belong to the set B.

In 2016 H. Y. Xu and H. Wang [18] investigated the uniqueness of meromorphic
functions on annuli and proved the following results:
Theorem 4. Let f and g be two transcendental or admissible meromorphic func-
tions on the annulus A = {z : 3= < [2| < Ro}, where 1 < Ry < +oo. Let
a1, ...,aq (g > 5) be ¢ distinct complex numbers or co. Suppose that k1 > ko >
... > kq, m are positive integers or infinity; 1 <m < g and 6; (>0) (j =1,2,...,9)
are such that

1o 1
(1+E)Z;nl+k

Let Bj :Ekj)(aj,f) \ij)(aj,g) fOI‘j = 1,2, ey q. If

q
'+3+Z<Sj<(q—m—1)(1+i)+m.

J j=1 m

Ny’ (r,a5 f) < 8;To(r, f)

and

—k;)
Zq'zl NOJ (Tv aj; f) > km

lim inf =2

—k. kj
e H Nl(jj)(ra aj;Q) (L +Em) §=m T+k; —2(1+ k) + (m72723‘=1 5j)km

j=1

then f(z) = g(z2).

3
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Now one can asked the following question:

Question : What can be said if n-th order derivatives of f and g share k distinct
complex numbers ?

In the current paper, we seek an answer of the above question and prove the fol-
lowing theorems.

Theorem 5. Let fi, fo be two transcendental or admissible meromorphic functions
on the annulus A = {z : R%, < |z| < Ro} where 1 < Ry < co. Let a; € CU {o0}
be distinct for j = 1,2,....,k (k > 5) and for a non-negative integer n, suppose
E(aj, 1(n)) C E(aj7f2(n)), for j =1,2,....,k and E(0, f;) C E(O,fi(")) fori=1,2. If

Y No(ra fiT)  nd
lim inf k NG ,
r—00 Zj:l NO (Ta aj; f2 ) k — (n + 3)

then f{")(2) = f{")(2).

Theorem 6. Let fi, fo be two transcendental or admissible meromorphic functions
on the annulus A = {z : R%) < |z| < Ro}, where 1 < Ry < 00 and a; € CU {oo}
be distinct for j = 1,2,...,k (k > 5). Suppose that py > pa > ... > pj are positive
integers or infinity and § (> 0) is such that

K
1 1 1 k—2 1

— 1) Fl40< (14 =
P ( P1)j:21+]9j n—i—l( P1)

for a non-negative integer n. Let A; = E, ) (a;, (n)) \Epj)(aj,fén)) for j =

1,2,...kand E(0, f;) € E(0, f™) fori = 1,2. ¥ Ng™ (roays 1) < 6Tu(r, 1)
and

k 72%’) n
p e e No (ra; 1) N (n+p
500 ZiﬂN?”Qﬂﬁﬁm) (k—mu+pg—0r+Ua+pgziﬁﬂ%~4n+1xu+5my+u

then f™(2) = £\ (2).

Theorem 7. Let f; and f; be two transcendental or admissible meromorphic

functions on the annulus A = {z : R%) < |z| < Ro}, where 1 < Ry < +oo. Let

a1,...,ar (k> 5) be k distinct complex numbers or oco. Suppose that p; > py >
. > pr, m (1 <m < k) are positive integers or infinity and §,; (> 0) (j =1, 2, ..., k)
are such that

1
(1+ﬁ)

1
L+pj

{k—2—-(n+1)(m-1)} 1
< e (1+%),

-

k
+(2+> 5 —m)
j=1

j=m

for a non-negative integer n. Let A; = E, ) (a;, (n)) \ij)(aj,fz(")) for j =
1,2,k 1t

Ny (ryag; fM) < 8,To(r, £™)
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and
pJ n
lim inf Z] 1Mo (7 a],f( ))
e Z] 1N:gj (T aj’f(n))

(n+ 1)
(mfl)m k m ’
k2 (n 1) (m— 1= e S e (1 ) )

then f{™(2) = £ (2).

>

2. LEMMAS

In this section we state some lemmas needed to prove the theorems.
Lemma 1. [8] Let f be a nonconstant meromomorphic function on the annulus
A:{Z:R%, < |z| < Ro}, where 1 <7 < Ry < 4+00. Then

() To(r, £) = To(r. ),
(11) max {To(T’, fl.fg),To(T‘, %),T{)(T, f1 + f2)} S ( fl) +TO( fz) + 0(1)

Lemma 2. [8] (The first fundamental theorem ) Let f be a nonconstant mero-

momorphic function on the annulus A = {z : RLO < |z] < Rp}, where 1 < r <
Ry < +00. Let To(r, f) be Nevanlinna characteristic function. Then Tp (r, f—ia) =

To(r, f) + O(1), for every fixed a € C.

In 2005, the lemma on the logarithmic derivative on the annulus A was obtained
by Khrystiyanyn and Kondratyuk [9].
Lemma 3. [9] Let f be a nonconstant meromorphic function on the annulus
A ={z: 4 <|2| < Ro}, where 1 <r < Ry < 400, and let A > 0. Then

p=&mﬂ7

mo (7’,

where (i) in the case Ry = 400,
S1(r,*) = O(log(rTo(r, %)))
for r € (1,+00), except for the set A,, such that fAr A dr < 400;

(ii) if Ry < 400, then

Sy(r,x) = O(log (%))

for r € (1, Ry), except for the set Al such that fA/ (Ro_dﬁ < 4o00.
Lemma 4. [2] (The second fundamental theorem) Let f be a nonconstant mero-
morphic function on the annulus A = {z : Rio < |z| < Ro}, where 1 < r < Ry <

+00. Let a1, as, ..., aq be g distinct complex numbers in the extended complex plane
C. Then

(g —2)To(r, ZW —) + S1(r, f),

a;

where Si(r, f) is stated as in above Lemma.

Lemma 5. [2] Let f be a non-constant meromorphic function on the annulus
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A={z: Rio < |z| < Ro}, where 1 < r < Ry < 400. Let a be an arbitrary complex
number and k be a positive integer. Then

(7) No(r a; f) < %Nﬁ)(r,a;f) + %HN()(T a; f)

(i0) No(r.a: f) < = Ng (r.a: f) + == To(r f) + O(1).

k+

Lemma 6. Let f be a transcendental meromorphic function on the annulus
A ={z: 5 < |2| < Ro}, where 1 < Ry < o0 and ay, ag,...,a; be k (> 3)

distinct complex numbers. If for a non-negative integer n, F(0, f) € E(0, f(),
then

(k =2+ o(1))To(r, f) < 25—y No(r,az; f).

Proof. By the first fundamental theorem on annulus, we have

To(rnf) = To(r.3)+00)
(n)
< N 05 )+ o )+ matr 573) +0(1)
< No(r 0 )+ To(r )~ No(r 0 f) 4 i f) ()

By the second fundamental theorem on annulus, we get

k—1
(k= D)To(r, f) < No(r, 005 f™) + > No(r, a5 f™) + No(r, 05 £™) + Sy (r, f).
j=1
Without loss of generality, we may assume that ar = 0. Otherwise a suitable
linear transformation is taken. Then the above inequality reduces to

(k_]')TO( fn) (T’OOf(n +ZN0Tajaf )+Sl(r7f)a (2)

j=1
Using (2) in (1), we obtain

(k= 1)To(r, f) < (k—=1)No(r,0; f) + No(r, 00; f™)

k
+ Y Nolrags £) = (k= 1)No(r, 0; £) + S1(r, f)

j=1
= (k=1To(r, f) < (k—=1)No(r,0; f) + No(r, 00; f)
k
+ > No(ryag; f™) = (k= D)No(r,0; f) + Sy (r, f). (3)
j=1
Since E(0, f) € E(0, f(™), we have from (3)

k
(k= 1)To(r, f) < No(r,00; f) + Y No(r,a5; f™) + Si(r, f)

j=1

= (k =2+ o(1))To(r, ) < 25— No(r,aj; f™).
This complete the proof of the lemma.
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To prove unicity theorem related to multiple values and derivatives of meromor-

phic functions on annuli, we need the following Xiong inequality of meromorphic
functions on annuli.
Lemma 7. [17] Let f be a transcendental or admissible meromorphic function on
the annulus A = {z : R%) < |z| < Rp}, where 1 < Ry < co. Let a be a finite complex
number and by, ba, ..., by be ¢ distinct finite nonzero complex numbers and k be a
natural number. Then

q
qTo(r, f) < No(r, f)+qNo(r,a; f) + ZNO(T, by; £

7j=1
- (q_l)NO(T7O7f(n))_NO(Taoaf(n+1))+Sl(T7f)a

where Sq(r, f) is same as in Lemma 4.

3. PROOF OF THE MAIN THEOREMS

Proof of Theorem 5.
By Xiong inequality of meromorphic functions on annuli, we have

k—2
(k—2)To(r, f1) < No(r, f1)+ (k—2)No(r,0; f1) + ZNO(T, aj;ffn))
j=1
— (k= 3)No(r,0; ffn))+51(ﬁf1)- (4)
Similarly,
k—2
(k=2)To(r, f2) < No(r, fo)+(k—=2)No(r, 0; f2)+>_ No(r,az: f5)—(k=3)No(r, 0; £{")+51(r, fz).
j=1
(5)
Since, E(0, f;) C E(O,fi(n)) for i = 1,2 we get from (4) and (5)
k—2
(k = 2)To(r, f1) < No(r, 1) + > No(r,a5: i) + No(r, 0; /) + Su(r, fr),  (6)
j=1
and
k—2
(k= 2)To(r, f2) < No(r, fo) + > No(r,as £5) + No(r, 0; f5) + Si(r, o). (7)
j=1

Without loss of generality let a = o0, ax—1 = 0. First we take all a; (1 < j <k)
are finite. Then from (6) and (7) we get,

k—1
(k= 3)To(r, 1) < 3 No(r,azs f) + Su(r, 1), (8)
j=1
and
k—1
(k= 3)To(r, f2) < Y No(r,az; f5™) + S(r, fo). 9)

Jj=1
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Assume that f(")( ) # f2(”)(z). Therefore using (8) and (9)

k—1
ST No(roaz f7) < No(r, 05 £
j=1

<

<

n+1
<
< {k_3+

which gives, liminf,

— M)

) n+1

k—1
. Ej:l NU(T'vaj?fQ(
1e.,

k
No(r,
hmmfzj 1 Nof

To(r, i) + To(r, fi) + O(1)
(n+ D{To(r, f1) + To(r, f2)} + O(1)

k-1
1)}[ZN0(T7aj;f1(n)
=1

SRZ! No(ragsfi™
Y S T (D)

aj;fl(n)) n+1

k-1
)+ Z No(r, aj; f3)]
=1

T—00 Z] 1N0(7,.

which is a contradiction.

ag; f§7) T k-

(n+3)

(10)

Similarly, when aj, = oo, we get (10). Hence f\"(z) = £ (z). This complete the

proof.

Corollary 1. From Theorem 5. it follows that fi(z) =

a polynomial of degree less than n.

Proof of Theorem 6.
By Lemma 6. we have

f2(2) + p(2), where p(z) is

k
(k—2+o0(1) ZW (r,a;; f™) (11)
and
k
(k—2+o0(1) Zﬁr aj; f$M). (12)
From (11) and Lemma 5. we have
k
.7) 1 n
(k =2+ o(W)To(r. f1) < ;{H N (s i) + - Nolrass ™)}
D ) ) ()
< ] ij La;; n + T n
= ;1+pj o (rag; i) Z 1+p o(r, 1)
k o k
< ZLNOPJ)(Taaﬁffn) (n+1) Z To(r, f1)
j:11+pj j=1
i.e.,
o (n)
~Pj) n
{k— 2_("+1)21+ (1)} To(r, f1) <Z NOJ (r,a; i)

.
I
=
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Similarly from (12) we get
k k

{k— 2—(n—|—1)27pj+0(1)}T0(7‘,f2)SZ%N D (r,az; £5)

Jj=1 Jj=1

Let B; = EPJ)(aj,fln J\A4; for j=1,2,.., k.
Now

k
SN (s £7)

j=1

ZNO Ta]a (n) +ZN ra]’fl )

5To(r )+ No(r, 05 f(”)— e
(1+0)(n + 1)To(r, f1) + (n + DTo(r, f2)

INIA

{’f*%(nH)Z—pH ZNJ” (r,az; £
— j

k k

< (140)m+1)) mem(r, i fM) +(n+ 1) %ﬁom)(r, ag; fs)
j=1 J

Since 1 > 1&71 > 1?;’;2 > ... > 1+pk > %, we get from above inequality

k

(k=2- )Y <1>}Zﬁopj’<r,aj;fl”>>

j=1

k k
P1 D) (n) Dj) (n)
g N, T, a; +(n+1 g N, r,ag;
1 0 ( J f1 ) ( )1+p1 0 ( J f )

j=1 j=1

< (1+5)(n+1)1

i.e.,
k

(2= —<1+6><n+1>1i1 D} SN 105 £7)
J

j=1 j=1

Nyt (r,aj; f (n)).

Therefore

E =7Pj) n
lim inf Z] 1 No " (r a3 fu ))
T L N (g £57)

(n+1)p1
(k=2)(1+p1) = (n+1)(1+p) X5 17 — (n+ DL+
(n+1)p:
(k=2)(1+p1) = (n+ (14 p1) D)y 15 — (4 DL+ 8)pr + 1)

which is a contradiction.

<

Therefore fl(n)(z) = fén)(z) This complete the proof.
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Proof of Theorem 7.
By Lemma 6. we have

k
(k—2+o0(1) Z o(raz; f) (13)
and

No(r,aj; f5). (14)

M;r

(k—240(1)To(r, f2) <

1

<.
Il

> P2 > > > 1 we have

From (13), Lemma 5. and using 1 > 1+p1 2 Tipy 2 2 1+pk Z 5

(k—2+ o) To(r, f1) < Z{ No' (r,ay; £ — (r,az; FM)
Jj=1 J
- ) (n) ol (n)
< > R IS (XTH N Y 1)
= 1 —|—pJ 14 pm = 1
k
+ Z P NG7) (v g 1) + S (r, f1)
Tt pm
< E: No™ (1055 1)

k
+ (n+1) (m—l) ( 1+pm —I—Z T()Tfl)—i-Sl(’l“ fl)

1+
ji=m
ie.,
(m—1)p ol = p ) )
k—2—(n+1 m—1)— —T 4 To(r, < = N (ryag £
b (m=p= B S5 ) b ) < 30 N s 1)
Similarly from (14) we get
(m—1)p ol = p ) )
k—2—(n+1 m—1)— —2"T 4 To(r, < 2 N (a5
ey (= = B 3 ) ) < 3 RN s )

Let By = B,y (aj, f{V)\ Aj for j = 1,2, ... k.
Now

k
Zﬁopj)(r,aj; 1(”)) ZNO T, a,j,fln) + ZNO r,aj;; 1(n))
Jj=1

Jj=1

< Z5To A7)+ No(r, 05 £ = £5V)
k
< (14 8)(n+ DTo(r, fr) + (n+ D) To(r, f2)

Jj=1
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ie.,
(m — 1)p k 1 ) ( )
k—2— 1 —1) - Ny "
k k ) k
< A+ 50+ DY 2N a7 + (D) Y TN (0 £4)
— — 1+ pm — 1+ pm
j=1 j=1 j=1
Therefore we get from above inequality
(m—Dpm |+ )
—
k—2—(n+1) | (m—1)- 1+pm +§nl No™ (r, a5 ™)

k
S1+25m4””Z%“mM%<+nﬂLZMWmm%

L+ pm =

i.e.,

k
— Upm NP n
k—2—(n+1) (m—l)—M+Zl+p 1+26 No™ (1, a5 1)
j=m 7

S(”+1)1+p ZNOP (raz; f5).
m 1

Therefore

lim inf Zj:l Mo (r7aj;f1( ))
7—>00 T ) n
TS N (rags £5)

<

(n+ )1+pm
{k—2—(n+1)(<m—1)—%+2y o Thoy +(1+ X5 )1+Pm)}

which is a contradiction.
Therefore f™(z) = £ (2). This complete the proof.
Corollary 2. For n = 0 Theorem 7., reduced to Theorem 4.
Corollary 3. For m =1 and § = Zle 0; Theorem 7., reduced to Theorem 6.

Conclusion: The main aim of the paper is to study the uniqueness of meromor-
phic functions on annuli through the uniqueness of their higher order derivatives
on the annular region. There are many ways available in the literature to study
the uniqueness of meromorphic functions on simply connected domain. After the
Nevanlinna’s Theory of meromorphic functions on annuli many authors investigated
the uniqueness of meromorphic functions on this type of regions. Using the the-
ory of value sharing, we have established some uniqueness results of meromorphic
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functions on annular region. We hope that our results will help researchers of this
field to carry further research work.
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