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Abstract. Let G be a graph of order n. Then an n× n symmetric matrix is

called the minimum degree matrix MD(G) of a graph G, if its (i, j)th entry

is min{di, dj} whenever i 6= j, and zero otherwise, where di and dj are the

degrees of ith and jth vertices of G, respectively. In the present work, we obtain

the characteristic polynomial of the minimum degree matrix of graphs obtained

by some graph operations. In addition, bounds for the largest minimum degree
eigenvalue and minimum degree energy of graphs are obtained.

1. Introduction

Throughout this paper by a graph G = (V,E) we mean a finite undirected graph
without loops and multiple edges of order n and size m. Let V = V (G) and
E = E(G) be the vertex set and edge set of G, respectively. The degree dG(v)
of a vertex v ∈ V (G) is the number of edges incident to it in G. The graph G
is r-regular if and only if the degree of each vertex in G is r. Let {v1, v2, ..., vn}
be the vertices of G and let di = dG(vi). Basic notations and terminologies can
be found in [8, 12, 14]. In literature, there are several graph polynomials defined
on different graph matrices such as adjacency matrix [8, 12, 14], Laplacian matrix
[15], signless Laplacian matrix [9, 18], seidel matrix [5], degree sum matrix [13, 19],
distance matrix [1] etc. The purpose of this paper is to study the characteristic
polynomial of the minimum degree matrix and to obtain bounds for the largest
minimum degree eigenvalue and minimum degree energy.

Note that there are several matrices associated with graphs. In general, we can
say M(G) is a matrix defined on a graph G, whose elements are given by

Mij = X (di, dj) for R(i, j),

where X (di, dj) is a function on degree of vertices vi and vj while R(i, j) is the
relation between the vertices vi and vj . Suppose x1, x2, ..., xn are the eigenvalues
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of the matrix M , then the corresponding energy can be defined as

EM (G) =

n∑
i=1

|xi|.

The most extensively studied such matrix is the Adjacency matrix [12] A(G), where

Aij =

{
1 if vivj ∈ E(G),
0 otherwise.

In which,

X (di, dj) =

{
1 for R(i, j) = vivj ∈ E(G),
0 for R(i, j) = vivj /∈ E(G) or vi = vj .

Recently, the analogous concepts of degree sum matrix [19], degree exponent ma-
trix [20] etc., were put forward. The energy EA(G) with respect to adjacency marix
is smaller than the energy with respect to any other matrix. The degree exponent
energy EDE(G) is larger among all other energies defined so far. The minimum de-
gree energy EMD(G) is much closer to the energy EA(G) with respect to adjacency
matrix, EMD(G) lies between EA(G) and EDE(G). For a complete graph Kn of
order n, EMD(Kn) = (n − 1)EA(Kn) and EDE(Kn) = (n − 1)n−1EA(Kn). These
observations motivated us to study the minimum degree energy. The minimum de-
gree matrix of a graph G of order n is an n×n symmetric matrix MD(G) = [mdij ],
whose elements are defined as

mdij =

{
min{di, dj} if i 6= j,
0 otherwise.

Let I be the identity matrix and J be the matrix whose all entries are equal to
1. The minimum degree polynomial of a graph G is defined as

PMD(G; ξ) = det(ξI −MD(G)).

The eigenvalues of the matrix MD(G), denoted by ξ1, ξ2, ..., ξn are called the
minimum degree eigenvalues of G and their collection is called the minimum degree
spectra ofG. It is easy to see that, ifG is an r-regular graph, thenMD(G) = rJ−rI.
Therefore, for an r-regular graph G of order n, we have

PMD(G; ξ) = [ξ − r(n− 1)][ξ + r]n−1. (1.1)

Let G be a graph of order n with minimum degree eigenvalues ξ1, ξ2, ..., ξn. Then
the minimum degree energy EMD(G) of a graph G is defined as

EMD(G) =

n∑
i=1

|ξi|.

Example 1. Let G = K2 ·K3 be a graph (see Figure 1). Then we have
the minimum degree matrix:

MD(G) =


0 1 1 1
1 0 2 2
1 2 0 2
1 2 2 0

 ,
minimum degree polynomial: PMD(G; ξ) = ξ4 − 15ξ2 − 28ξ − 12,

minimum degree eigenvalues: 2 +
√

7,−2,−2, 2−
√

7 and
the minimum degree energy: EMD(G) = 8.
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Figure 1.

Example 2. Let H = C4 (see Figure 1) be a 2-regular graph. Then we have
the minimum degree matrix:

MD(H) =


0 2 2 2
2 0 2 2
2 2 0 2
2 2 2 0

 ,
minimum degree polynomial: PMD(H; ξ) = ξ4 − 24ξ2 − 64ξ − 48,
minimum degree eigenvalues: 6,−2,−2,−2 and
minimum degree energy: EMD(H) = 2r(n − 1) = 12, where r is the degree of the
vertices in H.

2. Minimum degree polynomial of graphs obtained by graph
operations

In this section, we obtain the minimum degree polynomial of graphs obtained by
some graph operations.

The line graph [12] L(G) of a graph G is a graph whose vertex set is one-to-
one correspondence with the edge set of the graph G and two vertices of L(G) are
adjacent if and only if the corresponding edges are adjacent in G.

The kth iterated line graph [6, 7, 12] of G is defined as Lk(G) = L(Lk−1(G)),
k = 1, 2, ..., where L0(G) ∼= G and L1(G) ∼= L(G).

Theorem 2.1. Let G be an r-regular graph of order n and nk be the order of Lk(G).
Then the minimum degree polynomial of Lk(G), k = 1, 2, ... is

PMD(Lk(G); ξ) = [ξ + 2kr − 2k+1 + 2]nk−1[ξ − (2kr − 2k+1 + 2)(nk − 1)].

Proof. The line graph of a regular graph is a regular graph. In particular, the line
graph of a regular graph G of order n and of degree r is a regular graph of order
n1 = 1

2nr and degree r1 = 2r − 2 [6, 7]. Thus, the order and degree of Lk(G) are

nk =
n

2k

k−1∏
i=0

(2ir − 2i+1 + 2) and rk = 2kr − 2k+1 + 2.

Hence the result follows from (1.1). �

We use the following lemma in order to prove the following theorems.
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Lemma 2.2. [20] If a, b, c and d are real numbers, then the determinant of the
form ∣∣∣∣ (ξ + a)In1

− aJn1
−cJn1×n2

−dJn2×n1 (ξ + b)In2 − bJn2

∣∣∣∣ (2.1)

of order n1 + n2 can be expressed in the simplified form as

(ξ + a)n1−1(ξ + b)n2−1{[ξ − (n1 − 1)a][ξ − (n2 − 1)b]− n1n2cd}.

The subdivision graph [12] S(G) of a graph G is the graph obtained by inserting
a new vertex on each edge of G.

Theorem 2.3. Let G be an r-regular graph of order n and size m. Then

PMD(S(G); ξ) = (ξ + 2)m−1(ξ + r)n−1{ξ2 − [(n− 1)r + 2(m− 1)]ξ

+2(n− 1)(m− 1)r − [min{2, r}]2mn}.

Proof. Let G be an r-regular graph of order n. Then the subdivision graph of the
graph G has two types of vertices. The n vertices are of degree r and the remaining
m vertices are of degree 2. Hence

MD(S(G)) =

[
r(Jn − In) min{2, r}Jn×m

min{2, r}Jm×n 2(Jm − Im)

]
.

Therefore,

PMD(S(G); ξ) = |ξI −MD(S(G))|

=

∣∣∣∣ (ξ + r)In − rJn −min{2, r}Jn×m
−min{2, r}Jm×n (ξ + 2)Im − 2Jm)

∣∣∣∣ .
Using Lemma 2.2, we get the required result. �

The semitotal point graph [21] T2(G) is a graph which is obtained from the graph
G by inserting a vertex corresponding to each edge of G and by joining each new
vertex to the end vertices of the edge corresponding to it.

Theorem 2.4. Let G be an r-regular graph of order n and size m. Then

PMD(T2(G); ξ) = (ξ+2r)n−1(ξ+2)m−1{[ξ−2(n−1)r][ξ−2(m−1)]−[min{2, 2r}]2mn}.

Proof. Let G be an r-regular graph of order n. Then the semitotal point graph of
the graph G has two types of vertices. The n vertices are of degree 2r and the
remaining m vertices are of degree 2. Hence

MD(T2(G)) =

[
2r(Jn − In) min{2, 2r}Jn×m

min{2, 2r}Jm×n 2(Jm − Im)

]
.

Therefore,

PMD(T2(G); ξ) = |ξI −MD(T2(G))|

=

∣∣∣∣ (ξ + 2r)In − 2rJn −min{2, 2r}Jn×m
−min{2, 2r}Jm×n (ξ + 2)Im − 2Jm)

∣∣∣∣ .
Using Lemma 2.2, we get the required result. �

The semitotal line graph [11] T1(G) is a graph which is obtained from the graph
G by inserting a new vertex into every edge of G, and joining by edges those pairs
of new vertices which lie on adjacent edges.
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Theorem 2.5. Let G be an r-regular graph of order n and size m. Then

PMD(T1(G); ξ) = (ξ + r)n−1(ξ + 2r)m−1{[ξ − (n− 1)r][ξ − 2(m− 1)r]− r2mn}.

Proof. Let G be an r-regular graph of order n. Then the semitotal line graph of the
graph G has two types of vertices. The n vertices are of degree r and the remaining
m vertices are of degree 2r. Hence

MD(T1(G)) =

[
r(Jn − In) rJn×m
rJm×n 2r(Jm − Im)

]
.

Therefore,

PMD(T1(G); ξ) = |ξI −MD(T1(G))|

=

∣∣∣∣ (ξ + r)In − rJn −rJn×m
−rJm×n (ξ + 2r)Im − 2rJm)

∣∣∣∣ .
Using Lemma 2.2, we get the required result. �

The total graph [12] T (G) of a graph G is the graph whose vertex set is V (G) ∪
E(G) and two vertices of T (G) are adjacent if and only if the corresponding elements
of G are adjacent or incident.

Theorem 2.6. Let G be an r-regular graph of order n and size m. Then

PMD(T (G); ξ) = (ξ + 2r)n+m−1[ξ − 2(n+m− 1)r].

Proof. The total graph of a regular graph of degree r is a regular graph of degree
2r with n+m vertices. Hence the result follows from (1.1). �

The graph G+k is a graph obtained from the graph G by attaching k (k ≥ 1)
pendant edges to each vertex of G. If G is a graph of order n and size m, then G+k

is graph of order n+ nk and size m+ nk.

Theorem 2.7. Let G be an r-regular graph of order n and size m. Then

PMD(G+k; ξ) = (ξ+ r+ k)n−1(ξ+ 1)nk−1{[ξ− (n− 1)(r+ k)][ξ− (nk− 1)]− kn2}.

Proof. The graph G+k of a regular graph G of degree r has two types of vertices.
The n vertices are of degree r + k and the remaining nk vertices are of degree 1.
Hence

MD(G+k) =

[
(r + k)(Jn − In) Jn×nk

Jnk×n (Jnk − Ink)

]
.

Therefore,

PMD(G+k; ξ) = |ξI −MD(G+k)|

=

∣∣∣∣ (ξ + r + k)In − (r + k)Jn −Jn×nk
−Jnk×n (ξ + 1)Ink − Jnk)

∣∣∣∣ .
Using Lemma 2.2, we get the required result. �

The union [12] of the graphs G1 and G2 is a graph G1 ∪G2 whose vertex set is
V (G1 ∪G2) = V (G1) ∪ V (G2) and the edge set E(G1 ∪G2) = E(G1) ∪ E(G2).

Theorem 2.8. Let G be an r1-regular graph of order n1 and H be an r2-regular
graph of order n2. Then

PMD(G∪H; ξ) = PMD(G; ξ)PMD(H; ξ)−(ξ+r1)n1−1(ξ+r2)n2−1n1n2[min{r1, r2}]2.
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Proof. The minimum degree matrix of G ∪H will be of the form

MD(G ∪H) =

[
MD(G) min{r1, r2}Jn1×n2

min{r1, r2}Jn2×n1
MD(H)

]
=

[
r1(Jn1

− In1
) min{r1, r2}Jn1×n2

min{r1, r2}Jn2×n1
r2(Jn2

− In2
)

]
.

Therefore,

PMD(G ∪H; ξ) = |ξI −MD(G ∪H)|

=

∣∣∣∣ (ξ + r1)In1
− r1Jn1

−min{r1, r2}Jn1×n2

−min{r1, r2}Jn2×n1 (ξ + r2)In2 − r2Jn2)

∣∣∣∣ .
Using Lemma 2.2, we get

PMD(G∪H; ξ) = (ξ+r1)n1−1(ξ+r2)n2−1{[ξ−(n1−1)r1][ξ−(n2−1)r2]−n1n2[min{r1, r2}]2}.
(2.2)

Since G is an r1-regular graph of order n1 and H is an r2-regular graph of order
n2. Then by (1.1), we have

PMD(G; ξ) = (ξ + r1)n1−1[ξ − (n1 − 1)r1] (2.3)

and

PMD(H; ξ) = (ξ + r2)n2−1[ξ − (n2 − 1)r2]. (2.4)

The result follows by substituting (2.3) and (2.4) in (2.2). �

The join [8, 12] G1OG2 of two graphs G1 and G2 is the graph obtained from G1

and G2 by joining every vertex of G1 to all vertices of G2.

Theorem 2.9. Let G be an r1-regular graph of order n1 and H be an r2-regular
graph of order n2. Then

PMD(GOH; ξ) = (ξ +R1)n1−1(ξ +R2)n2−1{(ξ − (n1 − 1)R1)(ξ − (n2 − 1)R2)

−min{R1, R2}n1n2},

where R1 = r1 + n2 and R2 = r2 + n1.

Proof. If G is an r1-regular graph of order n1 and H is an r2-regular graph of order
n2, then GOH has two types of vertices, the n1 vertices with degree R1 = r1 + n2
and the remaining n2 vertices are of degree R2 = r2 + n1. Hence

MD(GOH) =

[
R1(Jn1

− In1
) min{R1, R2}Jn1×n2

min{R1, R2}Jn2×n1
R2(Jn2

− In2
)

]
.

Therefore,

PMD(GOH; ξ) = |ξI −MD(GOH)|

=

∣∣∣∣ (ξ +R1)In1 −R1Jn1 −min{R1, R2}Jn1×n2

−min{R1, R2}Jn2×n1
(ξ +R2)In2

−R2Jn2
)

∣∣∣∣ .
Using Lemma 2.2, we get the required result. �

Let Kn denotes the complete graph of order n, and kG is the union of k (k ≥ 1)
copies of G. A windmill graph is the join of K1 and kK2. It has 2k + 1 vertices.
If r1 = 0, r2 = 1, n1 = 1 and n2 = 2k, then by Theorem 2.9, we have the following
corollary.
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Corollary 2.10. Let G = K1OkK2 be a windmill graph. Then

PMD(K1OkK2; ξ) = (ξ + 2)2k−1[ξ2 − 2(2k − 1)ξ − 8k2].

The product [12] G × H of graphs G and H has the vertex set V (G × H) =
V (G)×V (H) and (a, x)(b, y) is an edge of G×H if and only if [a = b and xy ∈ E(H)]
or [x = y and ab ∈ E(G)].

Theorem 2.11. Let G be an r1-regular graph of order n1 and H be an r2-regular
graph of order n2. Then

PMD(G×H; ξ) = (ξ + (r1 + r2))n1n2−1[ξ − (r1 + r2)(n1n2 − 1)].

Proof. Since the graphs G and H are regular graphs of degree r1 and r2, respec-
tively. Therefore, the graph obtained by the cartesian product of G and H is a
regular graph of degree r1 + r2 with n1n2 vertices. Hence the result follows from
(1.1). �

The composition [12] G[H] of graphs G and H with disjoint vertex sets V (G)
and V (H) and edge sets E(G) and E(H) is the graph with vertex set V (G[H]) =
V (G) × V (H) and (a, x)(b, y) is an edge of G[H] if and only if [a is adjacent to b]
or [a = b and x is adjacent to y].

Theorem 2.12. Let G be an r1-regular graph of order n1 and H be an r2-regular
graph of order n2. Then

PMD(G[H]; ξ) = (ξ + (n2r1 + r2))n1n2−1[ξ − (n2r1 + r2)(n1n2 − 1)].

Proof. Since the graphs G and H are regular graphs of degree r1 and r2, respec-
tively. Therefore, the graph obtained by the composition of two graphs G and H
is a regular graph of degree n2r1 + r2 with n1n2 vertices. Hence the result follows
from (1.1). �

The corona [12] G ◦ H of graphs G and H is a graph obtained from G and H
by taking one copy of G and |V (G)| copies of H and then joining by an edge each
vertex of the ith copy of H is named (H, i) with the ith vertex of G.

Theorem 2.13. Let G be an r1-regular graph of order n1 and H be an r2-regular
graph of order n2. Then

PMD(G ◦H; ξ) = (ξ +R1)n1−1(ξ +R2)n1n2−1{(ξ − (n1 − 1)R1)(ξ − (n1n2 − 1)R2)

−min{r1 + n2, r2 + 1}n21n2},
where R1 = r1 + n2 and R2 = r2 + 1.

Proof. If G is an r1-regular graph of order n1 and H is an r2-regular graph of order
n2, then G ◦H has two types of vertices, the n1 vertices are of degree R1 = r1 +n2
and the remaining n1n2 vertices are of degree R2 = r2 + 1. Hence

MD(G ◦H) =

[
R1(Jn1

− In1
) min{R1, R2}Jn1×n1n2

min{R1, R2}Jn1n2×n1 R2(Jn1n2 − In1n2)

]
.

Therefore,

PMD(G ◦H; ξ) = |ξI −MD(G ◦H)|

=

∣∣∣∣ (ξ +R1)In1
−R1Jn1

−min{R1, R2}Jn1×n1n2

−min{R1, R2}Jn1n2×n1
(ξ +R2)In1n2

−R2Jn1n2
)

∣∣∣∣ .
Using Lemma 2.2, we get the required result. �
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The Cauchy-Schwarz inequality [2] states that, if (a1, a2, ..., an) and (b1, b2, ..., bn)
are real n-vectors, then(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
. (2.5)

3. Bounds for the largest Minimum degree eigenvalue

Since trace(MD(G)) = 0, the eigenvalues of MD(G) satisfies the following rela-
tions:

n∑
i=1

ξi = 0, (3.1)

further,

n∑
i=1

ξ2i = trace([MD(G)]2)

=

n∑
i=1

n∑
j=1

dijdji

=

n∑
i=1

n∑
j=1

d2ij

= 2
∑
i<j

(min{di, dj})2.

Thus,
n∑

i=1

ξ2i = 2M, whereM =
∑
i<j

(min{di, dj})2. (3.2)

The following results are useful throughout the paper. Let M1 = max1≤i≤n(ai);
M2 = max1≤i≤n(bi); m1 = min1≤i≤n(ai); and m2 = min1≤i≤n(bi).

Theorem 3.1. [17] Let ai and bi are nonnegative real numbers. Then

n∑
i=1

a2i

n∑
i=1

b2i ≤
1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

aibi

)2

. (3.3)

Theorem 3.2. [16] Let ai and bi are nonnegative real numbers. Then

n∑
i=1

a2i

n∑
i=1

b2i −

(
n∑

i=1

aibi

)2

≤ n2

4
(M1M2 −m1m2)

2
. (3.4)

Theorem 3.3. [3] Let ai and bi are nonnegative real numbers. Then∣∣∣∣∣n
n∑

i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n)(A− a)(B − b), (3.5)

where a, b, A and B are real constants such that a ≤ ai ≤ A and b ≤ bi ≤ B for
each i, 1 ≤ i ≤ n. Further, α(n) = nbn2 c(1−

1
nb

n
2 c).
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Theorem 3.4. [10] Let ai and bi are nonnegative real numbers. Then

n∑
i=1

b2i + pP

n∑
i=1

a2i ≤ (p+ P )

(
n∑

i=1

aibi

)
, (3.6)

where p and P are real constants such that pai ≤ bi ≤ Pai for each i, 1 ≤ i ≤ n.

Theorem 3.5. Let G be an r-regular graph of order n. Then G has only one
positive minimum degree eigenvalue ξ = r(n− 1).

Proof. Let G be a connected r-regular graph of order n and {v1, v2, ..., vn} are the
vertices of G. Let di = r be the degree of vi, i = 1, 2, ..., n. Then

dij =

{
min{di, dj} = r if i 6= j,
0 otherwise.

Therefore, the characteristic polynomial of MD(G) is,

PMD(G; ξ) = det(ξI −MD(G))

=⇒ det(ξI −MD(G)) = det(ξI − rA(Kn))

= rn
∣∣∣∣ξr I −A(Kn)

∣∣∣∣
= rn

(
ξ

r
− n+ 1

)(
ξ

r
+ 1

)n−1

= (ξ − r(n− 1))(ξ + r)n−1.

Thus, (ξ − r(n− 1))(ξ + r)n−1 = 0, will give

ξ =

{
r(n− 1) 1 time,
−r (n− 1) times.

�

Theorem 3.6. Let G be any graph of order n. Then

ξ1 ≤
√

2M(n− 1)

n
. (3.7)

Proof. Let ξ1, ξ2, ..., ξn are the minimum degree eigenvalues of the graph G. Then
by substituting ai = 1 and bi = ξi for i = 2, 3, ..., n in (2.5), we get(

n∑
i=2

ξi

)2

≤ (n− 1)

(
n∑

i=2

ξ2i

)
. (3.8)

Again from (3.1) and (3.2), we have
n∑

i=2

ξi = −ξ1 and

n∑
i=2

ξ2i = 2M− ξ21 .

Therefore, (3.8) becomes

(−ξ1)2 ≤ (n− 1)(2M− ξ21).

Hence,

ξ1 ≤
√

2M(n− 1)

n
.

Equality in (3.7) holds for regular graphs. �
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4. Bounds for the Minimum degree energy of graphs

Theorem 4.1. Let G be an r-regular graph of order n. Then −r and r(n− 1) are
minimum degree eigenvalues of G with multiplicity (n − 1) and 1 respectively and
EMD(G) = 2r(n− 1).

Proof. To find the minimum degree polynomial, we have the following determinant.

|ξI −MD(G)| =

∣∣∣∣∣∣∣∣∣∣
ξ −r −r ... −r
−r ξ −r ... −r
−r −r ξ ... −r
... ... ... ... ...
−r −r −r ... ξ

∣∣∣∣∣∣∣∣∣∣
= (ξ + r)n−1

∣∣∣∣∣∣∣∣∣∣
ξ −r −r ... −r
−1 1 0 ... 0
−1 0 1 ... 0
... ... ... ... ...
−1 0 0 ... 1

∣∣∣∣∣∣∣∣∣∣
= (ξ − r(n− 1))(ξ + r)n−1.

Thus,

EMD(G) = 2r(n− 1).

�

Theorem 4.2. Let G be a graph of order n and size m. Then

EMD(G) ≥
√

2nM− n2

4
(|ξ1| − |ξn|)2, (4.1)

where |ξ1| and |ξ2| are maximum and minimum of the absolute value of ξi’s.

Proof. Suppose ξ1, ξ2, ..., ξn are the eigenvalues of MD(G). Then by substituting
ai = 1 and bi = |ξi| in 3.4, we get

n∑
i=1

12
n∑

i=1

|ξi|2 −

(
n∑

i=1

|ξi|

)2

≤ n2

4
(|ξ1| − |ξn|)2

2Mn− (EMD(G))2 ≤ n2

4
(|ξ1| − |ξn|)2

EMD(G) ≥
√

2nM− n2

4
(|ξ1| − |ξn|)2.

�

Corollary 4.3. If G is an r-regular graph of order n, then

EMD(G) ≥ nr
√

(n− 1)− (n− 2)2

4
.

Theorem 4.4. Let G be a graph of order n. Then
√

2M≤ EMD(G) ≤
√

2nM.



240 B. BASAVANAGOUD AND PRAVEEN JAKKANNAVAR EJMAA-2019/7(2)

Proof. For upper bound: Let ξ1, ξ2, ..., ξn be the minimum degree eigenvalues of G.
Then by substituting ai = 1 and bi = |ξi| in (2.5), we get(

n∑
i=1

|ξi|

)2

≤
n∑

i=1

12
n∑

i=1

|ξi|2

(EMD(G))2 ≤ 2Mn

EMD(G) ≤
√

2nM. (4.2)

For lower bound: We have,

(EMD(G))2 =

(
n∑

i=1

|ξi|

)2

≥
n∑

i=1

|ξi|2 = 2M.

Which implies,

EMD(G) ≥
√

2M. (4.3)

Combining (4.2) and (4.3), we get the desired result. �

Theorem 4.5. Let G be a graph of order n and let ∆ be the absolute value of the
determinant of MD(G). Then√

2M+ n(n− 1)∆2/n ≤ EMD(G) ≤
√

2nM.

Proof. For lower bound: By definition of minimum degree energy, we have

(EMD(G))2 =

(
n∑

i=1

|ξi|

)2

=

n∑
i=1

ξ2i + 2
∑
i<j

|ξi||ξj |

= 2M+ 2
∑
i<j

|ξi||ξj |

= 2M+
∑
i 6=j

|ξi||ξj |. (4.4)

Since the arithmetic mean is not smaller than geometric mean for nonnegative
numbers, then we get

1

n(n− 1)

∑
i 6=j

|ξi||ξj | ≥

∏
i6=j

|ξi||ξj |

 1
n(n−1)

=

(
n∏

i=1

|ξi|2(n−1)
) 1

n(n−1)

=
∏
i=1

|ξi|(2/n)

= ∆2/n.

Therefore, ∑
i 6=j

|ξi||ξj | ≥ n(n− 1)∆2/n. (4.5)
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Combining (4.4) and (4.5), we get

EMD(G) ≥
√

2M+ n(n− 1)∆2/n. (4.6)

For upper bound: Consider a nonnegative quantity

Y =

n∑
i=1

n∑
j=1

(|ξi| − |ξj |)2 =

n∑
i=1

n∑
j=1

(|ξi|2 − |ξj |2 − 2|ξi||ξj |).

By direct expansion, we get

Y = n

n∑
i=1

|ξi|2 + n

n∑
j=1

|ξj |2 − 2

(
n∑

i=1

|ξi|

) n∑
j=1

|ξj |

 .

Now, by definition of minimum degree energy and (3.2), we have

Y = 4nM− 2(EMD(G))2.

Since Y ≥ 0,

4nM− 2(EMD(G))2 ≥ 0

EMD(G) ≤
√

2nM. (4.7)

Combining (4.6) and (4.7), we get the desired result. �

Corollary 4.6. If G is an r-regular graph of order n, then

EMD(G) ≤ nr
√

(n− 1).

Theorem 4.7. Let G be a graph of order n and size m. Let ξ1 ≥ ξ2 ≥ ... ≥ ξn be
a non-increasing arrangement of minimum degree eigenvalues. Then

EMD(G) ≥
√

2nM− α(n)(|ξ1| − |ξn|)2, (4.8)

where α(n) = nbn2 c(1−
1
nb

n
2 c).

Proof. Suppose ξ1, ξ2, ..., ξn are the minimum degree eigenvalues of G. Then by
substituting ai = |ξi| = bi, a = |ξn| = b and A = |ξ1| = B in (3.5), we get∣∣∣∣∣∣n

n∑
i=1

|ξi|2 −

(
n∑

i=1

|ξi|

)2
∣∣∣∣∣∣ ≤ α(n)(|ξ1| − |ξn|)2. (4.9)

Since EMD(G) =
∑n

i=1 |ξi|,
∑n

i=1 |ξi|2 = 2M. Therefore, (4.9) yields the required
result. �

Remark 4.1. Since α(n) ≤ n2

4 , from (4.1) and (4.8) one can easily observe that,
the inequality in (4.8) is sharper than the inequality in (4.1).

Theorem 4.8. Let G be a graph of order n and size m. Let ξ1 ≥ ξ2 ≥ ... ≥ ξn be
a non-increasing arrangement of minimum degree eigenvalues. Then

EMD(G) ≥ |ξ1||ξn|n+ 2M
|ξ1|+ |ξn|

, (4.10)

where |ξ1| and |ξ2| are maximum and minimum of the absolute value of ξi’s.
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Proof. Suppose ξ1, ξ2, ..., ξn are the minimum degree eigenvalues of G. Then by
substituting bi = |ξi|, ai = 1, p = |ξn| and P = |ξ1| in (3.6), we get

n∑
i=1

|ξi|2 + |ξ1||ξn|
n∑

i=1

12 ≤ (|ξ1|+ |ξn|)

(
n∑

i=1

|ξi|

)
. (4.11)

Since EMD(G) =
∑n

i=1 |ξi|,
∑n

i=1 |ξi|2 = 2M. Therefore, (4.11) yields the required
result. �

Remark 4.2. (i) For a graph G, E(G) ≤ EMD(G) and equality holds for K2.
(ii) For a complete graph Kn, EMD(Kn) = (n− 1)E(Kn).

5. Conclusion

The characteristic polynomial of the minimum degree matrix of graphs obtained
from the regular graphs by some graph operations is obtained. In this paper, we also
computed the minimum degree energy of regular graphs. In addition, the bounds
for largest minimum degree eigenvalue and minimum degree energy of graphs are
obtained. The (4.8) gives the sharp lower bound for minimum degree energy.
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