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FIVE VALUE THEOREM APPLIED TO DERIVATIVES ON
ANNULI

SHILPA N.

ABSTRACT. The purpose of this paper is to investigate the problems on the
derivatives of two meromorphic functions partially sharing five or more values
on annuli and obtain results that improve and generalize the previous results
given by Cao and Yi [4] , H. Y. Xu and H. Wang [9].

1. INTRODUCTION

For a meromorphic function f in the complex plane C, we assume that the reader
is familiar with the standard notations such as T'(r, f), m(r, f), N(r, f), and so on
(see [8, 18]).

In 1929, R. Nevanlinna (see[17]) established the well known uniqueness theorem :
The five IM theorem.

Theorem A.([17]) If f and g are two non-constant meromorphic functions that
share five distinct values a1, aq, a3, aq,a5 IM in C, then f(z) = g(z).

After this many researchers shown interest in proving uniqueness theorems of
meromorphic functions sharing sets and sharing values. From the several decades
many mathematicians such as I. Lahari [14], A. Banerjee [2], S. S. Bhoosnurmath
and R. S. Dyavanal [3], X. M. Li and H. X. Yi [15] studied the uniqueness theorems
of (entire) meromorphic functions.

In 2009, Z. Q. Mao and H. F. Liu [16] gave different approach in establishing
the uniqueness of meromorphic functions in the unit disc and in the same year T.
B. Cao, H. X. Yi and J. H. Zhang [7] proved the uniqueness theorems of two mero-
morphic functions sharing five values in an angular domain. As we all know that
the unit disc and the angular domain are called as the simply connected domains
in the whole complex plane. But there exists many other sub-regions, such as the
annuli, the m-punctured complex plane, etc.
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In Recent years, Nevanlinna theory of meromorphic functions on the annulus(doubly-
connected region) became the hot topic of research( see [4, 5, 6, 9, 10, 11, 12, 13]).

From [1], we get that each doubly-connected domain is conformally equivalent
to the annulus {z : r < |z|] < R}, 0 < r < R < +00. For two cases: r =0, R = 400,
simultaneously, and 0 < r < R < +o00; the latter case, the homothety z — \/}Z«T%

reduces the given domain to the annulus {z : R%) < |z| < Rp}, where Ry = %.

Thus, every annulus is invariant with respect to the inversion z — % in two cases.

In 2005, Khrystiyanyn and Kondratyuk [10, 11] introduced the Nevanlinna the-
ory for meromorphic functions on annuli.
In 2009 and 2011, Cao [4, 5, 6] established the uniqueness of meromorphic functions
on annuli sharing some values and some sets and obtained an analog of Nevanlinna’s
five-value theorem.

Theorem B.(See [4], Corollary 3.4). Let f1 and f2 are two transcendental or
admissible meromorphic functions on the annulus A = {z : R%) < |z] < Ro} where

1 < Ry < 4o0. Let aj(j = 1,2,...,q) be q distinct complex numbers in C and
ki (j =1,2,...,q) be positive integers or oo, such that:

k1> ko > ... > kg, and Ey(ag, f1) = Eyy(ag, f2), (G=1,2,...,9).

Then:

(i) if ¢ =7, then fi(z) = fa(2).

(ii) if ¢ = 6 and k3 > 2, then fi(2) = fa(2).

(iii) if g =5, k3 > 3 and ks > 2, then fl(z) = fa(2).

(iv) if ¢ = 5 and k4 > 4, then fl( ) = fa(2).

(v)if g =5, k3 > 5 and kg4 > 3, then fi(z) = fa(2).

(vi) if ¢ =5, k3 > 6 and kg > 2, then f1(z) = fa(2).

From Theorem B, we can get the following theorem immediately.

Theorem C.(See [4], Theorem 3.2). Let f1 and fa are two transcendental or
admissible meromorphic functions on the annulus A = {z : Rio < |z| < Ry}, where
1 < Ry < 4o0. Leta;(j =1,2,3,4,5) be five distinct complex numbers in C. If
E(aj, f1) = E(ay, f2), (j =1,2,3,4,5), then f1(z) = fa(2).

Remark 1.1. In the set E(a,f) = {z € A: f(2) —a = 0}, each zero with
multiplicity m is counted m times where as in E(a, f), we ignore the multiplicity.
Also in Ek)(a, f) the set of zeros of f —a with multiplicities no greater than k, each
zero is counted only once.

Definition 1.1.([9]) For B C A and a € C, Nf (r, ﬁ
counting function of those zeros of f —a on A , which belong to the set B.

In 2016, Hong-Yan and Hua Wang [9] investigated the following problem on two
meromorphic functions partially sharing five or more values.

) denotes the reduced

Theorem D.. Let f and g be two transcendental or admissible meromorphic

functions on the annulus A = {z : R%) < |z] < Ro}, where 1 < Ry < +o00. Let
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a1,a2,...,aq (g > 5) be ¢ distinct complex numbers or co. Suppose that ki > kg >
.. > kg, m are positive integers or infinity; 1 <m < q and §; (> 0)(j =1,2,...,q)
are such that:
(1+i) quk + 305 5j+3<(q—m—1)(1+ﬁ)+m.

. —B;
Let Bj = Ekj)(aj, )\Ekj)(aj,g) fOI‘ ] = ].,2,...,(]. If NOJ (T, ﬁ) S 5jT0(7',f)
and

—k;)
i =1 No' (’fjaj) km
lim inf "
r—00 ;1 1N0 (,g,la]) (14 kn ) j m1+k (1—|—k ) ( -2 i 153)km

then f(z) = g(z2).

It is a natural question that on what conditions the derivatives of two meromor-
phic functions partially share five or more values on annuli. In this article we are
giving a positive answer to the above question by generalizing and improving the
previous results.

Theorem 1.1. Let f and g be two transcendental or admissible meromorphic func-
tions on the annulus A = {z : R%) < |z| < Ro}, where 1 < Ry < +oo. Let
a1,az, ...,aq (¢ > 5) be q distinct complex numbers or co. Suppose that ki > ko >
.. > kg, m are positive integers or infinity; 1 <m < q and §; (> 0)(j =1,2,...,q)

are such that:

1 < 1 I\~ n I
1+ — 1+ — DY 6 +2n+3
(+km)j_m1+kj+(+km>;1+kj+(”+ );j+n+

(1.1)

1
<(g+gn—m—2n—-1) <1+k>+m.
m

Let B; = Ey;)(aj, f")\Ex,)(a;,9™) for j =1,2,...q. If

Ny <r, f(n)l_a]) < 6;(n+ DTy(r, f) (1.2)

q ~k;) 1
-1 Vo’ (7“7 W)
lim inf »)
r—00 ‘I NO (’l", g("ﬁ)
J

and

km(n+1)

>( 1+ k) S0 m1+k +(gn—2n=2) 1 +kn) +(m—n—2—(n+1) 35, 0;)kn — > L (L )
(1.3)

then f(z) = g(2).

For n=0 we get Theorem D.
For n=1 we get the following result.

Corollary 1. Under the same conditions of Theorem 1.1 and
() S, e+ (14 ) Sl S +2 50 545 < 20-m—3) (1+ &)+
m.
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— — . —B;
Let B; = By, (a;, f)\Ex,(a;,g') for j = 1,2, ..,q. If N, ( o ) < 26,To(r, f)

and
k)
LN (r )
lim inf

e q N0)<aq/_1a.)
3

2km,

(Lt ) S 1y + (@ = 4Lt En) + (=3 =237 60k = 1) 73 (L4 o)
then f(z) = g(z2).
Corollary 2.. Forn=0,m =1,k; =oco for j =1,2,...,¢q and :
Zq: NO T, —1(1-
lim inf —2 - ( ! J>> 1

r—Ro 22:1 NO (7«’ gjaj) q— 3

) < 9;To(r, f) where §;(> 0) satisfy 0 < 3°9_, 6; < k—3— %, then

1t ) ( 5

f(2) = g(2). _
If =5 and E(a;, f) = E(a;,g), then y =1 and §; =0 for j = 1,2,...,5. We can
obtain f(z) = g(z). Hence Corollary 2 is an improvement of theorem C.

For n=0, m=3 and under the conditions of Corollary 2, we get an improvement of
Theorem B.

1
f=

2. LEMMAS

Lemma 2.1. [11](The lemma on the logarithmic derivative.) Let f be a noncon-
stant meromorphic function on the annulus A = {z : R%) < |z| < Ro}, where

Ry < +o00, and let A > 0. Then:

mo <7"7 J;:) = S1(r, f),

where (i) in the case Ry = +00, S1(r, ) = O(log(rTy(r, x))) forr € (1,+00), except

for the set Ay, such that [, rA~tdr < +o0;

(i) If Ry < 400, then Sy(r, %) = O(log(TO(T *))) forr € (1, Ry), except for the set
dr

A{r" Such that fA: W < +o0.

Lemma 2.2. [11] (The second fundamental theorem.) Let f be a nonconstant
meromorphic function on the annulus A = {z : Rio < |z| < Ro}, where 1 < Ry <
+oo. Let ay,ay,...,aq be q distinct complex numbers in the extended complex plane
C. Then:

(¢—2)To(r, f) < ZNO(T, fla-> + Si(r, f),

where S1(r, f) is stated as in Lemma 2.1.

Lemma 2.3. [4]. Let f be a nonconstant meromorphic function on the annulus
A={z: Rio <|z] < Ro}, where 1 < R < Ry < 400. Let a be an arbitrary complex
number and k be a positive integer. Then:
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3. PROOFS OF THE THEOREM.

In this section we present the proof of the main result.
Proof of Theorem 1.1. Suppose that f # g. then by Lemma 2.2 and Lemma
2.3 for any integer m (1 < m < ¢), we have

q
(@20 s < 3N (r fr=r ) + 51
<
= (X (n - >+Né'”“ (r, : ) +5(r.f).
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d q
ki —=k;) 1 1
< E J J JE—— (n) .
- 1+ijO (r’f(”)—aj>+ ;k-+1 To(r, £77) + S(r, f)

(r, f)+ S(r, ), so we have
k; k —k;) 1
— ) To(r, fM) < i _m VN
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That is,

knL z kj ! n
gn—2n—2+ (m —1) +Z : —Z - | To(r, 9)

Since Bj = ij)(aj,f(”))\Ekj)(aj,g(”)), let Dj = Ekj)(aj,f(”))\Bj fOI‘j = 1, 27 e q.
Since Ekj)(aja f(n)) = Ekj)(aj7g(n)) (] =1,2, ~~~7Q)a

2 —k;) 1 ! —B; 1 1
DN (=) - 2N (r=a;) 2N (r =)

1
(o).

TO(ra f(n)) + T0(7"7 f(n)) + TO(Tag(n)) + O(l)a

+
=

<
Il
—

I I
M@ 'MQ

d; (n + 1)T0(T’ f) + TO(rv f) + nWO(T’ f) + T()(T,g)

+
2\3"

o(r,9) + O(1),

= (n+1) |1+ To(r, f)+ (n+ D)To(r, g) + O(1).

MQ

Jj=1

and since f, g are transcendental or admissible, it follows from (1.2) and (1.3) that

s}
Il <
-
Il S

km n —k;) 1
-1 - 1 N Y7o —
(m =% JZij“() 2o (“f(n)—aj)
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: k1 ko kq 1 .
as r — Ry. Since 1 > o Al e A Tt > 3, it follows that:

q

k

q q
S —om—2 —1 - - DL+ 6"
Zoiqg T =D 1+k; el +j:1 Tk

j=1

which implies

a 7 1
i=1 Vo (ﬁm)

q
k) 1 B km k) 1

lim inf 2
T—00 q N j) r 1
j=1-"0 > gn)—a;
- (n+ 1)—1_’?;;m
- k; Em
?:m 1+]k:j +(n—-2n-2)+[m-n-2-(n+1) ;1‘:1 9] Ttkn ;1':1 1J:Lk;]-

This is a contradiction to equation (1.1). Thus we have f(z) = g(z).
Open Question. Is it possible to replace the derivative by a linear differential
polynomial of the form L(f) = ay f™ + agf@® + - 4 a5 fU.
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