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FIXED POINTS AND CONTINUITY OF BOYD AND WONG

TYPE CONTRACTIVE MAPS

FAUSTINE NZIKU AND SANTOSH KUMAR

Abstract. In this paper, we have established and proved a fixed point the-
orem for Boyd and Wong [2] type contraction in partial metric spaces. In

particular, we have generalized the results due to Pant and Pant [6] for Boyd
and Wong type contraction condition into partial metric spaces in which a con-
tractive mapping which posses a fixed point but not continuous at the fixed
point is used. In addition to that we have presented a common fixed point

theorem for a pair of maps. We have concluded our results by providing an
illustrative example to demonstrate our results.

1. Introduction and Preliminaries

Continuity is an ideal property which is sometimes difficult to be fulfilled espe-
cially in some daily life applications. For instance, most of neural network systems
like bar code scanning, speech recognition and hand written digits recognition.
These neural network systems are some excellent prototype for learning disconti-
nuity phenomena. Actually, different kinds of day to day real world phenomena
are transformed into threshold functions which satisfies some desirable continuity
of weaker forms and some new type of contraction to provide solution to some daily
life applications. Therefore it is desirable to relax continuity assumptions because
in some applications the function may not be continuous.

One of the fundamental tool for non linear analysis is the Banach fixed point
theorem [1]. As a result of its usefulness and applications, this theorem has been
massively investigated and generalized by different researchers. One of the impor-
tant generalization of the Banach fixed point theorem is the Boyd and Wong [2]
fixed point theorem. A mapping T satisfying,

d(Tx, Ty) ≤ χ(d(x, y)),∀x, y ∈ M, (1)

whereby (M,d) is a complete metric space and a mapping χ : [0,∞) → [0,∞)
is upper semi-continuous from the right on [0,∞) such that χ(t) < t, ∀ t > 0.
Consequently, T has a unique fixed point z ∈ M and d(Tnx, z) → 0 as n → ∞, ∀
x ∈ M .

2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Metric spaces, Partial metric spaces, Fixed point, Boyd and Wong

type contractive condition, k-continuous maps.
Submitted Aug. 25, 2018.

106



EJMAA-2019/7(2) FIXED POINTS AND CONTINUITY OF BOYD AND WONG 107

Matthews [5] introduced the study of partial metric spaces as an important
subject in the approach of formalizing the meaning of programming languages by
formulating mathematical objects called denotations. Partial metric was introduced
to ensure that partial order semantics should have a metric based tools for program
verification.

The following definitions are due to Bukatin et. al. [3].
Definition 1 [3] Let X be a non-empty set. A function p : X × X → [0,∞) is
called a partial metric on X if it satisfies the followings axioms:

(PM0): 0 ≤ p(x, x) ≤ p(x, y) (non-negativity and small self-distance).
(PM1): p(x, y) = p(x, x) = p(y, y) ⇒ x = y (indistancy implies equality).
(PM2): p(x, y) = p(y, x) (symmetric).
(PM3): p(x, y) + p(z, z) ≤ p(x, z) + p(z, y) (triangularity), for all x, y, z ∈ X.

(X, p) is called a partial metric space.
Note that p(x, y) = 0 implies x = y (by PM0 through PM2), the converse is

always not true. Therefore, a metric space is a partial metric space with all self-
distances zero.
Definition 2 [3] Let {xn} be a sequence in a partial metric space (X, p), then,

(i) A sequence {xn} ∈ X converges to a point x ∈ X if and only if p(x, x) =
lim

n→∞
p(x, xn) = lim

n→∞
p(xn, xn).

(ii) A sequence {xn} is called a Cauchy sequence if there exists ϵ > 0 such that
for all n,m > N , we have p(xn, xm) < ϵ for some integers N ≥ 0, that is

lim
n,m→+∞

p(xn, xm) exists and it is finite.

(iii) A partial metric space (X, p) is complete if every Cauchy sequence {xn}
converges to a point x ∈ X such that p(x, x) = lim

n,m→+∞
p(xn, xm) .

The following definitions are due to Pant and Pant [6].
Definition 3 [6] A mapping T : X → X is called k-continuous for k = 1, 2, 3, ... if
T kxn → Tt whenever a sequence {xn} is in X such that T k−1xn → t.

We denote p(X) and p(T (X)) to represent the diameter of a set X and the
diameter of the range of T respectively.

Pant and Pant [6] proved the following theorem for Boyd and Wong type fixed
point theorem in complete metric spaces:
Theorem 1 [6] Let T be a mapping of a complete metric space (X, d) into itself
satisfying,

d(Tx, Ty) ≤ ϕ(max{d(x, Tx), d(y, Ty)}), (2)

for all x, y ∈ X, where the function ϕ : [0,∞) → [0,∞) is such that ϕ(t) < t for
each t > 0. If ϕ is upper semi-continuous in the open interval (0, d(T k(X))), then
T has a unique fixed point.

2. Main Results

Now, we state and prove our main results in partial metric spaces which is a
generalization of Theorem 1 in partial metric spaces and then provide an illustrative
example to demonstrate our results.
Theorem 2 Let X be a non-empty set and let p be a partial metric on X. Let
T : X → X be a mapping of a complete partial metric space (X, p) satisfying,

p(Tx, Ty) ≤ ϕ(max{p(x, Tx), p(y, Ty)}), (3)
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for all x, y ∈ X, where the function ϕ : [0,∞) → [0,∞) is such that ϕ(t) < t
for all t > 0. If ϕ is upper semi-continuous in the open interval (0, p(T k(X))) for
k=0,1,2,3,..., then T has a unique fixed point.

Proof. For the case when k = 0, we see that the mapping ϕ is upper semi-continuous
on the interval (0, p(X)) which is analogous to the generalization of Boyd and Wong
fixed point theorem in complete partial metric space.

We now consider the case when k = 1. Let x0 ∈ X. We define a sequence
{xn} ∈ X by xn+1 = Txn for all integers n ≥ 0.

If we suppose that there exists an integer n ≥ 0 such that xn+1 = xn then T has
a fixed point xn and the proof is complete. Otherwise, suppose that xn+1 ̸= xn for
all integer n ≥ 0, then from (3) we have,

p(xn, xn+1) =p(Txn−1, Txn)

≤ϕ(max{p(xn−1, Txn−1), p(xn, Txn)}). (4)

Suppose that max{p(xn−1, Txn−1), p(xn, Txn)} = p(xn, Txn), then,

p(xn, xn+1) = p(Txn−1, Txn) ≤ ϕ(p(xn, Txn)) < p(xn, xn+1) (5)

which is a contradiction. Hence,

max{p(xn−1, Txn−1), p(xn, Txn)} = p(xn−1, Txn−1). (6)

Therefore, p(xn, xn+1) = p(Txn−1, Txn) ≤ ϕ(p(xn−1, Txn−1)) < p(xn−1, xn).
Thus, the sequence {p(xn, xn+1)} is a decreasing sequence. It is obvious that the
sequence p(xn, xn+1) decreases to the real number r ≥ 0. We claim that r = 0. In
contrary suppose that r > 0, since ϕ is upper semi-continuous in (0, p(T (X))) and

p(xn, xn+1) = p(Txn−1, Txn) ≤ ϕ(p(xn−1, xn)). (7)

Taking limit as n → ∞ in (7) we obtain r ≤ ϕ(r) < r which is a contradiction.
Hence, r = 0 and

lim
n→∞

p(xn, xn+1) = 0. (8)

Now we show that a sequence {xn} ∈ X is a Cauchy sequence. For any positive
integer m, we have,

p(xn, xn+m) = p(Txn−1, Txn+m−1)

≤ ϕ(max{p(xn−1, Txn−1), p(xn+m−1, Tn+m−1)})
= ϕ(max{p(xn−1, xn), p(xn+m−1, xn+m)})
= ϕ(p(xn−1, xn))

< p(xn−1, xn) (9)

Taking limit as n → ∞ in (9) and considering (8) we obtain,

lim
n→∞

p(xn, xn+m) = 0. (10)

Hence the sequence {xn} is a Cauchy sequence.
Since X is complete, then there exists a point z ∈ X such that xn → z. We shall

show that a point z ∈ X is a fixed point of a mapping T .
In contrary, suppose that z is not a fixed point of T . Then,

p(xn+1, T z) = p(Txn, T z) ≤ ϕ(max{p(xn, Txn), p(z, Tz)}) (11)
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as n → ∞ in (11) we obtain,

p(z, Tz) ≤ ϕ(max{p(z, Tz), p(z, Tz)}) = ϕ(p(z, Tz)) < p(z, Tz) (12)

which is a contradiction, hence z is a fixed point of T .
Now, we shall show that z is a unique fixed point of T . Suppose that there exists

another point y ̸= z which is a fixed point of T . Then,

0 < p(z, y) = p(Tz, Ty)

≤ ϕ(max{p(z, Tz), p(y, Ty)})
= ϕ(max{p(z, z), p(y, y)})
= ϕ(p(z, z)) < p(z, z) (13)

which is a contradiction. Hence y = z. �

Now, we will demonstrate our example to explain the above theorem:
Example Let X = [0, 2] with partial metric p(x, y) = max{x, y} for all x, y ∈ X.
Let a mapping T : X → X defined by,

Tx =

{
0, x ∈ [0, 1)
1, x ∈ [1, 2].

Also define ϕ : [0,∞) → [0,∞) as,

ϕ(t) =

{
1+t
2 , t > 1
t
2 , t ≤ 1.

It is clear that the mapping T satisfies the criteria of Theorem 2 with a unique
fixed point T = 1 but it is discontinuous at this fixed point. Also we observe that
p(T (X)) = 1 and ϕ is continuous on (0, 1).

Here we present an extension of Theorem 2 to a pair of maps to obtain a unique
common fixed point.
Theorem 3 Let X be a non-empty set and let p to be a partial metric on X. Let
T and S be self mappings of a complete partial metric space (X, p) satisfying:

p(Tx, Sy) ≤ ϕ{P (x, y)}, (14)

for all x, y ∈ X, where the mapping ϕ : [0,∞) → [0,∞) is such that ϕ(t) < t for all
t > 0 and

P (x, y) = max

{
p(x, y), p(x, Tx), p(y, Sy),

p(x, Sy) + p(y, Tx)

2

}
. (15)

If ϕ is upper semi-continuous on (0, p(T k(X))) and (0, p(Sk(X))) for k = 0, 1, 2, ...,
then T and S have a unique common fixed point and any fixed point of T is also a
fixed of S and conversely.

Proof. Let x0 ∈ X. Define a sequence {xn} ∈ X as xn+1 = Txn and xn+2 = Sxn+1,
for all integers n ≥ 0.
If we assume that there exists a non-negative integer n0 such that, xn0 = xn0+1,
then xn = xn+1 = Txn, this implies that xn is a fixed point of T . Similarly, if there
exists an integer N ≥ 0 such that xN+1 = xN+2, then xn+1 is a fixed point of S.
This concludes the proof.
Otherwise, we suppose that xn ̸= xn+1, for all integers n ≥ 0. Let δn = p(xn, xn+1),
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obvious δn+1 = p(xn+1, xn+2).
From (14) we have:

p(xn+1, xn+2) = p(Txn, Sxn+1) ≤ ϕ(P (xn, xn+1)), (16)

where,
P (xn, xn+1)

= max

{
p(xn, xn+1), p(xn, Txn), p(xn+1, Sxn+1),

p(xn, Sxn+1) + p(xn+1, Txn)

2

}
,

= max

{
p(xn, xn+1), p(xn, xn+1), p(xn+1, xn+2),

p(xn, xn+2) + p(xn+1, xn+1)

2

}
,

Since,
p(xn,xn+2)+p(xn+1,xn+1)

2

≤ p(xn, xn+1) + p(xn+1, xn+2)− p(xn+1, xn+1) + p(xn+1, xn+1)

2

=
p(xn, xn+1) + p(xn+1, xn+2)

2
,

then,

P (xn, xn+1) = max{p(xn, xn+1), p(xn+1, xn+2)}.
Thus,

p(xn+1, xn+2) = p(Txn, Sxn+1)

≤ ϕ(max{p(xn, xn+1), p(xn+1, xn+2)}) (17)

If we take max{p(xn, xn+1), p(xn+1, xn+2)} = p(xn+1, xn+2), then,

p(xn+1, xn+2) = p(Txn, Sxn+1) ≤ ϕ{p(xn+1, xn+2)} < p(xn+1, xn+2), (18)

which is a contradiction. Hence max{p(xn, xn+1), p(xn+1, xn+2)} = p(xn, xn+1).
Therefore,

p(xn+1, xn+2) = p(Txn, Sxn+1) ≤ ϕ(p(xn, xn+1)) < p(xn, xn+1), (19)

which implies that the sequence {δn} is decreasing to a non-negative real number
say δ, for all integers n ≥ 0. We claim that δ = 0. In contrary suppose that δ > 0.
Taking limit as n → ∞ in (19) we obtain,

0 < δ ≤ϕ(δ) < δ, (20)

which is a contradiction, hence we conclude that δ = 0 and

lim
n→∞

(δn) = lim
n→∞

p(xn, xn+1) = 0. (21)

Now, we need to show that a sequence {xn} ∈ X is a Cauchy sequence. We
claim otherwise. Therefore, there exists ϵ > 0 and a sequence of integers m(r), n(r)
such that,

p(xn(r), xm(r)) ≥ ϵ, (22)

for all n(r) > m(r) ≥ r for some r ≥ 0.
Furthermore, suppose that m(r) is the smallest integer which is chosen in such away
that (22) holds so that we have,

p(x(r), xm(r)−1) < ϵ. (23)
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Now, for all n(r) > m(r) we have,

p(xn(r), xm(r)) ≤ p(xn(r), xm(r)−1) + p(xm(r)−1, xm(r))− p(xm(r)−1, xm(r)−1)

≤ p(xn(r), xm(r)−1) + p(xm(r)−1, xm(r)). (24)

As r → ∞ in (24) and considering (21) and (23) we see that,

p(xn(r), xm(r)) → ϵ. (25)

By similar computations we see that,

p(xn(r)−1, xm(r)−1) → ϵ. (26)

Thus,

p(xn(r), xm(r)) = p(Txn(r)−1, Sxm(r)−1)

≤ ϕ(P (xn(r)−1, xm(r)−1)), (27)

where,
P (xn(r)−1, xm(r)−1)

=max

{
p(xn(r)−1, xm(r)−1), p(xn(r)−1, Txn(r)−1), p(xm(r)−1, Sxm(r)−1),

p(xn(r)−1, Sxm(r)−1) + p(xm(r)−1, Txn(r)−1)

2

}
=max

{
p(xn(r)−1, xm(r)−1), p(xn(r)−1, xn(r)), p(xm(r)−1, xm(r)),

p(xn(r)−1, xm(r)) + p(xm(r)−1, xn(r))

2

}
, (28)

as r → ∞ in (28) and considering (25) and (26), then (27) becomes,

0 < ϵ ≤ ϕ(ϵ) < ϵ, (29)

which is a contradiction. Hence, {xn} ∈ X is a Cauchy sequence and,

lim
n,m→∞

p(xn, xm) = 0. (30)

Because X is complete, then we can pick a point x0 ∈ X such that,

lim
n→∞

p(xn, x0) = 0. (31)

Here, we will prove that x0 is a fixed point of S. Contrary suppose that x0 ̸= Sx0.
Now,

p(xn+1, Sx0) = ϕ(p(Txn, Sx0)) ≤ ϕ(P (xn, x0)). (32)

where,

P (xn, x0) =max

{
p(xn, x0), p(xn, Txn), p(x0, Sx0),

p(xn, Sx0) + p(x0, Txn)

2

}
=max

{
p(xn, x0), p(xn, xn+1), p(x0, Sx0),

p(xn, Sx0) + p(x0, xn+1)

2

}
,

(33)

as n → ∞ in (33) we see that,

P (xn, x0) → p(x0, Sx0). (34)



112 F. NZIKU AND S. KUMAR EJMAA-2019/7(2)

Applying limit as n → ∞ in (32) we have,

p(x0, Sx0) ≤ ϕ(p(x0, Sx0)) < p(x0, Sx0), (35)

which is a contradiction. Hence Sx0 = x0.
Now, we will show that a point x0 is a unique common fixed of T and S. In

contrary, suppose that x0 ∈ X and y0 ∈ X are two different common fixed points
of T and S respectively. Thus, p(x0, y0) > 0.
Now,

p(x0, y0) = p(Tx0, Sy0) ≤ ϕ(P (x0, y0)) (36)

where,

P (x0, y0) =max

{
p(x0, y0), p(x0, Tx0), p(y0, Sy0),

p(x0, Sy0) + p(y0, Tx0)

2

}
=max

{
p(x0, y0), p(x0, x0), p(y0, y0),

p(x0, y0) + p(y0, x0)

2

}
= p(x0, y0). (37)

Hence,
p(x0, y0) = p(Tx0, Sy0) ≤ ϕ(p(x0, y0)) < p(x0, y0).

which is a contradiction. Therefore, T and S have a unique common fixed point,
that is x0 = y0.

To prove that any fixed point of T is also a fixed point of S and conversely, we
suppose to the contrary that x0 = Tx0 and x0 ̸= Sx0.
Now,

p(Tx0, Sx0) = p(x0, Sx0) ≤ ϕ(P (x0, Sx0)) (38)

where,
P (x0, Sx0)

=max

{
p(x0, Sx0), p(x0, Tx0), p(Sx0, S

2x0),
p(x0, S

2x0) + p(Sx0, Tx0)

2

}
=max

{
p(x0, Sx0), p(x0, x0), p(Sx0, S

2x0),
p(x0, S

2x0) + p(Sx0, x0)

2

}
= p(x0, Sx0). (39)

Thus,
p(Tx0, Sx0) = p(x0, Sx0) ≤ ϕ(p(x0, Sx0)) < p(x0, Sx0) (40)

which is a contradiction. Therefore, x0 = Tx0 = Sx0. In similar way it is easy to
show that any fixed point of S is also a fixed point of T . �

Remark If we let T = S in the above theorem, we directly obtain Theorem 2.
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