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NEW INTEGRAL INEQUALITIES VIA STRONGLY CONVEXITY

B. MEFTAH

Abstract. In this note, we establish the estimate of
b∫
a
(x− a)p (b− x)q f (x) dx

in the cases where f also |f |λ are strongly convex functions.

1. Introduction

It is well known that convexity plays an important and central role in many
areas, such as economic, finance, optimization, and game theory. Due to its diverse
applications this concept has been extended and generalized in several directions.

We recall that a function f : I ⊂ R → R is said to be convex, if for all x, y ∈ I
and t ∈ [0, 1], the following inequality f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)
holds. In [8] Polyak gave the concept of strongly convexity as follows a function
f : [a, b] → R is said to be strongly convex with modulus c > 0, if the following
inequality f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) − ct(1 − t)(x − y)2 holds for all
x, y ∈ [a, b] and t ∈ [0, 1].

We also recall that the generalized quadrature formula of Gauss-Jacobi type has
the following form

b∫
a

(x− a)
p
(b− x)

q
f (x) dx =

m∑
k=0

Bm,kf (γk) + ℜm [f ] (1)

for certain Bm,k, γk and the remainder term ℜm [f ], see[9].

In [7] Özdemir et al. gave the estimate of the left hand side of equality (1) when
the function f is quasi-convex on [a, b] ⊂ R+ with 0 ≤ a < b < ∞, as follows

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1
β (p+ 1, q + 1)

×max {f (a) , f (b)} .

In [3, 4] Liu discussed the left hand side of (1) in the cases where |f |
k

k−1 and |f |l are
quasi-convex and (α,m)-convex, and P -convex functions. Iscan et al. [2] treated
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the equality (1) in the cases where f and |f |λ are harmonically convex functions.
In [5] Muddassar et al., discussed the left hand side of equality (1) in the cases

where |f | , |f |
k

k−1 and |f |l are s-(α,m)-convex functions. In [1] Ahmad gave the

estimate of the left had side of (1) when |f | , |f |
k

k−1 and |f |l are P -preinvex and
prequasiinvex functions. In [6] Noor et al., established the estimate of the left hand
side of (1) for strongly generalized harmonic convex functions with modulus c > 0,
and derived several other cases.

In the present note we establish a new estimate of the left hand side of equality

(1) in the case where f and |f |λfor λ > 1 are strongly convex functions with modulus
c > 0.

2. Main results

In order to prove the results we need the following Lemma
Lemma 1.[3] Let f : [a, b] ⊂ [0,∞) → R be continuous on [a, b] such that

f ∈ L ([a, b]), a < b. Then the equality

b∫
a

(x− a)
p
(b− x)

q
f (x) dx = (b− a)

p+q+1

1∫
0

(1− t)
p
tqf (ta+ (1− t) b) dt

holds for some fixed p, q > 0.
Theorem 1. Let f : [a, b] ⊂ [0,∞) → R be integrable function on [a, b]. If f is

strongly convex with modulus c > 0 and p, q > 0, then we have

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1
[f(a)β (q + 2, p+ 1)

+ f(b)β (q + 1, p+ 2)− c

6
(b− a)

2
]
. (2)

Proof. From Lemma 1, and strongly convexity of f , we have

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1

1∫
0

(1− t)
p
tq (tf(a) + (1− t)f(b)

− ct(1− t)(b− a)2
)
dt

= (b− a)
p+q+1

f(a)

1∫
0

(1− t)
p
tq+1dt

+(b− a)
p+q+1

f(b)

1∫
0

(1− t)
p+1

tqdt

−c (b− a)
p+q+3

1∫
0

t(1− t)dt

= (b− a)
p+q+1

f(a)β (q + 2, p+ 1)

+ (b− a)
p+q+1

f(b)β (q + 1, p+ 2)

− c

6
(b− a)

p+q+3
,
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which is the desired result. �

Theorem 2. Let f : [a, b] ⊂ [0,∞) → R be integrable function on [a, b], and let

λ > 1. If |f |λis strongly convex with modulus c > 0 for p, q > 0, then we have

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1
(β (q + 1, p+ 1))

1− 1
λ

×
(
|f (a)|λ β (q + 2, p+ 1) + |f (b)|λ β (q + 1, p+ 2)− c

6
(b− a)2

) 1
λ

.

(3)

Proof. From Lemma 1, properties of modulus, and power mean inequality, we have

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1

 1∫
0

(1− t)
p
tqdt

1− 1
λ

×

 1∫
0

(1− t)
p
tq |f (ta+ (1− t) b)|λ dt


1
λ

= (b− a)
p+q+1

(β (q + 1, p+ 1))
1− 1

λ

×

 1∫
0

(1− t)
p
tq |f (ta+ (1− t) b)|λ dt


1
λ

.(4)

Since |f |λis strongly convex, we deduce

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1
(β (q + 1, p+ 1))

1− 1
λ

|f (a)|λ
1∫
0

(1− t)
p
tq+1dt

+ |f (b)|λ
1∫
0

(1− t)
p+1

tqdt− c(b− a)2
1∫
0

t(1− t)dt


1
λ

= (b− a)
p+q+1

(β (q + 1, p+ 1))
1− 1

λ

(
|f (a)|λ β (q + 2, p+ 1)

+ |f (b)|λ β (q + 1, p+ 2)− c

6
(b− a)2

) 1
λ

,

which is the desired result. �

Theorem 3. If all the assumptions of Theorem 2 are satisfied, then we have

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1

2
1
λ

(
β
(

qλ
λ−1 + 1, pλ

λ−1 + 1
))1− 1

λ

×
(
|f (a)|λ + |f (b)|λ − c

3
(b− a)2

) 1
λ

. (5)
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Proof. From Lemma 1, properties of modulus, and Hölder inequality, we have

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1

 1∫
0

(1− t)
pλ

λ−1 t
qλ

λ−1 dt

1− 1
λ

×

 1∫
0

|f (ta+ (1− t) b)|λ dt


1
λ

= (b− a)
p+q+1

(
β
(

qλ
λ−1 + 1, pλ

λ−1 + 1
))1− 1

λ

×

 1∫
0

|f (ta+ (1− t) b)|λ dt


1
λ

. (6)

Since |f |λis strongly convex, we get

b∫
a

(x− a)
p
(b− x)

q
f (x) dx ≤ (b− a)

p+q+1
(
β
(

qλ
λ−1 + 1, pλ

λ−1 + 1
))1− 1

λ

×

 1∫
0

(
t |f (a)|λ + (1− t) |f (b)|λ − ct(1− t)(b− a)2

)
dt


1
λ

=
(b− a)

p+q+1

2
1
λ

(
β
(

qλ
λ−1 + 1, pλ

λ−1 + 1
))1− 1

λ

×
(
|f (a)|λ + |f (b)|λ − c

3
(b− a)2

) 1
λ

,

which is the desired result. �
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