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TOPOLOGICAL STRUCTURES OF NON-NEWTONIAN METRIC

SPACES

MURAT KIRIŞCI

Abstract. The non-Newtonian calculi which are provide a wide variety of
mathematical tools for use in science, engineering, and mathematics, appear
to have considerable potential for use as alternatives to the classical calculus

of Newton and Leibnitz. Every property in classical calculus has an analogue
in non-Newtonian calculus. Recently, metric spaces are defined depending
on the non-Newtonian calculus. We introduce, in this work, some properties
the notion of the non-Newtonian metric spaces and investigate topological

structures of non-Newtonian metric spaces.

1. Introduction

The non-Newtonian calculi are useful mathematical tools in science, engineer-
ing and mathematics and provide a wide variety of possibilities, as a different
perspective. Specific fields of application include: fractal theory, image analysis
(e.g., in bio-medicine), growth/decay processes (e. g., in economic growth, bacte-
rial growth, and radioactive decay), finance (e.g., rates of return), the theory of
elasticity in economics, marketing, the economics of climate change, atmospheric
temperature, wave theory in physics, quantum physics and gauge theory, signal
processing, information technology, pathogen counts in treated water, actuarial
science, tumor therapy in medicine, materials science/engineering, demographics,
differential equations (including a multiplicative Lorenz system and Runge-Kutta
methods), calculus of variations, finite-difference methods, averages of functions,
means of two positive numbers, weighted calculus, meta-calculus, approximation
theory, least-squares methods, multivariable calculus, complex analysis, functional
analysis, probability theory, utility theory, Bayesian analysis, stochastics, decision
making, dynamical systems, chaos theory, and dimensional spaces.

Since these calculi has emerged, it has become a seriously alternative to the clas-
sical analysis developed by Newton and Leibnitz. Just like the classical analysis,
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Non-Newtonian calculi have many varieties as a derivative, an integral, a natural av-
erage, a special class of functions having a constant derivative, and two Fundamen-
tal Theorems which reveal that the derivative and integral are ’inversely’ related.
However, the results of obtained by non-Newtonian calculus has also significantly
different from the classical analysis. For example, infinitely many non-Newtonian
calculi have a nonlinear derivative or integral.

These calculi, which are mentioned above, are geometric calculus, bigeomet-
ric calculus, harmonic calculus, biharmonic calculus, quadratic calculus, and bi-
quadratic calculus. In the geometric calculus and the bigeometric calculus from
within of these calculi, the derivative and integral are both multiplicative. The
geometric derivative and the bigeometric derivative are closely related to the well-
known logarithmic derivative and elasticity, respectively. Also, the linear functions
of classical calculus are the functions which having a constant derivative and be-
sides the exponential functions in the geometric calculus are the functions which
having a constant derivative, the power functions in the bigeometric calculus are
the functions which having a constant derivative. Among the non-Newtonian cal-
culi, geometric and bigeometric calculi have been often used.

The non-Newtonian calculi were developed by Michael Grossman and Robert
Katz, and it were written to nine books related to the non-Newtonian calculi.
Grossman and Katz published first book concerning with non-Newtonian calculus
at 1972.

Recently, studies related with non-Newtonian calculus have increased. Espe-
cially, these studies are emerging in the field of applied mathematics.

Nonlinear multiplicative algorithm of Runge-Kutta type for solving multiplica-
tive differential equations is prensented in [1]. The multiplicative Rössler system
has been briefly examined to test the method proposed.

In [3], based on the ideas of the differentiation and integration which are two ba-
sic operation of Newton-Leibniz calculus obtained several results in non-Newtonian
Analysis: Multiplicative mean value theorem, multiplicative tests for monotonic-
ity, multiplicative tests for local extremum, multiplicative Taylor’s Theorem for
one variable and two variables, multiplicative chain rule, fundamental theorem of
multiplicative calculus, multiplicative integration by parts. In addition, some ap-
plications on multiplicative calculus are demonstrated, in [3].

Rıza et. al. [12], discuss derivation of multiplicative finite difference methods for
the numerical approximation of multiplicative and Volterra-type linear differential
equations.

Uzer [16] has extended the multiplicative calculus to the complex valued func-
tions and was interested in the statements of some fundamental theorems and the
concepts of multiplicative complex calculus. Uzer, also has demonstrated some
analogies between the multiplicative complex calculus and classical calculus by the
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theoretical and numerical examples.

The multiplicative version of Adams Bashforth-Moulton algorithms for the nu-
merical solution of multiplicative differential equations is proposed by Mısırlı and
Gürefe [11].

Bashirov and Rıza [4] have studied on the multiplicative differentiation for complex-
valued functions and established the multiplicative Cauchy-Riemann conditions.

Quite recently, some authors have also worked on the classical sequence spaces
and related topics by using non-Newtonian calculus [5, 7, 8, 9, 10, 13, 14, 15].

Çakmak and Başar [5] constructed the field R(N) of non-Newtonian real numbers
and the concept of non-Newtonian metric. Also, in [5], triangle and Minkowski’s
inequalities of non-Newtonian calculus are given and the spaces of bounded, con-
vergent, null convergent and p− absolutely summable sequences in the sense of
non-Newtonian calculus are defined.

Türkmen and Başar [15] have studied the classical sequence spaces and related
topics in the sense of geometric calculus. Tekin and Başar [14] used the non-
Newtonian complex calculus instead of non-Newtonian real calculus and geometric
calculus and presented some important inequalities such triangle, Minkowski, and
some other inequalities in the sense of non-Newtonian complex calculus which are
frequently used. In [13, 14], the spaces of bounded, convergent, null convergent and
p− absolutely summable sequences given in the sense of non-Newtonian calculus.

Kadak [7] and Kadak et. al. [8, 9] have determined Köthe-Toeplitz duals and
matrix transformations between certain sequence spaces over the non-Newtonian
complex field.

In [10], classical paranormed sequence spaces have been introduced and proved
that the spaces are ∗−complete. By using the notion of multiplier sequence, the
α−, β− and γ− duals of certain paranormed spaces have been computed and their
basis have been constructed in [10].

In this paper, we give some new topological definitions with respect to non-
Newtonian calculus and study some topological properties of non-Newtonian metric
spaces.

Throughout the paper, we will use the abbreviation NN for the expression ”non-
Newtonian”.

2. non-Newtonian Metric Spaces

We know that the ordinary metric spaces are more important and fundamental in
functional analysis and topology. For many years, mathematicians interested with
those spaces. Recently, Çakmak and Başar [5] defined and study some properties
of NN-metric spaces. In this section, we study some properties of NN-metric spaces.
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The function α : R → R+ is called a generator, if this function is one-to-one.

Each generator generates exactly one arithmetic and, conversely, each arithmetic
is generated by exactly one generator. As a generator, we choose the function exp
from R to the set R+ of positive reals, that is to say,

α : R → R+ and α−1 : R+ → Rx 7→ α(x) = ex = y

y 7→ α−1(y) = ln y = x

If we choose I(x) = x for all x ∈ R, then we called that the function I is identity
function. We know that inverse of the identity function is itself. Now, if we take
α = I and α = exp, then the generator α generates the classical and geometric
arithmetics, respectively.

The α−positive numbers are the numbers x ∈ A such that 0̇<̇x and the α−negative
numbers are those for which x<̇0̇. The α−zero, 0̇, and the α−one, 1̇, turn out to
be α(0) and α(1). The α−integers consist of 0̇ and all the numbers that result
by successive α−addition of 1̇ and 0̇ and by successive α−subtraction of 1̇ and 0̇.
Thus, the α−integers turn out to be the following:

· · · , α(−2), α(−1), α(0), α(1), α(2), · · ·
Therefore, we have ẋ = α(x) for each integer. If we choose ẋ is an α−integer,

then ṅ = 1̇+̇1̇+̇...+̇1̇︸ ︷︷ ︸.
The set R+(N) of NN-real numbers is defined as R+(N) = {α(x) : x ∈ R+}.

Now, we define the α−artihmetic operations and ordering relation as follows:

α− addition x+̇y = α{α−1(x) + α−1(y)},
α− subtraction x−̇y = α{α−1(x)− α−1(y)},
α−multiplication x×̇y = α{α−1(x)× α−1(y)},
α− division x/̇y = α{α−1(x)/α−1(y)},
α− order x<̇y ⇔ α−1(x) < α−1(y).

The binary operations (+̇) addition and (×̇) multiplication for the set R(N) of
NN-real numbers are defined by

+̇ : R× R → R
(x, y) 7→ x+̇y = α{α−1(x) + α−1(y)}

×̇ : R× R → R
(x, y) 7→ x×̇y = α{α−1(x)× α−1(y)}.

Lemma 1[5] (R(N), +̇, ×̇) is a complete field.

The α−square of a number x ∈ A ⊂ R(N) is denoted by x×̇x = x2N . For each

α−nonnegative number u, the symbol
√
x
N
will be used to denote u = α{

√
α−1(x)}
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which is the unique α−square is equal to x, which means that u2N = x.

The α−absolute value of a number x ∈ A ⊂ R(N) is defined as α{|α−1(x)|} and

is denoted by |x|N . For each number x ∈ A ⊂ R(N),
√
x2N

N
= |x|N = α{|α−1(x)|}.

In this case,

|x|N =

 x , x>̇α(0)
α(0) , x = α(0)

α(0)−̇x , x<̇α(0).

Let x and y be any two numbers. The NN-distance between these numbers is
defined by

|x−̇y|N = α{|α−1(x)− α−1(y)|} = α{|α−1(y)− α−1(x)|} = |y−̇x|N .

Lemma 2[5] |x×̇y|N = |x|N ×̇|y|N for x, y ∈ R(N).

Lemma 3(NN-triangle inequality)[5] Let x, y ∈ R(N). Then,
|x+̇y|N ≤̇|x|N +̇|y|N .

Definition 4[5] Let X be a non-empty set and dN : X × X → R+(N) be a
function such that for all x, y, z ∈ X;
(i) dN (x, y) = 1 if and only if x = y
(ii) dN (x, y) = dN (y, x)
(iii) dN (x, y)≤̇dN (x, z)+̇dN (z, y).

Then, the map dN is called non-Newtonian metric (NNM) and the pair (X, dN )
is called non-Newtonian metric space (NNMS).

Definition 5[5] Let X = (X, dN ) be a NNMS and (xn) be any sequence in X.
(i) A sequence (xn) is said to be NN-convergent if for every given ε>̇α(0), there
exists an n0 = n0(ε) ∈ N and x ∈ X such that dN (xn, x)<̇ε for all n > n0 and is
denoted by N limn→∞ xn = x or xn →N x as n → ∞.
(ii) A sequence (xn) is said to be NN-Cauchy if for every given ε>̇α(0), there exists
an n0 = n0(ε) ∈ N such that dN (xn, xm)<̇ε for all m,n > n0.
(iii) The space X is said to be NN-complete if every NN-Cauchy sequence in X
converges.

Lemma 6[5] Let X = (X, dN ) be a NNMS. Then,
(i) A NN-convergent sequence in X is bounded and its limit is unique.
(ii) A NN-convergent sequence in X is a Cauchy sequence in X.

From the definition of NN-Cauchy sequence and Lemma 2, we can give the fol-
lowing corollary:

Corollary 7 A NN-Cauchy sequence is bounded.

Lemma 8(Rearrangement of the NN-triangle inequality) Suppose X = (X, dN )
is a NNMS and x, y, z ∈ X. Then∣∣dN (x, y)−̇dN (y, z)

∣∣
N
≤̇dN (x, z)
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Proof. The triangle inequality with the NNM axioms yields first
dN (x, y)≤̇dN (x, z)+̇dN (z, y) and second dN (z, y)≤̇dN (z, x)+̇dN (x, y). Using the
symmetry axiom, rearrangement of the first of these two inequalities gives

dN (x, y)−̇dN (y, z)≤̇dN (x, z)

and rearrangement of the second gives dN (y, z)−̇dN (x, y)≤̇dN (x, z). These last two
inequalities together prove the lemma.

Definition 9 Let X = (X, dN ) be a NNMS. The space X is said to be bounded
if there is a constant M>̇0̇ such that dN (x, y)≤̇M for all x, y ∈ X. The space X is
said to be unbounded if it is not bounded.

Theorem 10 Let X1 = (X1, dN1) and X2 = (X2, dN2) be two NNMS. Then,
X = (X, dN ) is also a NNMS, where X = X1 ×X2 and

dN (x, y) = max{dN1(x1, y1), dN2(x2, y2)} (1)

for x, y ∈ X, where x = (x1, x2), y = (y1, y2). Additionally, X is bounded indepen-
dent of boundedness of X1 and X2.

Proof. It is easily checked that the conditions nonnegativity and symmetry are
satisfied. Now, we will prove that the condition triangle inequality for x, y, z ∈ X =
X1 ×X2. Then, we have

dN (x, y) = max{dN1(x1, y1), dN2(x2, y2)}
≤̇max{dN1(x1, z1)+̇dN1(z1, y1), dN2(x2, z2)+̇dN2(z2, y2)}

≤̇max{dN1(x1, z1), dN2(x2, z2)}+̇max{dN1(z1, y1), dN2(z2, y2)}
= dN (x, y) + dN (z, y).

for all x = (x1, x2), y = (y1, y2) ∈ X. Hence, (X, dN ) is a NNMS.

It is trivial that X is bounded, since dN (x, y) = max{dN1(x1, y1), dN2(x2, y2)}
is finite.

The completeness property is inherited by products of ordinary metric spaces.
That is, the product of countably many complete metric spaces is complete. We
can carry this idea to NNMS, as below:

Theorem 11 Let X1 = (X1, dN1) and X2 = (X2, dN2) be two NNMS and
X = X1 × X2. Define the NNM dN as in (1) for x, y ∈ X, where x = (x1, x2),
y = (y1, y2). Then, (X, dN ) is complete if and only if X1 and X2 are complete.

Definition 12 Let X ⊂ R+(N). The set X is NN-bounded above if there is a
number M ∈ R+(N), say, called an NN-upper bound of X, such that x≤̇M for all
x ∈ X. The set X is NN-bounded below if there is a number m ∈ R+(N), say,
called an NN-lower bound of X, such that m≤̇x for all x ∈ X.

Theorem 13Let X ⊂ R+(N).
(i) The NN-supremum of X is M , which is denoted by supN X, if and only if
x≤̇M for all x ∈ X and for ε>̇α(0), there exists at least point x ∈ X such that
|M−̇x|N <̇ε.
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(ii) The NN-infimum of X is m, which is denoted by infN X, if and only if m≤̇x
for all x ∈ X and for ε>̇α(0), there exists at least point x ∈ X such that |x−̇m|N <̇ε.

Proof. We only prove (i). Let NN-supremum ofX isM . It is easily checked that
the expression ”x≤̇M for all x ∈ X” is hold because of the definition of supremum.
Now, we will prove that the expression ”for ε>̇α(0), there exists at least point
x ∈ X such that |M−̇x|N <̇ε” is hold. Assume that there is no element x ∈ X such
that the condition (i) is holds. Thus, |M−̇ε|N is also an NN-upper bound for the
set X. This is a contradiction and M is NN-supremum of X.

Conversely, suppose that the condition is holds. Then, we prove that the state-
ment ”The NN-supremum of X is M” holds. Due to the expression x≤̇M for all
x ∈ X, we obtain that M is an NN-upper bound of X. Now, we suppose that NN-
supremum of X is not M . Then, it is easily seen that M>̇ supN X. If we choose
ε = (M−̇ supN X)>̇α(0), then there exists at least a number x>̇ supN X. This is a
contradiction and we say that the NN-supremum of X is M .

Theorem 14 Let X ̸= ∅. The NN-supremum and NN-infimum of X are both
unique, if there exist. Nevertheless, if there exist NN-supremum and NN-infimum
of X, then infN X≤̇ supN X.

Proof. We suppose that M and M
′
are suprema of X. If M≤̇M

′
, then M

′

is an upper bound of X and M is aleast upper bound. Similarly, M
′≤̇M and so

M = M
′
. If m and m

′
are infima of X, then m≥̇m

′
, since m

′
is a lower bound of

X and m is a greatest lower bound, similarly m
′≥̇m and so m = m

′
.

If infN X and supN X exist, then X is nonempty. We choose x ∈ X. Hence
infN X≤̇x≤̇ supN X, since infN X is a lower bound and supN X is an upper bound.
It follows that infN X≤̇ supN X.

Theorem 15 Let X ̸= ∅, Y ̸= ∅ and X ⊂ Y . If supN X and supN Y exist, then
supN X≤̇ supN Y and if infN X and infN Y exist, then infN X≥̇ infN Y .

Proof. Since supN Y is an upper bound of Y and X ⊂ Y , it follows that supN Y
is an upper bound of X, so supN X≤̇ supN Y . The proof for the infimum is similar.

Definition 16 We suppose that X = (X, dN ) be a NNMS and A ⊂ X. We
define the diameter of A to be supN{dN (x, y) : x, y ∈ A} and we denote diamN (A).

As in the ordinary metric space, the diameter is dependent on the metric.

Theorem 17 Let X = (X, dN ) be a NNMS and A,B ⊂ X for which A ⊆ B.
Then, diamN (A)≤̇diamN (B).

Proof. Since A ⊆ B, we have {dN (a, b) : a, b ∈ A} ⊆ {dN (c, d) : c, d ∈ B} and
so, by the Theorem 2, supN{dN (a, b) : a, b ∈ A}≤̇ supN{dN (c, d) : c, d ∈ B}, which
is precisely the inequality that is required.
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Theorem 18 Let ω(N) = {x = (xk) : xk ∈ R(N) for all k ∈ N} denote the
space of all sequences over the NN-field R(N) ([5]) and dωN be a function on ω(N)
defined by

dωN (x, y) =N
∞∑
k=1

Ak×̇
(

|xk−̇yk|N
α(1)+̇|xk−̇yk|N

N

)
for all x, y ∈ ω(N), where N

∑∞
k=1 Ak is NN-convergent and Ak>̇α(0) for all k ∈ N.

Then, (ω(N), dωN ) is a bounded NNMS.

Proof. We can prove the similar way of Theorem 5.1 in [5] that the dωN is a
NNM and (ω(N), dωN ) is a NNMS. Let x, y ∈ ω(N), then we have

Ak
|xk−̇yk|N

α(1)+̇|xk−̇yk|N
N<̇

N
Ak≤̇

N
max
k∈N

Ak for all k ∈ N.

Therefore, the NNMS (ω(N), dωN ) is bounded.

3. Open and Closed Balls-Sets in NNMS

Definition 19 Assume that X = (X, dN ) be a NNMS, A be a subset of X and
x ∈ X. The distance from x to A defined by DN (x,A) = infN{dN (x, a) : a ∈ A}.
Let a ∈ X. Then, a is called a NN-boundary point of A in X if and only if
DN (a,A) = α(0) = DN (a,Ac), where Ac is a complement of A. The collection of
NN-boundary points of A in X is called the NN-boundary of A in X and denoted
by ∂NA.

Theorem 20 Suppose that X is a NNMS and A is a subset of X. Then
∂NA = ∂N (Ac).

Proof. Since (Ac)c = A, we have, for each a ∈ X, distN (a, (Ac)c) = distN (a,A).
Thus, distN (a,A) = α(0) = distN (a,Ac) if and only if distN (a,Ac) = α(0) =
distN (a, (Ac)c). In other words, a ∈ ∂NA if and only if a ∈ ∂N (Ac).

Definition 21 Let X = (X, dN ) be a NNMS, x ∈ X. For each r>̇0̇, we define
the NN-open ball in X centered at the point x and with radius r to be the set
BN (x; r) = {y ∈ X : dN (x, y)<̇r}; and the NN-closed ball in X centered at the
point x and with radius r to be the set BN (x; r) = {y ∈ X : dN (x, y)≤̇r}.

Remark 22 It is clear that if we choose α(0)<̇r1<̇r2, thenBN (x; r1) ⊂ BN (x; r2).

Example 23 Let a, b ∈ R+(N), a<̇b and α = exp. The NN-open ball of R+(N)
with the NN-usual metric in Corollary 3.5 in [5] is the NN-open interval defined by

(a, b)N = BN

(
e

a+b
2 ; e

b−a
2

)
.

Proof.Let (a+ b)/2 = u and (b− a)/2 = v. We can write

(a, b)N = B (eu; ev) =
{
ey ∈ R+(N) : dN (eu, ey)<̇ev

}
.

It is easy to see that

|eu−̇ey|N = α
{
|α−1(eu)− α−1(ey)|

}
= α {|u− y|} = e|u−y|
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and we can obtain

e|u−y|<̇ev ⇒ |u− y| < v ⇒ u− v < y < u+ v ⇒ a < y < b.

Example 24 Let a, b ∈ R+(N), a<̇b and α = exp. The NN-closed ball of R+(N)
with the NN-usual metric in Corollary 3.5 in [5] is the NN-closed interval defined
by

[a, b]N = BN

(
e

a+b
2 ; e

b−a
2

)
.

Theorem 25 Let X = (X, dN ) be a NNMS, a ∈ X and r ∈ R+(N). Then,
(i) ∂N (BN (a; r)) ⊆ {x ∈ X : dN (x, a) = r},
(ii) ∂N (BN (a; r)) ⊆ {x ∈ X : dN (x, a) = r},
(iii) BN (a; r) is NN-open in X,
(iv) BN (a; r) is NN-closed in X.

Proof. Let B be a ball and u ∈ ∂NB. Then, from Definition 3, DN (u,B) = α(0)
and DN (u,Bc) = α(0). Let s = dN (u, a). For each w ∈ B, we have dN (a,w)≤̇r.
From Lemma 2, we have dN (u,w)≥̇dN (u, a)−̇dN (a,w)≥̇s−̇r. Therefore

α(0) = DN (u,B) = inf{dN (u,w) : w ∈ B}≥̇s−̇r

and we obtain s≤̇r. Similarly, for each v ∈ Bc, we have dN (v, a)≥̇r, which, again
from Lemma 2, implies that dN (u, v)≥̇dN (v, a)−̇dN (u, a)≥̇r−̇s. Therefore

α(0) = DN (u,Bc) = inf{dN (u, v) : v ∈ Bc}≥̇r−̇s.

We also obtain r≤̇s. The two inequalities give us r = s and, since u is arbitrary in
∂NB, we have proved that (i) and (ii).

The conditions (iii) and (iv) follow by definition, because BN (a; r) contains none
of these boundary points and BN (a; r) contains all of them.

Following theorem can be proved similar to ordinary metric space and hence we
omit the details.

Theorem 26 Let X = (X, dN ) be a NNMS and x ∈ X, r>̇α(0). Then,
(i) X and ∅ are NN-open sets,
(ii) Finite intersection and arbitrary union of NN-open balls BN (x; r) is NN-open,
(iii) Arbitrary intersection and finite union of NN-closed balls in a NNMS is NN-
closed.

Corollary 27 Let X = (X, dN ) be a NNMS. The NNM X is a topological space
with respect to the set of all NN-open sets.

4. NNM Topology

Theorem 28 Let X = (X, dN ) be a NNMS, τ be a given topology on X and
BN (x; ε) be a NN ε−ball. The collection CN = {BN (x; ε) : x ∈ X, ε>̇α(0)} of all
NN-balls is a basis for a topology τ on X.

Proof. It is clear that X ⊂
∪

x∈X BN (x; ε). Now, we choose the NN-open
balls as BN (x; ε) and BN (y; ε) for x, y ∈ X. Let a ∈ BN (x; ε) ∩ BN (y; ε). Then
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there is a NN-ball BN (x; εn) for some εn>̇α(0) such that BN (a; ε1) ⊂ BN (x; ε) and
BN (a; ε2) ⊂ BN (x; ε). Take εn = min{ε1, ε2}. Then, from Remark 3, BN (a; εn) ⊂
BN (x; ε) ∩BN (y; ε), as we desired.

Now, we construct new topological definitions related to NNM.

Definition 29 Let X = (X, dN ) be a NNMS.
(i) The NNMS X together with a topology τ generated by NNM dN is called a
NNM topological space and τ is called a NNM topology on X.
(ii) A NNM topological space is said to be non-Newtonian metrizable(NN-metrizable),
if there exists a NNM dN on X that induces the topology of X. A NNMS X is
NN-metrizable space together with the NNM dN that induces the topology of X.
(iii) A set F is τ−open in X in the NNM topology τ induced by the NNM dN if
and only if for each x ∈ F , there is a δ>̇α(0) such that BN (x; δ) ⊂ F . In similar,
a set G in X is called τ−closed if its complement X/G is τ−open.

Çakmak and Başar [5] defined the convergence of a sequence in a NNMS. Now,
we investigate the relation between the NNM topology τ and the topology of NNM
convergence in X.

Theorem 30 The topology of NNM convergence and the NNM topology on a
NNMS are equivalent.

Proof. We must show that a sequence in X converges with respect to the
topology of NNM convergence if and only if it converges with respect to the NNM
topology on X.

Let ε>̇α(0) and consider an NN ε−ball BN (x; ε) in X. Suppose that a sequence
(xn) in X converging to a point x ∈ X with respect to the topology of NNM
convergence. We show that for sufficiently large value of n, xn is in BN (x; ε).
From the definition of the NNM convergence, we know, for ε>̇α(0), there exist
an n0 = n0(ε) ∈ N such that dN (x, y)<̇ε for all n > n0. By the definition of an
NN-open ball BN (x; ε), this implies that for all n≥̇n0, xn ∈ BN (x; ε).

Conversely, we assume that the sequence (xn) in X converges to a point a ∈ X
with respect to the NNM topology τ on X. Then there exists n0 = n0(ε) ∈ N such
that xn ∈ BN (a; ε) for all n > n0. From the definition of the NN-ball BN (a; ε)
implies that dN (xn, a)<̇ε for all n > n0. Thus, xn → a with respect to the topology
of NNM convergence if and only if xn → a in the NNM topology τ on X. This
completes the proof.

Lemma 31 Let d is an ordinary metric on X and dN is a function which defined
by

dN (x, z) = d(x, y)+̇d(y, z) (2)

for all x, y, z ∈ X. The function dN satisfies NNM conditions. So dN is a NNM on
X.
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Proof. Let x ∈ X and r>̇1. The NN-ball BN (x; r) coincides with the ball with
respect to ordinary metric space (X, d). In this case, the topology generated by the
NN-metric dN is equivalent to the topology generated by the ordinary metric d on
X.

Theorem 32 If the topological space X is metrizable, then it is NN-metrizable.

Proof. Let X be a metrizable space. Then, there exists an ordinary metric d
on X that induces the topology of X. Define the NNM dN on X by 2. Therefore,
the metric dN generate the same topology onthat of X. Hence X is NN-metrizable.
This is what we wished to show.

5. Topological Properties

In this section, we investigate the topological properties of a NNMS X equipped
with the NNM topology τ .

A topological space X satisfies the T0−separation axiom, or is a T0−space, if for
each pair x0 and y0 of distinct points of X there exists a neighborhood of at least
one point which does not contain the other.

A topological space X satisfies the T1−separation axiom, or is a T1−space, if for
each pair x0 and y0 of distinct points of X there exists a neighborhoods Ux0 and
Uy0 of x0 and y0 such that y0 is not in Ux0 and x0 is not in Uy0.

A topological space X satisfies the Hausdorff space, or is a T2−space, if whenever
x0 and y0 are distinct points of X, there exist disjoint neighborhoods of x0 and y0
(the topology on X is then called a Hausdorff topology).

A topological space X satisfies the regular space, if for every point x ∈ X and
every closed set F ⊂ X and x is not in F , there are neighborhoods Ux of x and
UF of F such that Ux ∩ UF = ∅. A topological space X is called T3−space, if X
is a regular T1−space.

A topological space X satisfies the normal space, if every pair of disjoint closed
sets in X have disjoint neighborhoods. A topological space X is called T4−space,
if X is a normal T1−space.

Theorem 33 The NNMS X is a T0-space.

Proof. We choose x0 and y0 in X such that x0 ̸= y0. Then, dN (x0, y0) = r for
some r>̇α(0). We take an open ball BN (x0, r) in X. Therefore, by the definition
y0 is not in BN (x0, r). Thus, we say that the NNMS X is a T0-space.

Theorem 34 The NNMS X is a T1-space.

Proof. Let x0 and y0 in X such that x0 ̸= y0. Suppose that dN (x0, y0) =
r1>̇α(0), and consider a ball BN (x0, r1) inX. It is clear that y0 is not in BN (x0, r1).
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Similarly, suppose that dN (x0, y0) = r2>̇α(0), and consider a ball BN (y0, r2) in X,
then x0 is not in BN (y0, r2). This completes the proof.

Theorem 35 The NNMS X is a T2-space.

Proof. Suppose that x0 and y0 be distinct points for in X. Hence, from by
the definition of NNM, dN (x0, y0) = ε>̇α(0). Consider the NN-open balls BN1 =
(x0, ε/3) and BN2 = (y0, ε/3) which centered at x0 and y0, respectively. We claim
that BN1 ∩ BN2 = ∅. If p ∈ BN1 ∩ BN2, then dN (x0, p)<̇ε/3 and dN (y0, p)<̇ε/3.
Hence, by the NN-triangle inequality,

dN (x0, y0)≤̇dN (x0, p)+̇dN (y0, p)<̇
2

3
ε.

But this result contradicts the fact that dN (x0, y0) = ε. Thus, BN1 and BN2 are
disjoint, i.e., x0 and y0 belong to the disjoint NN-open balls BN1 and BN2, respec-
tively. Accordingly, NNMS X is Hausdorff.

Theorem 36 The NNMS X is normal.

Proof. From Theorem 5, the NNMS X is a Hausdorff space. If we choose U
and V are two disjoint closed subsets of the NNMS X, then

UX = {x ∈ X : dN (x,U)<̇dN (x, V )} (3)

and

VX = {x ∈ X : dN (x, V )<̇dN (x,U)} (4)

are two disjoint neighborhoods of U and V , respectively. This shows that any two
closed disjoint subsets of NNMS X can be separated with disjoint neighborhoods.
Hence X is normal.

Theorem 37 The NNMS X is regular.

Proof. It is known that a normal space is regular. Since the NNMS X is normal,
then the NNMS X is regular.

6. Conclusion

The purpose of this paper is given to topological structure of non-Newtonian
metric spaces which was initiated by Cakmak and Basar [5].

Non-Newtonian calculus is an alternative to the classical calculus of Newton and
Leibnitz. Every property and concept in classical calculus has an analogue in non-
Newtonian calculus.

It is made following studies in this paper: In Section 2, It is studied some prop-
erties of the NNMS which is given by Cakmak and Basar [5] and is given some
new definition belonging to NNMS. Section 3 devoted to the open balls and sets
in NNMS. In this section, it is given NN-boundary points and sets, NN-open balls
and sets, NN-closed balls and sets. In Section 4, the definitions of a basis for a
topology on X, NN-topological space, NN-metrizability are given and studied some
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properties. Finally, in Section 5, the Separation Axioms with respect to the NNM
are defined and proved the NNMS X is T0, T1, Hausdorff, normal and regular space.

We should note that, as a natural continuation of this paper, one can study the
other properties of NNMS for example compactness, category of NNMS, continuity
etc. As shown in [5] and this paper, the concept of NNMS has brought a different
perspective to the metric space theory. Therefore, this concept can also be studied
to the fixed point theory, as in metric fixed metric theory and so it can constructed
the NNM fixed point theory. As is well known, in recent years, the study of metric
fixed point theory has been widely researched because of the this theory has a
fundamental role in various areas of mathematics, science and economic studies.
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[13] S. Tekin, F. Başar, Some basic results on the sets of sequences with geometric calculus, AIP

Conf. Proc., 1470, 95–98, 2012.
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