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EXISTENCE OF SOLUTIONS TO NONLINEAR SINGULAR

DIFFERENTIAL EQUATIONS ARISING IN THE THEORY OF

POWER LAW FLUIDS

CHUNG-SIK SIN, LIANCUN ZHENG, SHUSEN CHENG, JUN-SIK SIN

Abstract. We consider the nonlinear singular boundary layer problem

u′′(t) = −
t

up(t)

subject to the conditions u′(h) = b, u(1) = 0, which describes the steady

laminar boundary layer flow of power law fluids on a moving flat plate. This
paper establishes the new existence results for the boundary value problem for
the case: p > 0, 0 ≤ h < 1, b ∈ R.

1. Introduction

The laminar boundary layer flow has been extensively investigated since the
early 20th century. In 1908, Blasius used similarity transformations to transform
the steady boundary layer flow of Newtonian fluids past a flat plate into the famous
Blasius equation. Applying the Crocco variable transformation to the classical Bla-
sius equation, Crocco obtained nonlinear singular second order differential equation.
Since the non-Newtonian fluid has a wide range of application in industry, it has
been considered by many researchers. With the help of the techniques developed
by Blasius and Crocco, the steady boundary layer flows for power law fluids past
a moving porous plate with suction or injection are transformed into nonlinear
singular ordinary differential equations of the form

u′′(t) = − t

up(t)
(1)

with the conditions

u′(h) = b, u(1) = 0, (2)

where h means the ratio of the velocity of the flat plate to that of the uniform flow
and b is the suction or injection parameter(see [2]). If h > 0, then the uniform
flow and the plate move in the same direction. h < 0 implies that their moving
directions are opposite. The case b > 0 means that there is injection of the fluid into
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the boundary layer and b < 0 implies the suction of the fluid from the boundary
layer. If p = 1, then the equation (1)-(2) corresponds to a Newtonian fluid. If
p > 1, then it describes the motion of a pseudoplastic fluid. Dilatant fluids have
0 < p < 1.

The equation (1)-(2) has been investigated by many mathematicians. Callegari
et al. [1] used the standardization technique to prove the existence of uniqueness
solution of (1)-(2) for the case p = 1, h = 0, b = 0 and obtained an analytical
solution. Callegari et al. [2] established uniqueness and analyticity of solutions
in the case p = 1, h ≥ 0, b = 0. Vajravelu et al. [11] obtained the existence,
uniqueness and analyticity results for the case p = 1, 0 ≤ h < 1, b ∈ R. Nachman
et al. [7, 8] studied the case p > 1, h = 0, b = 0 and the case p > 0, h = 0,
b < 0. Zheng et al. [14] proved existence and uniqueness of solutions for the case
0 < p < 1, h = 0, b = 0 and obtained an estimate for the skin friction coefficient.
In [3, 4, 5, 10, 9, 12], the authors established sufficient conditions for existence
and nonuniqueness of solutions for the case p = 1, h < 0, b ∈ R. Zheng et al.
[13] used the shooting technique to obtain sufficient conditions for the existence of
bifurcation solutions for the case p ≥ 1, h < 0, b ∈ R. Lu [6] proved new results for
the existence of solutions for the case p ≥ 1, h < 0, b ∈ R.

In spite of efforts of many mathematicians, this existence problem has not yet
been completely solved. In the present paper, we consider the case p > 0, 0 ≤ h < 1,
b ∈ R which is more general than the previous works [1, 7, 8, 11, 14].

2. Existence and uniqueness of solutions of boundary layer problems
for power law fluids

In this section we discuss the existence and uniqueness of solutions of the bound-
ary value problem (1)-(2). In the paper the equation (1)-(2) is investigated by con-
sidering the singular ordinary differential equation (1) subject to initial conditions

u(h) = a, u′(h) = b (3)

where 0 ≤ h < 1, a > 0 and b ∈ R. By Peano Theorem, the initial value problem
(1)-(3) has at least one local solution uh,a,b,p(t). The solution uh,a,b,p(t) can be
continuously extended to a maximal interval of existence [h, Th,a,b,p) where Th,a,b,p ∈
R ∪ {∞} .
Lemma 1 Let 0 ≤ h < 1,a > 0,b ∈ R and p > 0. Then u′

h,a,b,p(t) is monotone

decreasing in [h, Th,a,b,p). If Th,a,b,p = ∞, then u′
h,a,b,p(t) > 0 for t > h.

Proof. Since uh,a,b,p(t) is initially positive, it is clear that uh,a,b,p(t) > 0 for any
t ∈ [h, Th,a,b,p). Integrating both sides of (1) over [h, t], we obtain

u′
h,a,b,p(t) = b−

∫ t

h

s

up
h,a,b,p(s)

ds. (4)

By (4), u′
h,a,b,p(t) is monotone decreasing in [h, Th,a,b,p). By integrating both sides

of (4) over [h, t], we have

uh,a,b,p(t) = a+ b(t− h)−
∫ t

h

(t− s)s

up
h,a,b,p(s)

ds. (5)
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Assume that Th,a,b,p = ∞ and there exists t0 > 0 such that u′
h,a,b,p(t0) < 0. Then

u′
h,a,b,p(t) < u′

h,a,b,p(t0) < 0 for t > t0 and, by (4), we have that for t > t0,

b− u′
h,a,b,p(t0) <

∫ t

h

s

up
h,a,b,p(s)

ds. (6)

Integrating both sides of (6) over [h, t], we have that for t > t0,

(b− u′
h,a,b,p(t0))(t− h) <

∫ t

h

(t− s)s

up
h,a,b,p(s)

ds. (7)

By (5) and (7), we have that for t > t0,

uh,a,b,p(t) < a+ b(t− h)− (b− u′
h,a,b,p(t0))(t− h) = a+ u′

h,a,b,p(t0)(t− h).

Thus lim
t→∞

uh,a,b,p(t) = −∞. This contradicts uh,a,b,p(t) > 0 for any t ≥ h.

Lemma 2 Let 0 ≤ h < 1, a > 0, b ∈ R and p > 0. If Th,a,b,p < ∞, then
uh,a,b,p(Th,a,b,p) = 0.
Proof. From the fact that u′

h,a,b,p(t) is monotone decreasing in [h, Th,a,b,p), the

sign of u′
h,a,b,p(t) is not changed in [Th,a,b,p − ϵ, Th,a,b,p) for a sufficiently small

positive number ϵ. Therefore lim
t→Th,a,b,p

uh,a,b,p(t) exists. Let lim
t→Th,a,b,p

uh,a,b,p(t) =

uh,a,b,p(Th,a,b,p) = d. If d > 0, then, by Peano Theorem, there exists a continuous
solution in some neighbourhood of Th,a,b,p. Thus uh,a,b,p(Th,a,b,p) = 0.
Lemma 3 If b < 0, then Th,a,b,p < ∞ for 0 ≤ h < 1, a > 0, p > 0.
If 0 < p ≤ 2, then Th,a,b,p < ∞ for 0 ≤ h < 1, a > 0, b ∈ R. If p > 2, then for any
0 ≤ h < 1 and b ∈ R, there exists a > 0 such that Th,a,b,p < ∞.
Proof. If b ≤ 0, then, by (4), u′

h,a,b,p(t) < 0 for any t > h and by Lemma 1,
Th,a,b,p < ∞. Now we consider the case b > 0. In order to use the method of proof
by contradiction to prove the second assertion of the lemma, we assume that there
exists 0 < p ≤ 2 such that Th,a,b,p = ∞. Then, by Lemma 1, u′

h,a,b,p(t) > 0 for any

t > h. By (5), uh,a,b,p(t) < b(t− h) + a.
If p = 1, then we have

lim
t→∞

u′
h,a,b,1(t) < b− lim

t→∞

∫ t

h

s

b(s− h) + a
ds = b− lim

t→∞

[
t− h

b
+

1

b

(
h− a

b

)
ln
(
t

− h+
a

b

)
− 1

b

(
h− a

b

)
ln

a

b

]
= −∞.

If p ∈ (0, 1) ∪ (1, 2), then we have

lim
t→∞

u′
h,a,b,p(t) < b− lim

t→∞

∫ t

h

s

(b(s− h) + a)p
ds = b− lim

t→∞

[
1

bp(2− p)

((
t− h

+
a

b

)2−p

−
(a
b

)2−p
)
+

1

bp(1− p)

(
h− a

b

)((
t− h+

a

b

)1−p

−
(a
b

)1−p
)]

= −∞.

If p = 2, then we have

lim
t→∞

u′
h,a,b,2(t) < b− lim

t→∞

∫ t

h

s

(b(s− h) + a)2
ds = b− 1

b2
lim
t→∞

[
ln
(
t− h+

a

b

)
− ln

a

b
+
(a
b
− h

)((
t− h+

a

b

)−1

− b

a

)]
= −∞.
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The above inequalities contradict lim
t→∞

u′
h,a,b,p(t) > 0 for t > h. Thus Th,a,b,p < ∞

for any 0 < p ≤ 2. Now we will prove the last assertion of the lemma. Assume that
there exists p ∈ (2,∞) such that Th,a,b,p = ∞ for any a > 0. Then, by Lemma 1,
u′
h,a,b,p(t) > 0 for any a > 0 and t > h. We have

lim
a→0

u′
h,a,b,p(t) < b− lim

a→0

∫ t

h

s

(b(s− h) + a)p
ds = b− 1

bp(2− p)
lim
a→0

[(
t− h+

a

b

)2−p

−
(a
b

)2−p
]
+ lim

a→0

[
1

bp(p− 1)

(
h− a

b

)((
t− h+

a

b

)1−p

−
(a
b

)1−p
)]

= b−

lim
a→0

(a
b

)2−p
[

1

bp(p− 2)
− 1

bp(p− 1)

]
− lim

a→0

ha1−p

b(p− 1)
+

h(t− h)1−p

bp(p− 1)
− (t− h)2−p

bp(2− p)

= −∞.

This contradiction implies that for any p > 2, there exists a > 0 such that Th,a,b,p <
∞.
Remark 1 In the case p > 2, it is difficult to prove whether Th,a,b,p < ∞ for any
a > 0. Thus we need to improve the previous techniques.

For 0 ≤ h < 1, a > 0, b > 0 and p > 0, if Th,a,b,p < ∞, then there exists
Eh,a,b,p > h such that uh,a,b,p(Eh,a,b,p) = a. If Th,a,b,p = ∞, then we set Eh,a,b,p =
∞.
Lemma 4 Let 0 ≤ h0 < 1, a > 0, b > 0, p > 0 and Th0,a,b,p < ∞. Then Eh,a,b,p is
continuous at h0 with respect to h.
Proof. We have that for any t ∈ [max{h, h0},min{Eh,a,b,p, Eh0,a,b,p}],

|uh0,a,b,p(t)− uh,a,b,p(t)| ≤ |b(h− h0)|+
∫ t

h

|up
h0,a,b,p

(s)− up
h,a,b,p(s)|

up
h,a,b,p(s)u

p
h0,a,b,p

(s)
(t− s)sds

+

∣∣∣∣∣
∫ h

h0

(t− s)s

up
h0,a,b,p

(s)
ds

∣∣∣∣∣ = |b(h− h0)|+
∫ t

h

1

up
h,a,b,p(s)

∣∣∣∣∣1− up
h,a,b,p(s)

up
h0,a,b,p

(s)

∣∣∣∣∣(t− s)sds

+

∣∣∣∣∣
∫ h

h0

(t− s)s

up
h0,a,b,p

(s)
ds

∣∣∣∣∣ ≤ |b(h− h0)|+
∫ t

h

1

up
h,a,b,p(s)

∣∣∣∣∣1− u
⌈p⌉
h,a,b,p(s)

u
⌈p⌉
h0,a,b,p

(s)

∣∣∣∣∣(t− s)sds

+

∣∣∣∣∣
∫ h

h0

(t− s)s

up
h0,a,b,p

(s)
ds

∣∣∣∣∣ = |b(h− h0)|+
∫ t

h

∣∣u⌈p⌉−1
h0,a,b,p

(s) + ·+ u
⌈p⌉−1
h,a,b,p(s)

∣∣
up
h,a,b,p(s)u

⌈p⌉
h0,a,b,p

(s)

|uh0,a,b,p(s)− uh,a,b,p(s)|(t− s)sds+

∣∣∣∣∣
∫ h

h0

(t− s)s

up
h0,a,b,p

(s)
ds

∣∣∣∣∣ ≤ |b(h− h0)|

+
⌈p⌉
ap+1

∫ t

h

|uh0,a,b,p(s)− uh,a,b,p(s)|(t− s)sds+

∣∣∣∣∣
∫ h

h0

(t− s)s

up
h0,a,b,p

(s)
ds

∣∣∣∣∣
≤ |b(h− h0)|+

⌈p⌉E2
h0,a,b,p

ap+1

∫ t

h

|uh0,a,b,p(s)− uh,a,b,p(s)|ds+
E2

h0,a,b,p

ap
|h− h0|

≤ |h− h0|
(
b+

E2
h0,a,b,p

ap

)
+

⌈p⌉E2
h0,a,b,p

ap+1

∫ t

h

|uh0,a,b,p(s)− uh,a,b,p(s)|ds.



EJMAA-2017/5(2) EXISTENCE OF SOLUTIONS TO NONLINEAR SINGULAR 5

By Gronwall’s inequality, for any t ∈ [max{h, h0},min{Eh,a,b,p, Eh0,a,b,p}],

|uh0,a,b,p(t)− uh,a,b,p(t)| ≤ |h0 − h|
(
b+

E2
h0,a,b,p

ap

)
exp

(⌈p⌉E3
h0,a,b,p

ap+1

)
. (8)

Now we will use the method of proof by contradiction to prove the assertion of
the lemma. If there exists a number sequence {hn} such that lim

n→∞
hn = h0 and

Eh0,a,b,p − Ehn,a,b,p > δ for any n ∈ N , then

|uh0,a,b,p(Ehn,a,b,p)− a| ≤ |h0 − hn|
(
b+

E2
h0,a,b,p

ap

)
exp

(⌈p⌉E3
h0,a,b,p

ap+1

)
.

Since u′
h0,a,b,p

(Eh0,a,b,p) ̸= 0, by the implicit function theorem, u−1
h0,a,b,p

(t) is con-
tinuous at a with respect to t and thus lim

n→∞
Ehn,a,b,p = Eh0,a,b,p which contra-

dicts Eh0,a,b,p − Ehn,a,b,p > δ. If there exists a number sequence {hn} such that
lim

n→∞
hn = h0 and Ehn,a,b,p − Eh0,a,b,p > δ for any n ∈ N , then

|a− uhn,a,b,p(Eh0,a,b,p)| ≤ |h0 − hn|
(
b+

E2
h0,a,b,p

ap

)
exp

(⌈p⌉E3
h0,a,b,p

ap+1

)
.

Using the same discussion as the above one, we can prove that for any t ∈ [max{h, h0},
min{Eh,a,b,p, Eh0,a,b,p}],

|u′
h0,a,b,p(t)− u′

h,a,b,p(t)| ≤ |h0 − h|Eh0,a,b,p

ap
exp

(⌈p⌉E2
h0,a,b,p

ap+1

)
.

Thus lim
n→∞

u′
hn,a,b,p

(Eh0,a,b,p) = u′
h0,a,b,p

(Eh0,a,b,p) < 0. But since Ehn,a,b,p −
Eh0,a,b,p > δ and u′

hn,a,b,p
(t) is monotone decreasing,

lim
n→∞

u′
hn,a,b,p(Eh0,a,b,p) ≥ lim

n→∞

a− uhn,a,b,p(Eh0,a,b,p)

Ehn,a,b,p − Eh0,a,b,p
= 0.

This contradiction implies that lim
h→h0

Eh,a,b,p = Eh0,a,b,p.

Lemma 5 Let 0 ≤ h < 1, a1 > a2 > 0, b ∈ R and p > 0. Then Th,a1,b,p ≥ Th,a2,b,p

and uh,a1,b,p(t) > uh,a2,b,p(t) for any t ∈ [h, Th,a2,b,p).
Proof. In order to use the method of proof by contradiction to prove the lemma, we
assume there exists t0 > h such that uh,a1,b,p(t0) = uh,a2,b,p(t0) and uh,a1,b,p(t) >
uh,a2,b,p(t) for any t < t0. By (5), we have that for t ∈ [h, t0],

uh,a1,b,p(t)− uh,a2,b,p(t) = a1 − a2 +

∫ t

h

(t− s)s

[
1

up
h,a2,b,p

(s)
− 1

up
h,a1,b,p

(s)

]
ds

> a1 − a2, which contradicts uh,a1,b,p(t0) = uh,a2,b,p(t0).
Lemma 6 Let 0 ≤ h < 1, a0 > 0, b > 0, p > 0 and Th,a0,b,p < ∞. Then Eh,a,b,p is
continuous at a0 with respect to the initial value a. Moreover there exist a1, h1 > 0
such that {Eh,a,b,p|a ∈ (0, a1]} converges uniformly to Eh,0,b,p on [0, h1] as a → 0
where Eh,a,b,p is considered as a function of h and Eh,0,b,p = lim

a→0
Eh,a,b,p.

Proof. Let |a− a0| < ϵ where ϵ is a positive number which is less than a0. Similar
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to Lemma 4, we have that for t ∈ [h,min{Eh,a0,b,p, Eh,a,b,p}],

|uh,a0,b,p(t)− uh,a,b,p(t)| ≤ |a− a0|+
∫ t

h

|up
h,a0,b,p

(s)− up
h,a,b,p(s)|

up
h,a,b,p(s)u

p
h,a0,b,p

(s)
(t− s)sds

≤ |a− a0|+
⌈p⌉E2

h,a0,b,p

(a0 − ϵ)p+1

∫ t

h

|uh0,a,b,p(s)− uh,a,b,p(s)|ds.

By Gronwall’s inequality, we have that for t ∈ [h,min{Eh,a0,b,p, Eh,a,b,p}],

|uh,a0,b,p(t)− uh,a,b,p(t)| ≤ |a− a0|exp
(⌈p⌉E3

h,a0,b,p

(a0 − ϵ)p+1

)
. (9)

Similar to Lemma 4, by using the proof by contradiction, we can prove that
lim
a→a0

Eh,a,b,p = Eh,a0,b,p. Now we will prove the second assertion of the lemma.

By Lemma 3, there exists a1 > 0 such that E0,a1,b,p < ∞. Since Eh,a,b,p is contin-
uous with respect to h, there exists h1 > 0 such that Eh,a1,b,p < ∞ for h ∈ [0, h1].
Then we have that for a ≤ a1 and h ≤ h1,

|Eh,a,b,p − Eh,0,b,p| ≤ max{|Eh,a,b,p − Eh,0,b,p|
∣∣h ∈ [0, h1]}.

Since Eh,a,b,p is monotone decreasing as a → 0, lim
a→0

max{|Eh,a,b,p − Eh,0,b,p|
∣∣h ∈

[0, h1]}=0 which implies that {Eh,a,b,p|a ∈ (0, a1]} converges uniformly to Eh,0,b,p

on [0, h1] as a → 0. The proof is completed.
For 0 ≤ h < 1, a > c > 0, b ∈ R and p > 0, if Th,a,b,p < ∞, then there

exists Eh,a,b,p,c such that uh,a,b,p(Eh,a,b,p,c) = c. If Th,a,b,p = ∞, then we set
Eh,a,b,p,c = ∞.
Remark 2 Similar to Lemma 4 and Lemma 6, we can prove that Eh,a,b,p,c is
continuous with respect to initial value a and h. And we can show that uh,a,b,p(t),
u′
h,a,b,p(t) are continuous with respect to the initial value a and h for t ∈ [h,Eh,a,b,p,c].

Lemma 7 Let h ≥ 0, b ∈ R and p > 0. Then Th,a,b,p is continuous with respect to
the initial value a in Gh,b,p where Gh,b,p = (0, sup{a|Th,a,b,p < ∞}).
Proof. If a ∈ Gh,b,p, by Lemma 2 and Lemma 5, uh,a,b,p(Th,a,b,p) = 0. Since
u′
h,a,b,p(t) is continuous with respect to t and u′

h,a,b,p(Th,a,b,p) = −∞ for a ∈ Gh,b,p,

there exists ϵa ∈ (0, a) such that |Th,a,b,p−Eh,a,b,,p,ϵ| < ϵ/4 and u′
h,a,b,p(Eh,a,b,p,ϵ) <

−1 for any 0 < ϵ < ϵa. Now we will prove that for any a0 ∈ Gh,b,p and 0 < ϵ0 < ϵa0 ,
there exists δ > 0 such that |Th,a0,b,p − Th,a,b,p| < ϵ0 for any a ∈ (a0, a0 + δ). Since
u′
h,a,b,p(t) is continuous with respect to the initial value a, there exists δ1 > 0

such that |Th,a,b,p − Eh,a,b,p,ϵ0 | < ϵ0/4 for any a ∈ (a0, a0 + δ1). Meanwhile since
u′
h,a0,b,p

(Eh,a0,b,p,ϵ0) < −1 and uh,a,b,p(t) is continuous with respect to initial value

a, there exists δ2 > 0 such that |Eh,a,b,p,ϵ0 − Eh,a0,b,p,ϵ0 | < |uh,a,b,p(Eh,a,b,p,ϵ0) −
uh,a,b,p(Eh,a0,b,p,ϵ0)| = |uh,a0,b,p(Eh,a0,b,p,ϵ0) − uh,a,b,p(Eh,a0,b,p,ϵ0)| < ϵ0/4 for any
a ∈ (a0, a0 + δ2). Set δ = min{δ1, δ2}. Then, by the triangular inequality, we
have that |Th,a0,b,p − Th,a,b,p| < |Th,a0,b,p −Eh,a0,b,p,ϵ0 |+ |Eh,a0,b,p,ϵ0 −Eh,a,b,p,ϵ0 |+
|Eh,a,b,p,ϵ0 − Th,a,b,p| < ϵ0 for any a ∈ (a0, a0 + δ). The proof is completed.
Lemma 8 Let 0 ≤ h < 1. If b ≤ 0, then lim

a→0
Th,a,b,p = h for any p > 0. If b > 0,

then lim
a→0

Th,a,b,p = h for any p ≥ 1.

Proof. If b < 0, then, since u′
h,a,b,p(t) < 0 for t > h, by Lemma 1 and Lemma 2,

Th,a,b,p < ∞ and uh,a,b,p(Th,a,b,p) = 0. Since uh,a,b,p(t) ≤ a + b(t − h) for t ≥ h,
h ≤ Th,a,b,p ≤ h − a/b. Thus Th,a,b,p → h as a → 0. If b = 0 and h > 0, then, by
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u′
h,a,0,p(t) < 0 for t > h, Th,a,0,p < ∞ and uh,a,0,p(Th,a,0,p) = 0. We obtain

uh,a,b,p(t) ≤ a− h

ap

∫ t

h

(t− s)ds = a− h

2ap
(t− h)2.

Then h ≤ Th,a,0,p ≤ h+ 21/2a(1+p)/2/h1/2 and thus Th,a,0,p → h as a → 0.
If b = 0 and h = 0, then we have

u0,a,0,p(t) ≤ a− 1

ap

∫ t

0

(t− s)sds = a− 1

6ap
t3.

Then 0 ≤ T0,a,0,p ≤ 61/3a(1+p)/3 and thus T0,a,0,p → 0 as a → 0.
Now we consider the case b > 0. By Lemma 3, there exists a1 > 0 such that
Th,a,b,p < ∞ for any a ∈ (0, a1). Then for any a ∈ (0, a1), there exists Sh,a,b,p > h
such that u′

h,a,b,p(Sh,a,b,p) = 0. We have

b =

∫ Sh,a,b,p

h

s

up
h,a,b,p(s)

ds. (10)

Let Sp = lim
a→0

Sh,a,b,p. By (10) and Lemma 5, Sp < Sh,a,b,p. In order to use the

method of proof by contradiction to prove that Sp = h, we assume that Sp > h. If
p = 1 and 0 < h < 1, then we have

b ≥ lim
a→0

∫ Sh,a,b,1

h

s

a+ b(s− h)
ds > lim

a→0

∫ S1

h

s

a+ b(s− h)
ds

=
S1 − h

b
+ lim

a→0

[(
h− a

b

)
ln

(
b(S1 − h) + a

a

)]
= ∞.

If p ∈ (1, 2) and 0 < h < 1, then we obtain

b ≥ lim
a→0

∫ Sh,a,b,p

h

s

(a+ b(s− h))p
ds > lim

a→0

∫ Sp

h

s

(a+ b(s− h))p
ds

= lim
a→0

[
1

bp(p− 2)

((a
b

)2−p

−
(
Sp − h+

a

b

)2−p
)
+

1

bp(p− 1)

(
h− a

b

)
((a

b

)1−p

−
(
Sp − h+

a

b

)1−p
)]

=
1

bp(2− p)

(
Sp − h

)2−p

+
h

bp(p− 1)

lim
a→0

(a
b

)1−p

− h

bp(p− 1)

(
Sp − h

)1−p

= ∞.

If p ∈ (2,∞), then we have

b ≥ lim
a→0

∫ Sh,a,b,p

h

s

(a+ b(s− h))p
ds > lim

a→0

∫ Sp

h

s

(a+ b(s− h))p
ds

= lim
a→0

(a
b

)2−p
(

1

bp(p− 2)
− 1

bp(p− 1)

)
+

h

bp(p− 1)
lim
a→0

(a
b

)1−p

− 1

bp(p− 2)(
Sp − h

)2−p

− 1

bp(p− 1)

(
Sp − h

)1−p

= ∞.

If p = 2, then we obtain

b ≥ lim
a→0

∫ Sh,a,b,p

h

s

(a+ b(s− h))2
ds > lim

a→0

∫ S2

h

s

(a+ b(s− h))2
ds
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=
1

b2
lim
a→0

[
ln
(
S2 − h+

a

b

)
− ln

a

b
+

(a
b
− h

)((
S2 − h+

a

b

)−1

− b

a

)]

=
1

b2
lim
a→0

ln
b

a
+

1

b2
ln(S2 − h) + lim

a→0

h

ab
− h

b2(S2 − h)
− 1

b2
= ∞.

The above contradictions imply that lim
a→0

Sh,a,b,p = 0 and lim
a→0

Th,a,b,p = 0. If p ∈
[1, 2) and h = 0, then, by Lemma 4 and Lemma 6, lim

a→0
E0,a,b,p = lim

h→0
lim
a→0

Eh,a,b,p =

0 and thus lim
a→0

T0,a,b,p = 0. The proof is completed.

Remark 3 The work of [11] is not sufficient for proving the existence of solutions
of the boundary layer problem for the case h = 0. In fact, that paper established
the existence for the case 0 < h < 1. In the present paper we use properties of
Eh,a,b,p to complete the proof.
Lemma 9 Let 0 ≤ h < 1, b ∈ R and p > 0. Then sup{Th,a,b,p|Th,a,b,p < ∞, a >
0} = ∞.
Proof. First we will prove that lim

a→∞
Th,a,b,p = ∞. If a > 1 and Th,a,b,p < ∞, then

Eh,a,b,p,1 < ∞ and uh,a,b,p(t) ≥ 1 for t ∈ [h,Eh,a,b,p,1]. By (5), we obtain

1 ≤ a+ b(Eh,a,b,p,1 − h)−
∫ Eh,a,b,p,1

h

(Eh,a,b,p,1 − s)sds

which yields that lim
a→∞

Eh,a,b,p,1 = ∞ and thus lim
a→∞

Th,a,b,p = ∞.

Assume that N = sup{Th,a,b,p|Th,a,b,p < ∞, a > 0} < ∞.
If Th,a,b,p < ∞ for any a > 0, then, since lim

a→∞
Th,a,b,p = ∞, N = ∞ which

contradicts N < ∞. If there exists a1 > 0 such that Th,a1,b,p = N , then by
Lemma 2, uh,a1,b,p(N) = 0 and Th,a,b,p = ∞ for any a > a1. Then, by Lemma 1,
u′
h,a,b,p(t) > 0 for a > a1 and t > h. Thus uh,a,b,p(t) ≥ a > a1 for a > a1 and

t > h. For any a > a1, there exists αa > 0 such that uh,a1,b,p(t) < a − a1 for
t ∈ [N − αa, N ]. Thus for a > a1 and t ∈ [N − αa, N ], uh,a,b,p(t)− uh,a1,b,p(t) > a1
which contradicts the continuous dependence of uh,a,b,p(t) on a.
If there exists a2 > 0 such that Th,a2,b,p = ∞ and Th,a,b,p < N for any a < a2, then
uh,a2,b,p(t) > a2 for t > h. For any a < a2, since uh,a,b,p(Th,a,b,p) = 0, there exists
βa > 0 such that for t ∈ [Th,a,b,p − βa, Th,a,b,p], uh,a2,b,p(t)− uh,a,b,p(t) ≥ a2 which
contradicts the continuous dependence of uh,a,b,p(t) on a. The proof is completed.
Theorem 1 The boundary layer problem for power law flows (1)-(2) has at most
one solution in C[h, 1].
Proof. By Lemma 6, this result is obvious.
Theorem 2 The boundary layer problem for pseudoplastic flows and Newtonian
flows (1)-(2) has a unique solution in C[h, 1].
Proof. By Lemma 7, Lemma 8, Lemma 9 and intermediate value theorem, for
0 ≤ h < 1, b ∈ R and p ≥ 1, there exists a > 0 such that Th,a,b,p = 1.
Theorem 3 If b ≤ 0, then the boundary layer problem for dilatant flows (1)-(2)
has a unique solution in C[h, 1]. If b > 0 and there exists a real number a > 0 such
that Th,a,b,p ≤ 1, then the boundary layer problem for dilatant flows (1)-(2) has a
unique solution in C[h, 1].
Proof. Similar to Theorem 2, this result can be proved.
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