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GLOBAL 2-RAINBOW DOMINATION IN GRAPHS

AKRAM ALQESMAH, ANWAR ALWARDI AND R. RANGARAJAN

Abstract. A 2-rainbow dominating function (2RDF) g : V → P(A)
(

where

P(A) is the power set of the set of two colors A = {1, 2}
)

of a graph G = (V,E)

is defined to be satisfying the condition that for every vertex v ∈ V with g(v) =
φ we have

⋃
u∈N(v) g(u) = A. The minimum value of w(g) =

∑
v∈V |f(v)|

among all such functions g of G is called the 2-rainbow domination number of

G and is denoted by γr2(G). A set S ⊆ V is a global dominating set of a graph

G if S dominates both G and its complement G. The minimum cardinality

γg(G) of a global dominating set of G is called the global domination number

of the graph G. In this paper, we introduce the global 2-rainbow domination
number γgr2(G) of a graph G, study some of its properties, determine its

exact values for some specific graphs and we characterize the graphs G with
γgr2(G) = p, where p is the number of vertices of G.

1. Introduction

All graphs considered here are finite, undirected without loops and multiple
edges. For a graph G = (V,E), let V and E denote the set of all vertices and edges
of G with |V | = p and |E| = q, respectively. The open neighborhood and the closed
neighborhood of a vertex v ∈ V are defined by N(v) = {u ∈ V : uv ∈ E} and
N [v] = N(v)∪{v}, respectively. The cardinality of N(v) is called the degree of the
vertex v and denoted by deg(v) in G. The maximum and the minimum degrees in
G are denoted respectively by ∆(G) and δ(G). That is ∆(G) = maxv∈V |N(u)|,
δ(G) = minv∈V |N(u)|. For more terminology and notations about graph, we refer
the reader to [1, 10].

A subset D of V is called dominating set if for every vertex v ∈ V −D, there
exists a vertex u ∈ D such that v is adjacent to u. The minimum cardinality of a
dominating set in G is called the domination number of G and is denoted by γ(G).
For more details about domination of graphs, we refer the reader to [11].

In [14], the concept of domination of a graph G has extended to be a domination
of the graph G and its complement G and is called the global domination of G. A
set S ⊆ V is a global dominating set of a graph G if S dominates both G and its
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complement G. The minimum cardinality γg(G) of a global dominating set of G is
called the global domination number of the graph G.

The Roman domination of graphs has introduced in [6]. A function f : V →
{0, 1, 2} is called a Roman dominating function (RDF) of a graph G, if each vertex
v ∈ V with f(v) = 0 is adjacent to at least one vertex u ∈ V for which f(u) = 2.
The minimum weight w(f) =

∑
x∈V f(x) among all the RDFs of G is called the

Roman domination number of G and is dented by γR(G). In [13], the authors
have extended the concept of global domination number to the Roman domination
number γgR(G) of a graph G and study some of its properties.
Proposition 1[13] For any graph G, γg(G) ≤ γgR(G) ≤ 2γg(G).

The rainbow domination of graphs has introduced in [2] and has been studied
extensively by several authors in [3, 4, 5, 7, 8, 9, 12, 15, 16]. A 2-rainbow dominating
function (2RDF) on a graph G is a function g : V → P(A)

(
where P(A) is the power

set of the set of two colors A = {1, 2}
)

satisfying the condition that for every vertex
v ∈ V with g(v) = φ we have

⋃
u∈N(v) g(u) = A. The weight w(g) or simply

g
(
V (G)

)
of a function g is defined by g

(
V (G)

)
=
∑
v∈V |g(v)|. The 2-rainbow

domination number γr2(G) of a graph G is defined to be the minimum value of
g
(
V (G)

)
among all the 2RDFs g of G. In this paper, we introduce the global 2-

rainbow domination number of a graph G that we denote it by γgr2(G) as follows:
we define a global 2-rainbow dominating function (G2RDF) f : V → P(A) on G to
be a 2RDF for both G and G. The global 2-rainbow domination number γgr2(G) of
G is the minimum value of w(f) = f

(
V (G)

)
=
∑
v∈V |f(v)| among all the G2RDFs

f of G.

2. Notation and Definitions

The distance between two vertices u and v in a connected graph G is the number
of edges in a shortest path connecting them. The eccentricity of a vertex v is the
greatest distance between v and any other vertex and denoted by e(v). The diameter
diam(G) of G is the greatest eccentricity of a vertex in G.

The union of two graphs G and H is the graph obtained by combine their vertex
sets and edge sets, namely G∪H =

(
V (G)∪ V (H), E(G)∪E(H)

)
. The Cartesian

product of two graphs G and H, where |V (G)| = p1, |V (H)| = p2 and |E(G)| =
q1, |E(H)| = q2 is denoted by G�H has the vertex set V (G) × V (H) and, two
vertices (u, u′) and (v, v′) are connected by an edge if and only if either ([u = v
and u′v′ ∈ E(H)]) or ([u′ = v′ and uv ∈ E(G)]). The corona product G ◦H of two
graphs G and H, where |V (G)| = p1, |V (H)| = p2 and |E(G)| = q1, |E(H)| = q2
is the graph obtained by taking |V (G)| copies of H and joining each vertex of the
i-th copy with vertex u ∈ V (G).

A maximal complete subgraph of a graph G is called a clique. The clique number
ω(G) of a graph G is the maximum order among the complete subgraphs of G. A set
S of vertices is called independent if no two vertices in S are adjacent. Throughout
this paper, we denote to the path, cycle, complete and wheel graphs by Pp, Cp,Kp

and Wp, respectively. Kr,m is the complete bipartite graph on r +m vertices.

3. Some Properties

Definition 1 A global 2-rainbow dominating function of a graph G = (V,E)
is a function f that assigns to each vertex a set of colors from the set A = {1, 2}
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such that for each vertex v ∈ V with f(v) = φ we have
⋃
u∈NG(v) f(u) = A and⋃

u∈NG(v) f(u) = A, where NG(v) is the open neighborhood set of v in G. The

global 2-rainbow domination number γgr2(G) of G is the minimum of w(f) =
f
(
V (G)

)
=
∑
v∈V |f(v)| over all such functions of G.

For a graphG = (V,E), let f : V → P(A) be a G2RDF ofG and let (Vφ, V{1}, V{2}, VA)

be the partition of V induced by f , where Vφ = {v ∈ V : f(v) = φ}, V{1} =
{
v ∈

V : f(v) = {1}
}

, V{2} =
{
v ∈ V : f(v) = {2}

}
and VA = {v ∈ V : f(v) = A}.

Clearly that there exists a one to one correspondence between the functions f :
V → P(A) and the ordered partition (Vφ, V{1}, V{2}, VA) of V . Thus we will write
f = (Vφ, V{1}, V{2}, VA).

Proposition 2 For any graph G, γg(G) ≤ γgr2(G) ≤ γgR(G) ≤ 2γg(G).
Proof. By using Proposition 1, we need only to prove that γg(G) ≤ γgr2(G)
and γgr2(G) ≤ γgR(G). Let f = (Vφ, V{1}, V{2}, VA) be a γgr2-function of G. Then
clearly that V{1}∪V{2}∪VA dominates Vφ, so V{1}∪V{2}∪VA is a global dominating
set of G. Thus

γg(G) ≤ |V{1}∪V{2}∪VA| ≤ |V{1}|+|V{2}|+|VA| ≤ |V{1}|+|V{2}|+2|VA| = γgr2(G).

For the other inequality, suppose f = (V0, V1, V2) be a γgR-function of G. Define
the function h : V → P(A) by

h(v) =

 φ, v ∈ V0;
{1} or {2}, v ∈ V1;
A, v ∈ V2.

It is easy to see that the function h is a G2RDF of G. Hence, γgr2(G) ≤ w(h) =
|V1|+ 2|V2| = γgR(G).

Proposition 3 Let G be a graph. Then γg(G) = γgr2(G) if and only if G = Kp

or G = Kp.
Proof. Suppose γg(G) = γgr2(G). Let f = (Vφ, V{1}, V{2}, VA) be a γgr2-function
of G. Then |V{1}| + |V{2}| + |VA| = |V{1}| + |V{2}| + 2|VA| which means |VA| = 0.

Therefore γg(G) = p. Since γg(G) = p if and only if G = Kp or G = Kp (see [14]).
Hence the result holds.
The converse is clear.

Proposition 4 Let G be a graph. Then γgr2(G) = γr2(G) if and only if there
exists a γr2-function f = (Vφ, V{1}, V{2}, VA) of G such that for every vertex v ∈ Vφ
there exists either a vertex u ∈ VA such that u /∈ N(v) or two vertices x ∈ V{1},
y ∈ V{2} such that x, y /∈ N(v).
Proof. Let f = (Vφ, V{1}, V{2}, VA) be a γr2-function of G. Suppose f satisfies the
given condition, clearly that f is a G2RDF of G. Then γgr2(G) ≤ γr2(G). Hence,
γgr2(G) = γr2(G).
Conversely, we have γgr2(G) = γr2(G). For any γr2-function f = (Vφ, V{1}, V{2}, VA)
of G, suppose there exists a vertex v ∈ Vφ such that either VA ⊆ N(v) or at least
V{1} ⊆ N(v). Then

⋃
u∈NG(v) f(v) 6= A. Therefore, γr2(G) < γgr2(G), a contradic-

tion. Hence the result holds.
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Proposition 5 For any graph G of order p ≥ 4 with ∆(G) = p− 1 and δ(G) = 1,
we have γgr2(G) = 4.
Proof. Let u and v be two vertices of G such that deg(u) = p− 1 and deg(v) = 1.
Define f = (Vφ, V{1}, V{2}, VA) by f(u) = f(v) = A and f(x) = φ, ∀x ∈ V (G)\{u, v}.
Clearly that f = (Vφ, V{1}, V{2}, VA) is a G2RDF of G with a minimum weight
because we cannot assign more than p − 2 vertices by φ in G under a function
f = (Vφ, V{1}, V{2}, VA). Hence, γgr2(G) = 4.

Observation 1 For any graph G on p ≥ 4 vertices, 4 ≤ γgr2(G) ≤ p.

4. Exact values of some specific graphs

In this section, we determine the exact values of γgr2 for some standard graphs
like paths, cycles, complete, complete bipartite and wheel graphs and also for
G�K2, G ◦ Kn, where G is a connected graph and Kn is the null graph with
n vertices.

Proposition 6 [3]

(1) γr2(Pp) =
⌊
p
2

⌋
+ 1.

(2) For p ≥ 3, γr2(Cp) =
⌊
p
2

⌋
+ dp4e −

⌊
p
4

⌋
.

Theorem 1

(1) γgr2(Pp) =

 p, p = 2, 3, 4;
4, p=5;⌊
p
2

⌋
+ 1, p ≥ 6.

(2) γgr2(Cp) =

 p, p = 3, 4;
4, p=5;⌊
p
2

⌋
+ dp4e −

⌊
p
4

⌋
, p ≥ 6.

(3) γgr2(Kp) = p.
(4) γgr2(Kr,m) = 4, where r +m ≥ 4.

(5) For p ≥ 5, γgr2(Wp) =

 5, p = 5, 7, 8, 9;
4, p = 6;
6, p ≥ 10.

Proof. We only prove (5) and (1)−(4) are obvious. Let V (Wp) = {v, v1, . . . , vp−1},
where v is the center vertex and let f = (Vφ, V{1}, V{2}, VA) be a γgr2-function
of Wp. For p = 5, we define f = (Vφ, V{1}, V{2}, VA) by f(u) = {1} for all
u ∈ V (Wp) and for p = 7, we define f = (Vφ, V{1}, V{2}, VA) by f(v) = {1},
f(v1) = f(v4) = A and f(u) = φ for all u ∈ V (Wp) \ {v, v1, v4} and for p = 8, we
define f = (Vφ, V{1}, V{2}, VA) by f(v) = f(v1) = {1}, f(v2) = f(v4) = f(v7) = {2}
and f(v3) = f(v5) = f(v6) = φ, also when p = 9, we define f = (Vφ, V{1}, V{2}, VA)
by f(v) = f(v1) = {1}, f(v2) = f(v5) = f(v8) = {2} and f(u) = φ for all
u ∈ V (Wp) \ {v, v1, v2, v5, v8}. It is clear that, f is a γgr2-function of Wp with
w(f) = 5. Hence, γgr2(Wp) = 5, for p = 5, 7, 8, 9.
Now, for p = 6, we define f = (Vφ, V{1}, V{2}, VA) by f(v) = f(v1) = {1},
f(v2) = f(v5) = {2} and f(v3) = f(v4) = φ, which is a γgr2-function of W6

with w(f) = 4. Hence, γgr2(W6) = 4. Finally, for p ≥ 10, we define f =
(Vφ, V{1}, V{2}, VA) by f(v) = f(v1) = A, f(v2) = f(vp−1) = {2} and f(u) = φ
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for all u ∈ V (Wp) \ {v, v1, v2, vp−1}. Hence, γgr2(Wp) = 6, for p ≥ 10.

Rainbow domination in a graph G has a natural connection with the study of
γ(G�Kk) with k ≥ 1. If the vertex set of Kk is {x1, x2, . . . , xk}, then there is a
one-to-one correspondence between the set of k-rainbow dominating functions of G
and the dominating sets of G�Kk. For a given k-rainbow dominating function of
G the set

Df =
⋃
v∈V

( ⋃
i∈f(v)

{(v, xi)}
)
,

is a dominating set of G�Kk. The reverse correspondence is clear [2].
Observation 2[2] For any graph G and k ≥ 1, γrk(G) = γ(G�Kk).

Actually, the result in Observation 2, is not always true for γgr2(G) and γg(G�K2).
In the following theorem we show that when the equality between γgr2(G) and
γg(G�K2) holds.
Theorem 2 Let G be a connected graph. Then γgr2(G) = γg(G�K2) if and only
if γgr2(G) = γr2(G).
Proof. By using Observation 2, it is enough if we prove that γ(G�K2) =
γg(G�K2) for any connected graph G. Since G is connected, then it is clear
that, any γ-set D of G�K2 must contain vertices from the two copies of G (let us
consider |G| = n ≥ 3 because n = 2 is trivial). Thus any vertex x ∈ V (G�K2) \D
has at least a vertex y ∈ D such that y /∈ N(x) (see Figure 1). Therefore, D is a
global dominating set of G�K2. Hence, γr2(G) = γ(G�K2) = γg(G�K2).
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Figure 1. G�K2, where V (K2) = {u1, u2}

Theorem 3 For any connected graph G on p ≥ 2 vertices,

γgr2(G ◦Kn) =

{
p+ γ(G), if p ≥ 3 and n = 1;
2p, otherwise.

Proof. Let V (G) = {v1, v2, . . . , vp} and V (Kn) = {u1, u2, . . . , un} as in Figure 2.

Without loss of generality, to define a G2RDF of G ◦Kn we have three cases:
Case 1. We can define a function f = (Vφ, V{1}, V{2}, VA) by f(uij) = φ for all
i = 1, 2, . . . , p, j = 1, 2, . . . , n and f(v) = A, ∀ v ∈ V (G). Therefore f is a G2RDF
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of G ◦Kn with w(f) = 2p.
Case 2. We can define a function f = (Vφ, V{1}, V{2}, VA) by f(v) = {2}, ∀ v ∈ D,
f(v) = φ, ∀ v ∈ V (G)−D, for someD ⊆ V (G) and for the leaves uij , i = 1, 2, . . . , p,
j = 1, 2, . . . , n by f(uij) = {2} if vi ∈ D and f(uij) = {1} if vi ∈ V (G)−D. Clearly

that f is a G2RDF of G ◦Kn with w(f) = p+ |D| if and only if D is a dominating
set of G. Hence, the smallest weight of a function f in this case is when D is a
γ-set of G.
Case 3. We can define a function f = (Vφ, V{1}, V{2}, VA) by f(v) = A, ∀ v ∈ D,
f(v) = φ, ∀ v ∈ V (G)−D, where D ⊆ V (G) and f(uij) = φ if vi ∈ D and f(uij) =

{1} if vi ∈ V (G)−D. Therefore, f is a G2RDF of G◦Kn with w(f) = p+|D| if and
only if D is a dominating set of G (note that, if γ(G) = 1 with |G| = p ≥ 3, then
we have to label at least one vertex of the leaves uij by {2} when vi ∈ V (G)−D).
Thus, the smallest weight of a function f in this case is when γ(G) = |D|.
Hence,

γgr2(G ◦Kn) =

{
p+ γ(G), if p ≥ 3 and n = 1;
2p, otherwise.
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Figure 2. G ◦Kn

5. Graphs with γgr2 = p

In this section, we characterize graphs G with γgr2(G) = p.
Proposition 7 For any graph G on p ≤ 4 vertices, γgr2(G) = p.
Proof. For all graphs of order p ≤ 3 the proof is clear because in this case we
cannot define any γgr2-function f = (Vφ, V{1}, V{2}, VA) with f(v) = φ for any
v ∈ V (G). Suppose now p = 4. If G ∼= K4, then γgr2(G) = 4. Also, we have the
following cases:
Case 1. If G ∼= K4 − e (e is an edge of G), then G ∼= H1 (see Figure 3). Thus
for H1, we have two options to define a function f = (Vφ, V{1}, V{2}, VA) of G with
minimum weight. Either f(v2) and f(v4) equal to singleton sets and f(v1) = φ,
f(v3) = A and vice versa, or f(vi) equal to singleton sets for all i = 1, 2, 3, 4. Hence,
γgr2(G) = p.
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Case 2. If G ∼= K4 − 2e, then either G ∼= C4 or G ∼= H2 (Figure 3). For G ∼= C4,
clearly that γgr2(G) = p (Theorem 1), and for G ∼= H2, we have three options to
define a function f = (Vφ, V{1}, V{2}, VA) with minimum weight. Either f(v3) = A,
f(v4) = φ and f(v1), f(v2) equal to different singleton sets, or f(v1) = φ, f(v4) = A
and f(v2), f(v3) equal to different singleton sets

(
with the same thing for f(v2)

instead of f(v1)
)
, or f(vi) equal to singleton sets for all i = 1, 2, 3, 4. Hence,

γgr2(G) = p.
Case 3. If G ∼= K4 − 3e, then either G ∼= P4 or G ∼= S4 or G ∼= C3 ∪K1. Hence,
γgr2(G) = p.
Case 4. If G ∼= K4 − 4e, then either G ∼= K2 ∪K2 or G ∼= P3 ∪K1. Then clearly
that, γgr2(G) = p.
Note that all the other graphs of four vertices are clear.
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Figure 3. H1
∼= K4 − e and H2

∼= K4 − 2e

We consider all the graphs from now to the end of the paper to be connected on p
vertices.
Theorem 4[13] For any graph G with γgR(G) = p, diam(G) ≤ 3.

Theorem 5 Any graph G on p vertices with γgr2(G) = p has diameter less than
or equal three.
Proof. The proof is straightforward by Proposition 2 and Theorem 4.
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Figure 4. Graphs G1 and G2

Theorem 6 [13] Let G be a graph with diam(G) = 3. Then γgR(G) = p if and
only if G is one of the graphs P4, G1, G2, where G1, G2 are given in Figure 4.
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According to Proposition 2 and Theorem 6, we have the following theorem.
Theorem 7 Let G be a graph with diam(G) = 3. Then γgr2(G) = p if and only
if G ∼= P4.
Proof. By Propositions 2, 7 and Theorem 6, we get the same result about P4. But
γgr2(G1) and γgr2(G2) do not equal p, which we are going to clarify in the follow-
ing. For G1 define the function f = (Vφ, V{1}, V{2}, VA) by f(v1) = f(v2) = {1},
f(v4) = f(v5) = {2} and f(v3) = φ which is a G2RDF of G1, then γgr2(G1) 6= p,
and for G2 define the function f = (Vφ, V{1}, V{2}, VA) by f(v1) = f(v4) = {1},
f(v5) = f(v6) = {2} and f(v2) = f(v3) = φ which is a G2RDF of G2, then
γgr2(G2) 6= p (see Figure 4).

In the following, we study the graphs G of diam(G) = 2.
Definition 2 Let G = (V,E) be a graph with diam(G) = 2. We Consider
F1 ⊆ V (G) induces a maximum clique in G, F2 = V (G) \ F1, where |Fi| = pi,
i = 1, 2 and V (F1) = {y1, y2, . . . , yp1}, V (F2) = {x1, x2, . . . , xp2}.

Theorem 8 Let ω(G) = 2. Then γgr2(G) = p if and only if G is one of the
graphs P3, C4 and K1,3.
Proof. Since diam(G) = 2 and ω(G) = 2, then |F1| = p1 = 2. Therefore, G
is a free-triangle graph of diameter two. Suppose p ≤ 4. Then by Proposition 7
and Theorem 1

[
part (4)

]
, the result is satisfied for C4 and K1,m with m = 2 or

m = 3. For the other free-triangle graphs of diameter two (here p ≥ 5), we have
the following cases:
Case 1. Suppose G has a vertex v of degree p − 1. Then G ∼= K1,m with m ≥ 4.
In this case we can define a G2RDF of G with γgr2(G) < p by labeling the center
vertex v and one of its neighborhood by A = {1, 2} and for all the other vertices in
G by φ.
Case 2. Suppose now G has no vertex of degree p− 1. Let v1 and v2 be two non-
adjacent vertices in G which they have a maximum number of common neighbors
among all the other vertices in G. Suppose u is a common neighbor for v1 and v2.
Then there exist at least two non-adjacent vertices to u say x and y (recall that
p ≥ 5 and diam(G) = 2). Define the function f = (Vφ, V{1}, V{2}, VA) by f(u) = φ,
f(v1) = f(x) = {1}, f(v2) = f(y) = {2} and for all w ∈ V (G) \ {u, v2, y} by
f(w) = {1}, clearly f is a G2RDF of G with w(f) < p. Hence the result.
The converse is clear.

Theorem 9 Let ω(G) ≥ 3 and F2 induces a clique. Then γgr2(G) = p if and

only if G ∼= Kp − e or G ∼= p2K2 ∪ (p1 − p2)K1. Furthermore, if ω(G) = 3 and
|F2| = p2 = 1, then G ∼= K4 − e or G ∼= K4 − 2e.
Proof. We have p1 ≥ 3. Thus we will discuss the proof according to |F2| = p2 into
the following cases:
Case 1. Suppose p2 = 1. Then V (F2) = {x}.

(1) If p1 = 3, then |G| = 4. Thus by Proposition 7, the results G ∼= K4 − e or
G ∼= K4 − 2e hold (see Figure 3).

(2) Assume that p1 ≥ 4. We claim that the vertex x is non adjacent to exactly
one vertex of F1. For contrary, suppose x is non adjacent to two vertices of
F1 say y1, y2. We define f = (Vφ, V{1}, V{2}, VA) by f(x) = φ, f(y1) = {1},
f(y2) = {2}, f(y3) = {2} and f(y) = {1} for all y ∈ V (F1) \ {y1, y2, y3}.
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Then f is a G2RDF of G with w(f) < p, a contradiction. Hence, G ∼=
Kp − e.

Case 2. Suppose p2 ≥ 2. We claim that each vertex of F2 is non adjacent to
exactly one vertex of F1 and no two vertices of F2 are non adjacent to the same
vertex of F1. For contrary, suppose x1 in F2 is non adjacent to y1, y2 in F1. Define
f = (Vφ, V{1}, V{2}, VA) by f(x1) = φ, f(y1) = {1}, f(y2) = {2}, f(y) = {1} for
all y ∈ V (F1) \ {y1, y2} and f(x) = {2} for all x ∈ V (F2) \ {x1}. Clearly that f
is a G2RDF of G with w(f) < p, a contradiction. Now, suppose there exists two
vertices x1 and x2 of F2 that are non adjacent to the vertex y1 of F1. Then the
induced subgraph 〈(F1 \ {y1}) ∪ {x1, x2}〉 is a clique of G of order p1 + 1, which
contradicts the maximality of F1.
Assume that xi is non adjacent to yi, where i = 1, 2, . . . , p2 [recall that p2 ≤ p1].
Therefore, degG(xi) = degG(yi) = p1 + p2 − 2 = p − 2 for all i = 1, 2, . . . , p2 and
degG(yi) = p− 1 for all i = p2 + 1, p2 + 2, . . . , p1. Hence, G ∼= p2K2 ∪ (p1 − p2)K1.
The converse is straight forward.

Theorem 10 Let G be a connected graph on p ≥ 5 vertices. Suppose ω(G) ≥ 4
and F2 induces an independent subgraph of G. Then γgr2(G) = p if and only if
G ∼= Kp − e.
Proof. Since ω(G) ≥ 4, then each vertex xi ∈ V (F2), i = 1, 2, . . . , p2 has at least
one vertex in F1 which they are non adjacent one to the other.
Claim 1. We claim that p2 = 1. For contrary, suppose that p2 ≥ 2. Assume
that x1 is non adjacent to y1, we define the function f = (Vφ, V{1}, V{2}, VA) by
f(x1) = φ, f(y1) = f(y2) = {1} and f(x) = f(y) = {2} for all x ∈ V (F2) \ {x1}
and y ∈ V (F1) \ {y1, y2}. Clearly that f is a G2RDF of G with w(f) < p, which a
contradiction. Then our claim is true. Hence, V (F2) = {x}.
Claim 2. Now, we claim that x is non adjacent to exactly one vertex in F1. This
claim has proved in the proof of Theorem 9 (Case 1). Hence, G ∼= Kp − e.
The other side is clear.

Theorem 11 Let ω(G) = 3 and F2 induces an independent subgraph of G. Then
γgr2(G) = p if and only if G ∼= K4 − e or G ∼= K4 − 2e.
Proof. The proof is same as Theorem 10, with some different in Claim 2. Since
Claim 1 holds, then |G| = 4. Thus from the proof of Proposition 7, we have only two
graphs satisfy our conditions which are G ∼= H1 = K4 − e and G ∼= H2 = K4 − 2e.
The converse is clear.

Theorem 12 Let ω(G) ≥ 3 and F2 be neither induce a clique nor independent.
Then γgr2(G) 6= p.
Proof. Since F2 be neither induce a clique nor independent and ω(G) ≥ 3, then
p2 ≥ 3 and hence each vertex xi ∈ V (F2), i = 1, 2, . . . , p2 has at least one ver-
tex in F1 and an other vertex in F2 which it is non adjacent to both. Suppose
x1 is non adjacent to x2 ∈ V (F2) and y1 ∈ V (F1). We define the function
f = (Vφ, V{1}, V{2}, VA) by f(x1) = φ, f(y1) = f(y2) = {1} and f(x) = f(y) = {2}
for all x ∈ V (F2) \ {x1} and y ∈ V (F1) \ {y1, y2}. Clearly that f is a G2RDF of G
with w(f) < p. Hence, γgr2(G) 6= p.
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