Electronic Journal of Mathematical Analysis and Applications Vol. 7(1) Jan. 2019, pp. 95-101. ISSN: 2090-729X(online) http://fcag-egypt.com/Journals/EJMAA/

ON A COUPLED SYSTEM OF VOLTERRA-STIELTJES INTEGRAL EQUATIONS

M. M. A. AL-FADEL

ABSTRACT. Volterra-Stieltjes integral equations have been studied in the space of continuous functions in many papers for example, (see [2]-[8]). Our aim here is to study the existence of at least one solution for a coupled system of nonlinear integral equations of Volterra-Stieltejs type in the space of continuous functions defined on a closed bounded interval. The main tool utilized in our considerations is the technique associated with certain Schauder fixed point theorem.

1. INTRODUCTION AND PRELIMINARIES

Let I = [0, T] be a fixed interval. Denote by C(I) = C[0, T] the class of all continuous functions defined on I with the standard norm

$$\parallel x \parallel = \sup_{t \in I} \mid x(t) \mid .$$

Consider the nonlinear Riemann-Stieltjes integral equation

$$x(t) = p(t) + \int_0^t f(s, x(s)) \ d_s g(t, s), \ t \in I$$
(1)

where $g: I \times I \to R$ and the symbol d_s indicates the integration with respect to s. Equations of type (1) and some of their generalizations were considered in several papers by J. Banaś (see [4]). The properties of the Volterra-Stieljes integral operator were studies also by J. Banaś in [2]-[6]

Further facts concerning Stieltjes integrals and their properties (see Banaś [1]). The solvability of the coupled systems of integral equations in C[0,T] was proved (see [12]-[14]).

In this paper, we generalize this result for the coupled system of Volterra-Stieltjes

²⁰¹⁰ Mathematics Subject Classification. 74H10, 45G10, 47H30.

Key words and phrases. Coupled system, continuous solution, Stieltjes integral, Schauder fixed point theorem.

Submitted Feb. 8, 2018. Revised April 11, 2018.

integral equations

$$x(t) = p_1(t) + \lambda_1 \int_0^t f_1(s, x(s), y(s)) \ d_s g_1(t, s), \ t \in I$$

$$(2)$$

$$y(t) = p_2(t) + \lambda_2 \int_0^t f_2(s, x(s), y(s)) \ d_s g_2(t, s), \ t \in I$$

in the Banach space C(I), we study the existence of at least one solution for the coupled system (2).

2. EXISTENCE OF SOLUTIONS

In this section we study the existence of continuous solutions $x, y \in C(I)$ for the coupled system of nonlinear integral equations of Volterra-Stieltjes type (2). Now we formulate assumptions under which coupled system (2) will be considered. Namely, we shall assume that:

- (i) $p_i \in C(I), \ \lambda_i \in R, \ i = 1, 2.$
- (ii) $f_i : I \times R^2 \to R$, (i = 1, 2) is continuous on I, $\forall x, y \in R^2$, $t \in I$ such that there exist continuous functions $k_i : I \to I$ and two positive constants b_i such that:

$$|f_i(t, x, y)| \le k_i(t) + b_i(\max\{|x|, |y|\})$$

for $t \in I$ and $x, y \in R$.

- (iii) $g_i : I \times I \to R, i = 1, 2$ and for all $t_1, t_2 \in I$ with $t_1 < t_2$, the functions $s \to g_i(t_2, s) g_i(t_1, s)$ is nondecreasing on I.
- (iv) $g_i(0,s) = 0$ for any $s \in I$, i = 1, 2.
- (v) The functions $t \to g_i(t,t)$ and $t \to g_i(t,0)$ are continuous on I, i = 1, 2. Put

$$\mu = \sup |g_i(t,t)| + \sup |g_i(t,0)|$$
 on *I*.

Now, let X be the Banach space of all ordered pairs $(x,y), x,y \in C(I)$ with the norm

$$||(x,y)||_X = \max\{||x||_{C(I)}, ||y||_{C(I)}\}\$$

where

$$||x|| = \sup_{t \in I} |x(t)|, ||y|| = \sup_{t \in I} |y(t)|.$$

It is clear that $(X, ||(x, y)||_X)$ is a Banach space.

Theorem 1. Let the assumptions (i)-(v) be satisfied, then the coupled system (2) has at least one solution in X.

Proof: Define the operator T by putting

$$T(x,y)(t) = (T_1x(t), T_2y(t))$$

where

$$T_1 x(t) = p_1(t) + \lambda_1 \int_0^t f_1(s, u(s)) \ d_s g_1(t, s)$$
$$T_2 y(t) = p_2(t) + \lambda_2 \int_0^t f_2(s, u(s)) \ d_s g_2(t, s)$$

96

EJMAA-2019/7(1)

$$u = (x, y).$$

For every $u \in X$, $t \in I$, $f_i(., u(.))$ (i = 1, 2) is continuous on I. Observe that Assumptions (iii) and (iv) imply that the function $s \to g(t, s)$ is nondecreasing on the interval I, for any fixed $t \in I$. Indeed, putting $t_2 = t$, $t_1 = 0$ in (iii) and keeping in mind (iv), we obtain the desired conclusion. From this observation, it follows immediately that, for every $t \in I$, the function $s \to g(t, s)$ is of bounded variation on I. Hence it follows that, $f_i(t, x(t), y(t))$ are Riemann-Stieltjes integrable on I with respect to $s \to g_i(t, s)$. Thus T_i make sense.

We will prove a few results concerning the continuity and compactness of these operators in the space of continuous functions.

We denoted $K := \max\{k_i(t) : t \in I, i = 1, 2\}$, and we define the set U by

$$U := \{ u = (x, y) \mid (x, y) \in R^2 : ||(x, y)||_X \le r, \ r = \frac{||p_i|| + \lambda K\mu}{1 - \lambda b_i \mu} \}$$

The remainder of the proof will be given in four steps.

Step 1: The operator T transforms X into X. For $u = (x, y) \in U$, for all $\epsilon > 0$, $\delta > 0$ and for each $t_1, t_2 \in I$, $t_1 < t_2$ such that $|t_2 - t_1| < \delta$, we have

$$\begin{split} T_1x(t_2) &- T_1x(t_1) \mid \leq \mid p_1(t_2) - p_1(t_1) \mid \\ &+ \mid \lambda_1 \int_0^{t_2} f_1(s, x(s), y(s)) \; d_s g_1(t_2, s) - \lambda_1 \int_0^{t_1} f_1(s, x(s), y(s)) \; d_s g_1(t_1, s) \mid \\ &\leq \mid p_1(t_2) - p_1(t_1) \mid \\ &+ \mid \lambda_1 \int_0^{t_2} f_1(s, x(s), y(s)) \; d_s g_1(t_2, s) - \lambda_1 \int_0^{t_1} f_1(s, x(s), y(s)) \; d_s g_1(t_2, s) \mid \\ &+ \mid \lambda_1 \int_0^{t_1} f_1(s, x(s), y(s)) \; d_s g_1(t_2, s) - \lambda_1 \int_0^{t_1} f_1(s, x(s), y(s)) \; d_s g_1(t_1, s) \mid \\ &\leq \mid p_1(t_2) - p_1(t_1) \mid + \mid \lambda_1 \int_{t_1}^{t_2} f_1(s, x(s), y(s)) \; d_s g_1(t_2, s) \mid \\ &+ \mid \lambda_1 \int_0^{t_1} f_1(s, x(s), y(s)) \; d_s (g_1(t_2, s) - g_1(t_1, s)) \mid \\ &\leq \mid p_1(t_2) - p_1(t_1) \mid + \mid \lambda_1 \mid \int_{t_1}^{t_2} \mid f_1(s, x(s), y(s)) \mid \; d_s (\bigvee_{z=0}^s g_1(t_2, z)) \\ &+ \; \mid \lambda_1 \mid \int_0^{t_1} \mid f_1(s, x(s), y(s)) \mid \; d_s (\bigvee_{z=0}^s [g_1(t_2, z) - g_1(t_1, z)]) \\ &\leq \mid p_1(t_2) - p_1(t_1) \mid + \lambda \int_{t_1}^{t_2} (k_1(s) + b_1(\max\{\mid x(s) \mid, \mid y(s) \mid\})) \; d_s (\bigvee_{z=0}^s g_1(t_2, z)) \\ &+ \; \lambda \int_0^{t_1} (k_1(s) + b_1(\max\{\mid x(s) \mid, \mid y(s) \mid\})) \; d_s (\bigvee_{z=0}^s [g_1(t_2, z) - g_1(t_1, z)]) \end{split}$$

M. M. A. AL-FADEL

EJMAA-2019/7(1)

$$\leq |p_{1}(t_{2}) - p_{1}(t_{1})| + \lambda(K + rb_{1}) \int_{t_{1}}^{t_{2}} d_{s}(g_{1}(t_{2}, s)) + \lambda(K + rb_{1}) \int_{0}^{t_{1}} d_{s}(g_{1}(t_{2}, s) - g_{1}(t_{1}, s)) \leq |p_{1}(t_{2}) - p_{1}(t_{1})| + \lambda(K + rb_{1})[g_{1}(t_{2}, t_{2}) - g_{1}(t_{2}, t_{1})] + \lambda(K + rb_{1}) \{ [g_{1}(t_{2}, t_{1}) - g_{1}(t_{1}, t_{1})] - [g_{1}(t_{2}, 0) - g_{1}(t_{1}, 0)] \} \leq |p_{1}(t_{2}) - p_{1}(t_{1})| + \lambda(K + rb_{1}) \{ [g_{1}(t_{2}, t_{2}) - g_{1}(t_{1}, t_{1})] - [g_{1}(t_{2}, 0) - g_{1}(t_{1}, 0)] \} \leq |p_{1}(t_{2}) - p_{1}(t_{1})| + \lambda(K + rb_{1}) [|g_{1}(t_{2}, t_{2}) - g_{1}(t_{1}, t_{1})| + |g_{1}(t_{2}, 0) - g_{1}(t_{1}, 0)|].$$

where $\lambda := \max\{|\lambda_1|, |\lambda_2|\}.$ Hence

$$| T_1 x(t_2) - T_1 x(t_1) | \leq | p_1(t_2) - p_1(t_1) | + \lambda (K + rb_1) [| g_1(t_2, t_2) - g_1(t_1, t_1) | + | g_1(t_2, 0) - g_1(t_1, 0) |].$$

Hence, from the continuity of the functions g_1 assumption (v), we deduce that T_1 maps C(I) into C(I).

As done above we can obtain

$$|T_2y(t_2) - T_2y(t_1)| \leq |p_2(t_2) - p_2(t_1)| + \lambda(K + rb_2)[|g_2(t_2, t_2) - g_2(t_1, t_1)| + |g_2(t_2, 0) - g_2(t_1, 0)|].$$

Also, by our assumption (v), we see that T_2 maps C(I) into C(I).

Now, from the definition of the operator T we get

$$Tu(t_2) - Tu(t_1) = T(x, y)(t_2) - T(x, y)(t_1)$$

= $(T_1x(t_2), T_2y(t_2)) - (T_1x(t_1), T_2y(t_1))$
= $(T_1x(t_2) - T_1x(t_1), T_2y(t_2) - T_2y(t_1))$

Therefore, T maps X into X.

Also, note that the class of $\{Tu(t)\}\$ is equi-continuous on I.

Step 2: The operator T map U into U. for $(x, y) \in U$, we have

$$|T_{1}x(t)| \leq |p_{1}(t)| + |\lambda_{1} \int_{0}^{t} f_{1}(s, x(s), y(s)) d_{s}g_{1}(t, s)|$$

$$\leq |p_{1}(t)| + |\lambda_{1}| \int_{0}^{t} |f_{1}(s, x(s), y(s))| d_{s}(\bigvee_{z=0}^{s} g_{1}(t, z))$$

$$\leq ||p_{1}|| + \lambda \int_{0}^{t} (k_{1}(s) + b_{1}(\max\{|x(s)|, |y(s)|\})) d_{s}(\bigvee_{z=0}^{s} g_{1}(t, z))$$

EJMAA-2019/7(1)

$$\leq \|p_1\| + \lambda \int_0^t (k_1(s) + rb_1) \, d_s g_1(t,s))$$

$$\leq \|p_1\| + \lambda (K + rb_1) \int_0^t \, d_s g_1(t,s)$$

$$\leq \|p_1\| + \lambda (K + rb_1) [g_1(t,t) - g_1(t,0)]$$

$$\leq \|p_1\| + \lambda (K + rb_1) [\sup_t |g_1(t,t)| + \sup_t |g_1(t,0)|]$$

$$\leq \|p_1\| + \lambda (K + rb_1) \mu$$

Hence

$$||T_1x|| \le ||p_1|| + \lambda(K + rb_1)\mu < r.$$

By a similar way can deduce that

$$||T_2y|| \leq ||p_2|| + \lambda(K + rb_2)\mu < r.$$

Therefore,

$$|Tu|| = ||T(x,y)|| = ||T_1x, T_2y|| = \max\{||T_1x||, ||T_2y||\} \le r.$$

Thus for every $u = (x, y) \in U$, we have $Tu \in U$ and hence $TU \subset U$, (i.e. $T : U \to U$). This means that the functions of TU are uniformly bounded on I.

Step 3: The operator T is compact.

The compactness of the operator T is a consequence of the estimates of the quantities $|T_1x(t_2) - T_1x(t_1)|, |T_2y(t_2) - T_2y(t_1)|$ conducted in Step 1, assumption (v) and the Arzel?a-Ascoli theorem.

Step 4: The operator T is continuous.

Firstly, we prove that T_1 is continuous. Let $\epsilon^* > 0$, the continuity of f_i yields $\exists \ \delta = \delta(\epsilon^*)$ such that $|f_i(t, x, y) - f_i(t, u, y)| < \epsilon^*$ whenever $||x - u|| \le \delta$, thus if $||x - u|| \le \delta$, we arrive at:

$$\begin{aligned} | T_1 x(t) - T_1 u(t) | &\leq | \lambda_1 \int_0^t f_1(s, x(s), y(s)) \, d_s g_1(t, s) - \lambda_1 \int_0^t f_1(s, u(s), y(s)) \, d_s g_1(t, s) | \\ &\leq |\lambda_1| \int_0^t | f_1(s, x(s), y(s)) - f_1(s, u(s), y(s)) | \, d_s(\bigvee_{z=0}^s g_1(t, z)) \\ &\leq \epsilon^* \lambda \int_0^t \, d_s(\bigvee_{z=0}^s g_1(t, z)) \\ &\leq \epsilon^* \lambda \int_0^t \, d_s g_1(t, s) \\ &\leq \epsilon^* \lambda \left[g_1(t, t) - g_1(t, 0) \right] \\ &\leq \epsilon^* \lambda \left[| g_1(t, t) | + | g_1(t, 0) | \right] \\ &\leq \epsilon^* \lambda \left[\sup_{t \in I} | g_1(t, t) | + \sup_{t \in I} | g_1(t, 0) | \right] \leq \epsilon \end{aligned}$$

where $\epsilon := \epsilon^* \lambda \mu$. Therefore,

$$|T_1x(t) - T_1u(t)| \le \epsilon.$$

99

This means that the operator T_1 is continuous.

By a similar way as done above we can prove that for any $y, v \in C[0,T]$ and $||y - v|| < \delta$, we have

$$\mid T_2 y(t) - T_2 v(t) \mid \leq \epsilon.$$

Hence T_2 is continuous operator.

The operators T_i (i = 1, 2) is continuous operator it imply that T is continuous operator.

Since all conditions of Schauder fixed point theorem are satisfied, then T has at least one fixed point $u = (x, y) \in U$, which completes the proof.

In what follows, we provide an example illustrating the above obtained results.

Example : Consider the functions $g_i : I \times I \to R$ defined by the formula

$$g_1(t,s) = \begin{cases} t \ln \frac{t+s}{t}, & \text{for } t \in (0,1], s \in I, \\ 0, & \text{for } t = 0, s \in I. \end{cases}$$

$$g_2(t,s) = t(t+s-1), t \in I.$$

It can be easily seen that the functions $g_1(t,s)$ and $g_2(t,s)$ satisfies assumptions (iii)-(v) given in Theorem 1, and $g_1(t,s)$ is function of bounded variation but it is not continuous on I. In this case, the coupled system of Volterra-Stieltjes integral equations (2) has the form

$$\begin{aligned} x(t) &= p_1(t) + \lambda_1 \int_0^t \frac{t}{t+s} f_1(s, x(s), y(s)) \, ds, \ t \in I \end{aligned} (3) \\ y(t) &= p_2(t) + \lambda_2 \int_0^t t f_2(s, x(s), y(s)) \, ds, \ t \in I. \end{aligned}$$

Also, consider the functions $f_i: I \times \mathbb{R}^2 \to \mathbb{R}$ defined by the formula

$$f_1(t, x, y) = t + x + y,$$

 $f_2(t, x, y) = t + x^2 - y^2.$

Now, it can be easily seen that the functions f_1 and f_2 satisfies assumptions (ii) given in Theorem 1:

$$| f_1(t, x, y) | \leq | t + x + y |$$

$$\leq | t | + | x | + | y |$$

$$\leq T + 2 \max\{| x |, | y |\}$$

And

$$| f_2(t, x, y) | \leq |t + x^2 - y^2| \\ \leq |t| + |x^2 - y^2| \\ \leq T + |(x - y)(x + y)| \\ \leq T + 2 \max\{|x|, |y|\}$$

EJMAA-2019/7(1)

Hence, $k_i(t) = T$, and $b_i = 2$.

Therefore, the functions f_i satisfies the assumption

 $|f_i(t, x, y)| \le k_i(t) + b_i(\max\{|x|, |y|\}).$

Therefore, the coupled system (3) has at least one solution $x, y \in C[0, T]$.

Acknowledgment

The author is grateful to the referee for a number of helpful suggestions to improve the paper.

References

- J. Banaś, Some properties of Urysohn-Stieltjes integral operators, Intern. J. Math. and Math. Sci. 21(1998) 78-88.
- [2] J. Banaś and J. Dronka, Integral operators of Volterra-Stieltjes type, their properties and applications, *Math. Comput. Modelling.* 32(2000) 1321-1331.
- [3] J. Banaś, J.C. Mena, Some properties of nonlinear Volterra-Stieltjes integral operators, Comput Math. Appl. 49(2005) 1565-1573.
- [4] J. Banaś, D. O'Regan, Volterra-Stieltjes integral operators, Math. Comput. Modelling. 41(2005) 335-344.
- [5] J. Banaś, J.R. Rodriguez and K. Sadarangani, On a class of Urysohn-Stieltjes quadratic integral equations and their applications, J. Comput. Appl. Math. I13(2000) 35-50.
- [6] J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications, *Comput Math. Appl.* 41(12)(2001) 1535-1544.
- [7] J. Banaś and T. Zaja?c, ?A new approach to the theory of functional integral equations of fractional order,? Journal of Mathematical Analysis and Applications, vol. 375, no. 2, pp. 375?387, 2011.
- [8] C.W. Bitzer, Stieltjes-Volterra integral equations, Illinois J. Math. 14(1970) 434-451.
- [9] S. Chen, Q. Huang and L.H. Erbe, Bounded and zero-convergent solutions of a class of Stieltjes integro-differential equations, *Proc. Amer. Math. Soc.* 113(1991) 999-1008.
- [10] R.F. Curtain, A.J. Pritchard,: Functional analysis in modern applied mathematics. Academic press, London (1977).
- [11] A.M.A. El-Sayed and M.M.A. Al-Fadel, Existence of solution for a coupled system of Urysohn-Stieltjes functional integral equations, *Tbilisi Math. J.* 11(1) (2018), 117-125.
- [12] A.M.A. El-Sayed, H.H.G. Hashem, Existence results for coupled systems of quadratic integral equations of fractional orders, *Optimization Letters*, 7(2013) 1251-1260.
- [13] A.M.A. El-Sayed, H.H.G. Hashem, Solvability of coupled systems of fractional order integrodifferential equations, J. Indones. Math. Soc. 19(2)(2013) 111-121.
- [14] H.H.G. Hashem, On successive approximation method for coupled systems of Chandrasekhar quadratic integral equations, *Journal of the Egyptian Mathematical Society*. 23(2015) 108-112.
- [15] J.S. Macnerney, Integral equations and semigroups, Illinois J. Math. 7(1963) 148-173.
- [16] A.B. Mingarelli, Volterra-Stieltjes integral equations and generalized ordinary differential expressions, *Lecture Notes in Math.*, 989, Springer (1983).
- [17] I.P. Natanson, Theory of functions of a real variable, Ungar, New York. (1960).

M. M. A. AL-FADEL

FACULTY OF SCIENCE, OMAR AL-MUKHTAR UNIVERSITY, LIBYA *E-mail address:* najemeoe12340gmail.com 101