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ON A COUPLED SYSTEM OF VOLTERRA-STIELTJES

INTEGRAL EQUATIONS

M. M. A. AL-FADEL

Abstract. Volterra-Stieltjes integral equations have been studied in the space

of continuous functions in many papers for example, (see [2]-[8]). Our aim
here is to study the existence of at least one solution for a coupled system of
nonlinear integral equations of Volterra-Stieltejs type in the space of continuous
functions defined on a closed bounded interval. The main tool utilized in our

considerations is the technique associated with certain Schauder fixed point
theorem.

1. Introduction and Preliminaries

Let I = [0, T ] be a fixed interval. Denote by C(I) = C[0, T ] the class of all
continuous functions defined on I with the standard norm

∥ x ∥= sup
t∈I

| x(t) | .

Consider the nonlinear Riemann-Stieltjes integral equation

x(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s), t ∈ I (1)

where g : I × I → R and the symbol ds indicates the integration with respect to s.
Equations of type (1) and some of their generalizations were considered in several
papers by J. Banaś (see [4]). The properties of the Volterra-Stieljes integral opera-
tor were studies also by J. Banaś in [2]-[6]
Further facts concerning Stieltjes integrals and their properties (see Banaś [1]). The
solvability of the coupled systems of integral equations in C[0, T ] was proved (see
[12]-[14]).

In this paper, we generalize this result for the coupled system of Volterra-Stieltjes
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integral equations

x(t) = p1(t) + λ1

∫ t

0

f1(s, x(s), y(s)) dsg1(t, s), t ∈ I

(2)

y(t) = p2(t) + λ2

∫ t

0

f2(s, x(s), y(s)) dsg2(t, s), t ∈ I

in the Banach space C(I), we study the existence of at least one solution for the
coupled system (2).

2. Existence of solutions

In this section we study the existence of continuous solutions x, y ∈ C(I) for
the coupled system of nonlinear integral equations of Volterra-Stieltjes type (2).
Now we formulate assumptions under which coupled system (2) will be considered.
Namely, we shall assume that:

(i) pi ∈ C(I), λi ∈ R, i = 1, 2.
(ii) fi : I × R2 → R, (i = 1, 2) is continuous on I, ∀x, y ∈ R2, t ∈ I

such that there exist continuous functions ki : I → I and two positive
constants bi such that:

| fi(t, x, y) |≤ ki(t) + bi(max{| x |, | y |})
for t ∈ I and x, y ∈ R.

(iii) gi : I×I → R, i = 1, 2 and for all t1, t2 ∈ I with t1 < t2, the functions s →
gi(t2, s)− gi(t1, s) is nondecreasing on I.

(iv) gi(0, s) = 0 for any s ∈ I, i = 1, 2.
(v) The functions t → gi(t, t) and t → gi(t, 0) are continuous on I, i = 1, 2.

Put
µ = sup | gi(t, t) | + sup | gi(t, 0) | on I.

Now, let X be the Banach space of all ordered pairs (x, y), x, y ∈ C(I) with the
norm

∥(x, y)∥X = max{∥x∥C(I), ∥y∥C(I)}
where

∥x∥ = sup
t∈I

| x(t) |, ∥ y ∥= sup
t∈I

| y(t) | .

It is clear that (X, ∥(x, y)∥X) is a Banach space.

Theorem 1. Let the assumptions (i)-(v) be satisfied, then the coupled system
(2) has at least one solution in X.

Proof: Define the operator T by putting

T (x, y)(t) = (T1x(t), T2y(t))

where

T1x(t) = p1(t) + λ1

∫ t

0

f1(s, u(s)) dsg1(t, s)

T2y(t) = p2(t) + λ2

∫ t

0

f2(s, u(s)) dsg2(t, s)
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u = (x, y).

For every u ∈ X, t ∈ I, fi(., u(.)) (i = 1, 2) is continuous on I. Observe that As-
sumptions (iii) and (iv) imply that the function s → g(t, s) is nondecreasing on the
interval I, for any fixed t ∈ I. Indeed, putting t2 = t, t1 = 0 in (iii) and keeping
in mind (iv), we obtain the desired conclusion. From this observation, it follows
immediately that, for every t ∈ I, the function s → g(t, s) is of bounded varia-
tion on I. Hence it follows that, fi(t, x(t), y(t)) are Riemann-Stieltjes integrable
on I with respect to s → gi(t, s). Thus Ti make sense.

We will prove a few results concerning the continuity and compactness of these
operators in the space of continuous functions.
We denoted K := max{ki(t) : t ∈ I, i = 1, 2}, and we define the set U by

U := {u = (x, y) | (x, y) ∈ R2 : ∥(x, y)∥X ≤ r, r =
∥pi∥+ λKµ

1− λbiµ
}

The remainder of the proof will be given in four steps.

Step 1: The operator T transforms X into X.
For u = (x, y) ∈ U, for all ϵ > 0, δ > 0 and for each t1, t2 ∈ I, t1 < t2 such that
| t2 − t1 |< δ, we have

| T1x(t2) − T1x(t1) | ≤ | p1(t2)− p1(t1) |

+ | λ1

∫ t2

0

f1(s, x(s), y(s)) dsg1(t2, s)− λ1

∫ t1

0

f1(s, x(s), y(s)) dsg1(t1, s) |

≤ | p1(t2)− p1(t1) |

+ | λ1

∫ t2

0

f1(s, x(s), y(s)) dsg1(t2, s)− λ1

∫ t1

0

f1(s, x(s), y(s)) dsg1(t2, s) |

+ | λ1

∫ t1

0

f1(s, x(s), y(s)) dsg1(t2, s)− λ1

∫ t1

0

f1(s, x(s), y(s)) dsg1(t1, s) |

≤ | p1(t2)− p1(t1) | + | λ1

∫ t2

t1

f1(s, x(s), y(s)) dsg1(t2, s) |

+ | λ1

∫ t1

0

f1(s, x(s), y(s)) ds(g1(t2, s)− g1(t1, s)) |

≤ | p1(t2)− p1(t1) | + | λ1 |
∫ t2

t1

| f1(s, x(s), y(s)) | ds(
s∨

z=0

g1(t2, z))

+ |λ1|
∫ t1

0

| f1(s, x(s), y(s)) | ds(

s∨
z=0

[g1(t2, z)− g1(t1, z)])

≤ | p1(t2)− p1(t1) | +λ

∫ t2

t1

(k1(s) + b1(max{| x(s) |, | y(s) |})) ds(
s∨

z=0

g1(t2, z))

+ λ

∫ t1

0

(k1(s) + b1(max{| x(s) |, | y(s) |})) ds(
s∨

z=0

[g1(t2, z)− g1(t1, z)])
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≤ | p1(t2)− p1(t1) | +λ(K + rb1)

∫ t2

t1

ds(g1(t2, s))

+ λ(K + rb1)

∫ t1

0

ds(g1(t2, s)− g1(t1, s))

≤ | p1(t2)− p1(t1) | +λ(K + rb1)[g1(t2, t2)− g1(t2, t1)]

+ λ(K + rb1){[g1(t2, t1)− g1(t1, t1)]− [g1(t2, 0)− g1(t1, 0)]}
≤ | p1(t2)− p1(t1) | +λ(K + rb1){[g1(t2, t2)− g1(t1, t1)]

− [g1(t2, 0)− g1(t1, 0)]}
≤ | p1(t2)− p1(t1) | +λ(K + rb1)[| g1(t2, t2)− g1(t1, t1) |
+ | g1(t2, 0)− g1(t1, 0) |].

where λ := max{|λ1|, |λ2|}.
Hence

| T1x(t2)− T1x(t1) | ≤ | p1(t2)− p1(t1) | +λ(K + rb1)[| g1(t2, t2)− g1(t1, t1) |
+ | g1(t2, 0)− g1(t1, 0) |].

Hence, from the continuity of the functions g1 assumption (v), we deduce that T1

maps C(I) into C(I).

As done above we can obtain

| T2y(t2)− T2y(t1) | ≤ | p2(t2)− p2(t1) | +λ(K + rb2)[| g2(t2, t2)− g2(t1, t1) |
+ | g2(t2, 0)− g2(t1, 0) |].

Also, by our assumption (v), we see that T2 maps C(I) into C(I).

Now, from the definition of the operator T we get

Tu(t2)− Tu(t1) = T (x, y)(t2)− T (x, y)(t1)

= (T1x(t2), T2y(t2))− (T1x(t1), T2y(t1))

= (T1x(t2)− T1x(t1), T2y(t2)− T2y(t1))

Therefore, T maps X into X.
Also, note that the class of {Tu(t)} is equi-continuous on I.

Step 2: The operator T map U into U.
for (x, y) ∈ U , we have

| T1x(t) | ≤ | p1(t) | + | λ1

∫ t

0

f1(s, x(s), y(s)) dsg1(t, s) |

≤ | p1(t) | +|λ1|
∫ t

0

| f1(s, x(s), y(s)) | ds(
s∨

z=0

g1(t, z))

≤ ∥p1∥+ λ

∫ t

0

(k1(s) + b1(max{| x(s) |, | y(s) |})) ds(
s∨

z=0

g1(t, z))
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≤ ∥p1∥+ λ

∫ t

0

(k1(s) + rb1) dsg1(t, s))

≤ ∥p1∥+ λ(K + rb1)

∫ t

0

dsg1(t, s)

≤ ∥p1∥+ λ(K + rb1)[g1(t, t)− g1(t, 0)]

≤ ∥p1∥+ λ(K + rb1)[sup
t

|g1(t, t)|+ sup
t

|g1(t, 0)|]

≤ ∥p1∥+ λ(K + rb1)µ

Hence

∥T1x∥ ≤ ∥p1∥+ λ(K + rb1)µ < r.

By a similar way can deduce that

∥T2y∥ ≤ ∥p2∥+ λ(K + rb2)µ < r.

Therefore,

∥Tu∥ = ∥T (x, y)∥ = ∥T1x, T2y∥ = max{∥T1x∥, ∥T2y∥} ≤ r.

Thus for every u = (x, y) ∈ U, we have Tu ∈ U and hence TU ⊂ U, ( i.e T : U → U).
This means that the functions of TU are uniformly bounded on I.

Step 3: The operator T is compact.
The compactness of the operator T is a consequence of the estimates of the quan-
tities |T1x(t2) − T1x(t1)|, |T2y(t2) − T2y(t1)| conducted in Step 1, assumption (v)
and the Arzel?a-Ascoli theorem.

Step 4: The operator T is continuous.
Firstly, we prove that T1 is continuous. Let ϵ∗ > 0, the continuity of fi yields
∃ δ = δ(ϵ∗) such that |fi(t, x, y) − fi(t, u, y)| < ϵ∗ whenever ∥x − u∥ ≤ δ, thus if
∥x− u∥ ≤ δ, we arrive at:

| T1x(t)− T1u(t) | ≤ | λ1

∫ t

0

f1(s, x(s), y(s)) dsg1(t, s)− λ1

∫ t

0

f1(s, u(s), y(s)) dsg1(t, s) |

≤ |λ1|
∫ t

0

| f1(s, x(s), y(s))− f1(s, u(s), y(s)) | ds(

s∨
z=0

g1(t, z))

≤ ϵ∗λ

∫ t

0

ds(

s∨
z=0

g1(t, z))

≤ ϵ∗λ

∫ t

0

dsg1(t, s)

≤ ϵ∗λ [g1(t, t)− g1(t, 0)]

≤ ϵ∗λ [| g1(t, t) | + | g1(t, 0) |]
≤ ϵ∗λ [sup

t∈I
| g1(t, t) | +sup

t∈I
| g1(t, 0) |] ≤ ϵ

where ϵ := ϵ∗λµ.
Therefore,

| T1x(t)− T1u(t) |≤ ϵ.
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This means that the operator T1 is continuous.
By a similar way as done above we can prove that for any y, v ∈ C[0, T ] and
∥ y − v ∥< δ, we have

| T2y(t)− T2v(t) |≤ ϵ.

Hence T2 is continuous operator.
The operators Ti (i = 1, 2) is continuous operator it imply that T is continuous
operator.
Since all conditions of Schauder fixed point theorem are satisfied, then T has at
least one fixed point u = (x, y) ∈ U , which completes the proof.

In what follows, we provide an example illustrating the above obtained results.

Example : Consider the functions gi : I × I → R defined by the formula

g1(t, s) =

{
t ln t+s

t , for t ∈ (0, 1], s ∈ I,
0, for t = 0, s ∈ I.

g2(t, s) = t(t+ s− 1), t ∈ I.

It can be easily seen that the functions g1(t, s) and g2(t, s) satisfies assumptions
(iii)-(v) given in Theorem 1, and g1(t, s) is function of bounded variation but it is
not continuous on I. In this case, the coupled system of Volterra-Stieltjes integral
equations (2) has the form

x(t) = p1(t) + λ1

∫ t

0

t

t+ s
f1(s, x(s), y(s)) ds, t ∈ I

(3)

y(t) = p2(t) + λ2

∫ t

0

tf2(s, x(s), y(s)) ds, t ∈ I.

Also, consider the functions fi : I ×R2 → R defined by the formula

f1(t, x, y) = t+ x+ y,

f2(t, x, y) = t+ x2 − y2.

Now, it can be easily seen that the functions f1 and f2 satisfies assumptions (ii)
given in Theorem 1:

| f1(t, x, y) | ≤ | t+ x+ y |
≤ | t | + | x | + | y |
≤ T + 2max{| x |, | y |}

And

| f2(t, x, y) | ≤ | t+ x2 − y2 |
≤ | t | + | x2 − y2 |
≤ T+ | (x− y)(x+ y) |
≤ T + 2max{| x |, | y |}
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Hence, ki(t) = T , and bi = 2.
Therefore, the functions fi satisfies the assumption

| fi(t, x, y) |≤ ki(t) + bi(max{| x |, | y |}).
Therefore, the coupled system (3) has at least one solution x, y ∈ C[0, T ].
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