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AN EXTENSIVE STUDY ON SUM AND PRODUCT THEOREMS

OF RELATIVE (p,q)-TH ORDER AND RELATIVE (p,q)-TH TYPE

OF MEROMORPHIC FUNCTIONS WITH RESPECT TO ENTIRE
FUNCTIONS

TANMAY BISWAS

ABSTRACT. Orders and types of entire and meromorphic functions have been
actively investigated by many authors. In this paper, we aim at investigating
some basic properties in connection with sum and product of relative (p, ¢)-th
order, relative (p, q)-th type, and relative (p, q)-th weak type of meromorphic
functions with respect to entire functions where p and ¢ are any two positive
integers.

1. Introduction, Definitions and Notations

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna theory of mero-
morphic functions which are available in [6, 10, 12, 13] and therefore we do not
explain those in details. Let f be an entire function defined in the open complex
plane C. The maximum modulus function My (1) corresponding to f (see [14]) is
defined on |z| = r as My (r) = max|z| = r|f (z)|. A non-constant entire function
f is said to have the Property (A) if for any o > 1 and for all sufficiently large r,
[M; (r)]? < My (r?) holds (see [1]). When f is meromorphic, one may introduce
another function T (r) known as Nevanlinna’s characteristic function of f (see [6,
p. 4]), playing the same role as My (r) .We also recall the following definitions due
to Juneja, Kapoor and Bajpai [7]. For any two positive integers p and ¢ with p > ¢,
Juneja et al. [7] defined the (p, ¢)-th order (resp. (p, ¢)-th lower order) of an entire
function f respectively as follows:
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where log[k] z = log (log[’“l} x) for k = 1,2,3, -+ log[O] r =z and expz =

exp (exp[k_l] J;) for k =1,2,3,-- - expl” 2 = . When f is meromorphic one can
easily verify that

. logP=t 1. (1
pf (p, CI) = llmsupgif()

logP~HU T
resp. As (p,q) = lim infu ,
r—00 log[q] r

T—00 log[Q] r

where p, g are any two positive integers with p > ¢. If p = [ and ¢ = 1 then we
write py (I,1) = pgf] and A\ (1,1) = /\Ef] where pgf] and )\Ef] are respectively known as
generalized order and generalized lower order of f. For details about generalized
order one may see [11]. Also for p = 2 and ¢ = 1 we respectively denote ps (2,1)
and Ay (2,1) by py and Ay. which are classical growth indicators such as order and
lower order of meromorphic function f.
In this connection we recall the following definition (see [6]):

Definition 1. An entire function f is said to have index-pair (p,q), p > g > 1 if
b<ps(p,g) <ooand ps(p—1,¢—1) is not a nonzero finite number, where b =1
if p=g¢gand b=0if p > g. Moreover if 0 < py (p,q) < oo, then

pr(p—n,q) =oc0 for n <p, ps(p,g—mn)=0"for n < ¢ and

pr(p+n,g+n)=1forn=1,2,....
Similarly for 0 < Ay (p,¢) < oo, one can easily verify that

Af(p—mn,q) =00 forn <p, As(p,g—n)=0for n < ¢ and

Af(p+n,g+n)=1 forn=1,2,.....

An entire function for which (p,q)-th order and (p,q)-th lower order are
same is said to be of regular (p, q) growth. Functions which are not of regular (p, q)
growth are said to be of irregular (p,q) growth.

Analogously one can easily verify that Definition 1 of index-pair can also be
applicable to a meromorphic function f.

Given a non-constant entire function f defined in the open complex plane C
its Nevanlinna’s characteristic function is strictly increasing and continuous. Hence
there exists its inverse functions Tf_l(r) (£ (0)],00) = (0,00) with JH&TJ‘_I (s) =
00.

Order of a meromorphic function f which is generally used in computational
purpose is defined in terms of the growth of f respect to the exponential function
as

log T’ logT' logT
pf = llm sup o8 f (T) = hm Supw — hm sup og f (T)

roo 108 Tz (1) oo log (L) oo log(r) +O(1)
Lahiri and Banerjee [9] introduced the relative order of a meromorphic func-
tion with respect to an entire function to avoid comparing growth just with exp z
in the following definition (see [9]).
Definition 2. Let f be any meromorphic function and g be any entire function.
The relative order of f with respect to g is defined as

pg (f) = inf{u>0:Ty(r) <Ty(r*) for all sufficiently large r}

. log Ty ' Ty (r)
= limsup————= .
r—00 log T
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It is known (cf., [9]) that if g (z) = expz then Definition 2 coincides with
the classical definition of order of a meromorphic function f .

In the case of relative order, it therefore seems reasonable to define suitably
the relative (p, g)-th order of meromorphic functions. Banerjee and Jana [2] also
introduced such definition in the following manner (see [2]).

Definition 3. Let p and ¢ be any two positive integers with p > ¢g. The relative
(p, q)-th order of a non-constant meromorphic function f with respect to another
non-constant entire function g is defined by

. [p—1] t
pép’q) (f) = inf uw>0:Tf(r)<T, (exp (u log r))
for all r > ro (u) > 0

) logP~ 1! Tg’le (r)
= limsup .
r—>00 log[Q] T

Recently, Debnath et al. [3] give an alternative definition of relative (p, ¢)-th
order of a meromorphic function with respect to an entire function in the light of
index-pair as follows:

Definition 4. Let f be any meromorphic function and g be any entire function
with index-pairs (m, ¢) and (m, p) respectively where p, g, m are all positive integers
such that m > p and m > ¢. Then the relative (p, ¢) -th order of f with respect to
g is defined as

log”! 71T
o9 () = limsup' 28 Ls 17 (1)
r—00 log[Q]r

Similarly, one can define the relative (p, ¢) -th lower order of a meromorphic

function f with respect to an entire function g denoted by )\gp @) (f) where p and ¢
are any two positive integers in the following way:

log?! 717
)\(gp"” (f) =lim inf—og g ~f ()

r—00 lOg[q] r

In fact, Definition 4 improves Definition 3 ignoring the restriction p > q.
If a meromorphic function f and an entire function g have the same index-
pair (p,1) where p is any positive integer, we may get the definition of relative

order of meromorphic function introduced by Lahiri and Banerjee [9] and if g =

exp[m,—l] z, then Pg (f) — pgfn’] (,q)

with the classical one if f is a meromorphic function with index-pair (2,1) and
g = expz.

Further a meromrphic function f for which (p, ¢)-th relative order and (p, q)-
th relative lower order with respect to another entire function g are same is called
a function of regular relative (p,q) growth with respect to g. Otherwise, f is said
to be irregular relative (p, ¢) growth with respect to g.

In this connection we also introduce the following definition:

Definition 5. A meromorphic function f is said to have relative index-pair (p, q)
with respect to an entire function g where p and ¢ are any two positive integers if

b< pgp’q) (f) < oo and pgp_l’q_l) (f) is not a nonzero finite number, where b = 1 if

and pg " (f) = py (m, q) . Also Definition 4 coincides
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p = q and b = 0 for otherwise. Moreover if 0 < pgp’Q) (f) < oo, then
p Y (f) = o0 for n<p,
P () =0 for n <gq,
p§p+n’q+") (f)=1 for n=1,2,---
Similarly for 0 < ,\g” ) (f) < oo, one can easily verify that
Agp‘”"” (f) = for n <p,
/\g”’q*”) (f)=0 for n<gq,

Agpmq*”) (f=1 for n=12,---

Now in order to refine the above growth scale, now we intend to introduce
the definitions of an another growth indicators, such as relative (p, ¢) -th type and
relative (p, ¢) -th lower type of meromorphic function with respect to another entire
function in the light of their index-pair as follows:

Definition 6. Let f be a meromorphic function and g be an entire function
with index-pairs (m, ¢) and (m, p) respectively where p, g, m are all positive integers
such that m > max {p, ¢} . The relative (p, ¢) -th type and relative (p, q) -th lower
type of f with respect to the entire function g having finite positive relative (p, q)

th order pgp’q) (f) (0 < pép’q) (f) < oo) are defined as

) log[pfl] T_le (r) - o log[pfu T_le (r)
o9 (f) = limsup g o 7 () =l R
r—00 lg—1] Pg [g—1] P
log T log r

Analogously, to determine the relative growth of two meromorphic functions
having same non zero finite relative (p, ¢) -th lower order with respect to another
entire function, one can introduce the definition of relative (p, ¢)-th weak type of a
meromorphic f with respect to an entire g of finite positive relative (p, ¢)-th lower

order /\_((JP’Q) (f) in the following way:
Definition 7. Let f be a meromorphic function and g be an entire function

having finite positive relative (p,q) th lower order )\ép’q) (f) (0 < )\ép’q) (f) < oo)

where p and ¢ are any two positive integers. Then the relative (p, q) -th weak type
of f with respect to g is defined as

log[pfl] Mg_le (r)
)\(Pﬂl)(f) :
(1og[q71] r) !

Similarly one can define another growth indicator 7&*? () in the following way:

7(Pa) (f) = liminf
T—>00

?!(Jp"I) (f) = limsup

If f and g have index-pair (m, 1) and (m, ), respectively, then Definition 6
and Definition 7 reduces to the definition of generalized relative growth indicators
such as generalized relative type ag] (f), generalized relative weak type Ty] (f) etc.
If f and g have the same index-pair (p, 1) where p is any positive integer, we get

the definitions of relative growth indicators such as relative type o, (f), relative
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weak type 7, (f) etc. Further if g = expl™~1 2, then Definition 6 and Definition
7 reduce to the (m,q) th growth indicators of meromorphic f which is analogous
the definition as introduced by Juneja et al. [8] for an entire function. Also for
g = expl™ 1z, relative growth indicators reduce to the definition of generalized
growth indicators.such as generalized type U;m], generalized weak type T}m] etc.
Moreover, if f has index-pair (2,1) and g = exp z, then Definition 6 and Definition
7 become the classical definitions of f. For details about different type of relative
growth indicators, one may see [4, 5].

Here, in this paper, we aim at investigating some basic properties of relative
(p, q)-th order, relative (p, ¢)-th type and relative (p, ¢)-th weak type of a meromor-
phic function with respect to an entire function where p and ¢ are any two positive
integers under somewhat different conditions. Throughout this paper, we assume
that all the growth indicators are all nonzero finite.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Lemma 1. [1] Let f be an entire function which satisfies the Property (A) then
for any positive integer n and for all sufficiently large r,

(M (r)]" < M (%)

holds where § > 1.
Lemma 2. [6, p. 18] Let f be an entire function. Then for all sufficiently large
values of r,

Ty (r) <log My (r) < 3Ty (2r) .

3. Main Results

In this section we present our main results.
Theorem 1. Let fi, fo be meromorphic functions and g; be any entire function
such that at least f; or fo is of regular relative (p,q) growth with respect to g;
where p and ¢ are any two positive integers. Also let g; has the Property (A). Then

/\5(711)7{1) (fl + f2) < max {)\g’i’Q) (fl) s )\g’i’q) (f2)} :

The equality holds when )\(gf’Q) (fi) > )\g’;’Q) (f;) with at least f; is of regular relative
(p, q) growth with respect to g; where ¢ = 7 = 1,2 and i # j.

Proof. If )\gf’q) (f1 £ f2) = 0 then the result is obvious. So we suppose that
)\gf’Q) (f1 £ f2) > 0. We can clearly assume that )\gf’q) (fx) is finite for k = 1, 2.
Further let max {)\gm (f1) ,)\g’Q) (fz)} = A and f; is of regular relative
(p, q) growth with respect to g;.

Now for any arbitrary & > 0 from the definition of A¥*? (f1), we have for a
sequence values of r tending to infinity that

Ty, (r) <1y, [exp[?] [()\gllw) (f1) + E) logl r”

ie., T (r) < Ty, [exp[p] {(A + £) logl? TH . (1)
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Also for any arbitrary € > 0 from the definition of p(p’Q) (f2) ( p’q (fg))

we obtain for all sufficiently large values of r that

Ty, (r) < Ty, [exp[p] [(Agjm (f2) + s) logld! 7’” 2)
e., Ty, (r) < Ty, {exp [p] {(A + &) logl? H . (3)

Since Ty, x4, (r) < Ty, (1) + T}, (r) + O(1) for all large r, so in view of (1) ,
(3) and Lemma 2, we obtain for a sequence values of r tending to infinity that

Tfi4y, (r) < 2log Mg, [eXp[”] {(A + &) logl? r” +0(1)

e, Tp+y, (1) < 3log M, [exp[p] [(A +e) log[Q] 7"” . (4)

Therefore in view of Lemma 1 and Lemma 2, we obtain from (4) for a
sequence values of r tending to infinity and o > 1 that

Ty sq, (r) < 1og[ o [eXp [(A—F&‘)log[] mg

o Thag, (1) < Zlog My, HexP[P] [(A +e) log[q] T}}U}

e, Tpap, (r) < Ty, [2 [exp[p] [( A + ) logl® TH ] .
Now we get from above by letting o — 17

lim log[p] 1Tf1:tf2 ( )

<(A+e) .
r—00 log[Q] ( 6)

i.e.

)

Since € > 0 is arbitrary,
APD (fi+ f2) < A = max {Ang’q) (f1), A (fz)} -

Similarly, if we consider that f; is of regular relative (p,q) growth with
respect to g1 or both f; and fy are of regular relative (p, ¢) growth with respect to
g1, then one can easily verify that

/\g(;?q) (fi £ f2) <A =max {)\g,q) (f1) J\é’im (f2)} : ()

Further without loss of generality, let Aé’f’(n (fr) < )\gff’Q) (f2) and f = fitfo.
Then in view of (5) we get that A7 (£) < AP? (f2). As, fo =+ (f — f1) and in

this case we obtain that \g (P.2) (£,) < max {/\ PO (£) A p’q (fl)} . As we assume

that )\gﬁ”q) (fr) < )\ffz’q) (f2), therefore we have )\gﬁ”q) (f2) < )\fff’q) (f) and hence
MED () = ARD (f2) = max {0 (£1), AR (f2) b Therefore, AP (1 = /) =

)\gf’Q) (fi) | i = 1,2 provided Ag’f’q) (fr) # )\Ef;’q) (f2) . Thus the theorem is estab-
lished.
Now we state the following theorem due to Debnath et al. [3] and Banerjee
et al. [2]:
Theorem 2. Let f; and f; be any two meromorphic functions with relative
index-pair (p, ¢) with respect to another entire function g; where p and ¢ are positive
integers. Also let g; has the Property (A). Then

PP (f1 £ fo) < max {pé’f’q) (f1),p{? (fz)} :
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The equality holds when p!(ff’q) (f1) # ,Dgf’q) (f2)-
Remark 1. In Theorem 2 of [2], Banerjee et al. [2] said nothing about the con-

dition of equality but the equality of Theorem 2 holds when p_fﬁ’q) (fr) # pé’l”Q) (f2)
which can easily be derived in the line of Theorem 1.

Theorem 3. Let f; be a meromorphic function and g1, go be any two entire
functions such that )\g,q) (f1) and Ag;"” (f1) exists where p and ¢ are positive
integers. Also let g1 & g2 has the Property (A). Then

NP, (1) 2 min 0D (£) 2D ()}

The equality holds when )\é’;’q) (f1) # )\E(,Z’q) (f1)-

Proof. If )\é’;’f:)gz (f1) = oo then the result is obvious. So we suppose that

A, (1) < o0,
We can clearly assume that )\_E,i’q) (f1) is finite for k =1,2.
Further let ¥ = min {Ay;"” (1), A8 ( fl)}

Now for any arbitrary € > 0 from the definition of )\(g};’Q) (f1), we have for
all sufficiently large values of r that

Ty, {exp[p] K)\f]’z’q) (fr) - 6) log! 7”” < Ty (r) where k=1,2 (6)

i.e, Ty, {exp[p] [(\Il — &) logl? 7’” < Ty, (r) where k=1,2

Since Ty, 44, (1) < Ty, (r) + Ty, (r) + O(1) for all large r,, we obtain from
above and Lemma 2 for all sufficiently large values of r that

Tyi4qs [exp[p] [(‘I’ — &) log!? r” <27y, (r)+0(1)

i.e., Tgitg, {exp[p} [(\Il — £)logl? TH < 3Ty, (1) .

Therefore in view of Lemma 1 and Lemma 2, we obtain from above for all
sufficiently large values of r and any o > 1 that

Proof.
1 expl?) [(\II —e€) log[q] r}
§ log M!Jlif]z 9 < Tfl (’I“)
expl?! [(\I/ —e) logl® r}
i.e., log Mg, +g, 5 < Ty, (1)
1
exp[p] |:(\I/ — E) log[‘ﬂ ,ri| o
i.e., log My, 14, 5 < Ty, (r)
14
explP! [(\p — &) logl r} v
i.e., Tglztgz 5 < Tf1 (7”) .
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Since € > 0 is arbitrary, we get from above by letting ¢ — 17

AP, (F1) 2 @ = min {AFD (1), AED (f1)} (7)

Now without loss of generality, we may consider that )\(p ) ( f1) < )\(p ) (f1)

and g = g1 £ g2. Then in view of (7) we get that )\(p 9 (f1) > P:) (f1) . Further,
g1 = (g £ g2) and in this case we obtain that Agp’q (f1) > min {)\ p’Q) (f1), A p’q (f1 )} )

As we assume that Ag’j"’) (fr) < )\gg’Q) (f1) , therefore we have )\(p ) (fr) > )\(p 9 (f1)

and hence AP? (f1) = A29(f) = min{)\éﬂ”q) (f1), /\(p’q) } Therefore,

APD (f) = AP (1) | i = 1, 2 provided AZY (f1) # A q>( f1). Thus the

theorem follows. U

Theorem 4. Let f; be a meromorphic function and g1, g2 be any two entire
functions such that the relative index-pair of f; with respect to g1 and go are (p, q)
where p and ¢ are positive integers. Also let fi is of regular relative (p,q) growth
with respect to at least any one of g1 or go. If g1 + g2 has the Property (A), then

oy, (£1) = min {p20 (£1). o5 (F1)} -

The equality holds when p(p ) (fr) < pgf ) (f1) with at least f7 is of regular relative
(p, ¢) growth with respect to g; where i = j = 1,2 and ¢ # j.
The proof of Theorem 4 would run parallel to that of Theorem 3. We omit
the details.
Theorem 5. Let f1, fo be any two meromorphic functions and g1, g2 be any two
entire functions. Also let g1 + go has the Property (A). Then for any two positive
integers p and ¢

Pt (f1 % fo)
< max [min { o090 (1), ol (£1) b min {o® (£2), o2 (£2) }]

when the following two conditions holds:
(7) pé{g ) (f1) < pé’; ) (f1) with at least fy is of regular relative (p,q) growth with
respect to g; for i = 1,2, 7 = 1,2 and ¢ # j; and
(13) pgf’q (f2) < pg’q) (f2) with at least fo is of regular relative (p,q) growth with
respect to g; fori = 1,2, 5 =1, 2andi7éj.
The sign of equality holds when pg, (p.a) (fi) < png’q (f;) and p(p’q) (fi) < p(’j"” (f;)
holds simultaneously for i = 1,2; j = 1,2 and i # j.

Proof. Let the Conditions (z) and (47) of the theorem hold. Therefore in view
of Theorem 2 and Theorem 4 we get

max [min {p(gp’Q) (f1), pé’;’q) (f1)} , min {pg’f’q) (f2) ,,Ogl;q) (fQ)H

A,me[pgg;<fg oD, ()]
> 00, (£ 1) )

Since p(p -9) (fi) < pé’l’ -9) (f;) and p (fl) < pg2 (fJ) hold simultaneously
fori=1,2; j =1,2 and i # j, we obtain that

either min { pl0) (f1), o5 (1)} > min {pll0) (f2), o4 (f2)} or
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min { oD (f2), % (f2)} > min {pD (1), % (f1)} bolds.

Now in view of the conditions (i) and (i7) of the theorem, it follows from
above argument that

either %), (1) > ol (f2) or pi8), (f2) > i, (1)

which is the condition for holding equality in (8).
Hence the theorem follows.
Theorem 6. Let fi, fo be any two meromorphic functions and ¢y, g2 be any
two entire functions. Also let g1, g2 and g1 + go satisfy the Poperty (A). Then for
any two positive integers p and ¢,

AP (F1 % f)
> min {max {)\gf"” (f), AP0 ( f2>}  max {Agqu) (f1), AL ( fg)H

when the following two conditions holds:
(7) )\g]ﬁ”q) (fi) > )\Sff’q) (f;) with at least f; is of regular relative (p,q) growth with
respect to g1 fori =1, 2, j = 1,2 and ¢ # j; and
(44) )\,(JZ’Q) (fi) > )\EJZ’Q) (f;) with at least f; is of regular relative (p,q) growth with
respect to go for i = 1,2, j = 1,2 and i # j.
The sign of equality holds when )\g’q) (f1) < )\(gf’Q) (f1) and )\_E,f‘q) (f2) < Ag’;’q) (f2)
hold simultaneously for ¢ = 1,2; j = 1,2 and i # j.

Proof. Suppose that the conditions (i) and (i7) of the theorem holds. Therefore
in view of Theorem 1 and Theorem 3, we obtain

min max { ALV (1), AED (f2) b max (A2 (£1), 08D (1) }]
= min {Aéﬁ"q) (f1 £ f2) 7>\§2’q) (fi £ fQ)}
> AP, (i fa) (9)
Since AP9 (1) < )\g’Q) (f1) and ALY (£,) < )\éf;’Q) (f2) hold simultaneously
fori=1,2; 7 =1,2 and i # j, we get
either max {)\é’f”) (f1) ,)\é’f"n (fg)} < max {)\g"n (f1) ,)\g"n (fg)} or

max A2 (£1),ALD (f2) b < max {029 (£1), A2 (f)} bolds,

Since condition (¢) and (i¢) of the theorem holds, it follows from above
argument that

cither AP9) (fy £ fo) < APD (fi £ fo) or 2D (1 £ fo) < AP9 (f1 £+ f3)

which is the condition for holding equality in (9).
Hence the theorem follows.

Theorem 7. Let f1, fo be any two meromorphic functions and g; be any entire
function such that at least f1 or fy is of regular relative (p, q) growth with respect
to g1 where p and ¢ are any two positive integers. Also let g; satisfy the Property
(A). Then

)\ézluq) (fl - f2) < max {)\gf’q) (f1) ,Aéﬁ”q) (f2)} :

The equality holds when AP® (f;) > AP? (f,) with at least f; is of regular relative
(p, q) growth with respect to g; where i = 7 = 1,2 and i # j.
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Proof. Since Ty,.5, (1) < Ty, (r)+ T}, (r) for all large r, therefore applying the
same procedure as adopted in Theorem 1 we get

)\g,q) (f1 - f2) < max {x\é’l”Q) (f1) ,/\gf’Q) (f2)} .

Now without loss of generality, let /\Eff’q) (fr) < )\g,q) (f2) and f = f1 -
f5. Then A{(le),q) (f) < )\!(JI;"Z) (f2) . Further, fo = % and and Ty, (r) = Tﬁ (r) +
O(1). Therefore Ty, (r) < Ty (r ( )+ T4, (r) + O(1) and in this case we obtain that
)\gf’Q) (f2) < max {/\gff’q) (), A p 9 (fl)} . As we assume that )\E,f’q) (f1) < )\(gf’q) (f2),

therefore we have )\gm (f2) < )\g"n (f) and hence
ML (F) = N (o) = max {22 (1) A9 ()}

Therefore, Ag’f’q) (fi-f2) = )\g’Q) (fi) | i =1, 2 provided )\(p’q) (f1) # )\gf’q) (f2).
Hence the theorem follows.
Next we prove the result for the quotient %, provided % is meromorphic.
Theorem 8. Let f;, fo be any two meromorphic functions and g; be any entire
function such that at least fi or fy is of regular relative (p,q) growth with respect
to g1 where p and ¢ are any two positive integers. Also let g; satisfy the Property

(A). Then
AP <2) < max{ APD (£1) N (f2)}

provided f L is meromorphic. The sign of equality holds when at least f5 is of regular

relative (p, q) growth with respect to g1 and Ag (p.9) (f1) # )\g’q) (f2)-
Proof. Since T, (r) =T, (r)+ O(1) and T 5 (M) ST, (r)+ Tﬁ (r), we get

F2 Fo
in view of Theorem 1 that

fi
Ap) <f2 < max {029 (£1), ALD (£2)} - (10)
Now in order to prove the equality conditions, we discuss the following two
cases:
Case I. Suppose % (= h) satisfies the following condition
AZD(fr) <AL (fo),

and fo is of regular relative (p, ¢) growth with respect to g¢;.
Now if possible, let )\(p’q) <ﬁ> p’q (f2). Therefore from f; = h - fo we

get that A_Sf?‘” (fr) = p’q (f2) which is a contradiction. Therefore )\gf’q) (%) >
A9 (£,) and in view of (10), we get

A (jﬁ) D ()

Case II. Suppose ;1 (= h) satisfies the following condition

NED (1) > AZD (£2),
and fo is of regular relative (p, ¢) growth with respect to g¢;.
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Now from f; = h-fa we get that either /\g’q) (fr) < )\(glf’q) (%) or )\Eff’q) (fi) <

AP9 (f,). But according to our assumption A2 (f;) ¥ APD (f,). Therefore
/\_Sfi’” (%) > /\(glf’q) (f1) and in view of (10), we get

A () =ag ()

Hence the theorem follows.
Now we state the following theorem due to Debnath et al. [3] and Banerjee
et al. [2]:
Theorem 9. Let f; and fy be any two meromorphic functions with relative
index-pair (p, ¢) with respect to another entire function g; where p and ¢ are positive
integers. Also let g7 satisfy the Property (A). Then

P_E;Zf’q) (fi - f2) < max {pé’l”q) (f1) ,/’gf’q) (fQ)} :

The equality holds when pZ? (f1) # pF'? (f2).
Similar results hold for the quotient %7 provided % is meromorphic.

Theorem 10. Let f; be a meromorphic function and g1, go be any two entire
functions such that Ag’f’q) (f1) and Ag’;’q) (f1) exists where p and ¢ are positive

integers. Also let g1 - g2 satisfy the Property (A). Then
AR, (1) = min {AED (1) AED (f1)}

The equality holds when AL (1) < AL (fy) where i = j = 1,2 and i # j and
g; satisfy the Property (A).
Similar results hold for the quotient g—;, provided
erty (A). The sign of equality holds when /\gﬁ"” (f1) # /\g"” (f1) and g; satisfy the
Property (A).

Proof. Since Ty, .4, (1) < Ty, (1) + Ty, (r) for all large r, therefore applying the
same procedure as adopted in Theorem 3 we get

_% is entire and satisfy the Prop-

NG, (£1) = min QARD (£) AZD (£1)} -

Now without loss of generality, we may consider that Ag’f’q) (fh) < Aé’z”q) (f1)
and g = g1 - g2. Then )\gpm (fr) > Aé’f”) (f1) . Further, g1 = g% and and T, (r) =
T1 (r) + O(1). Therefore T,, (r) < T, (r) + Ty, (r) + O(1) and in this case we

obtain )\gf’q) (f1) > min {A_E,”’q) (f1), )\_E,Z’q) (fl)} . As we assume that )\(gf’q) (f1) <
)\g’Q) (f1), so we have )\g,q) (f1) > )\gp’Q) (f1) and hence )\gp’Q) (fr) = /\_((fl)’Q) (fr) =
min {x\é’f’q) (f1), A% (f1)} . Therefore, AP0 (1) = AP? (f,) | i = 1,2 provided

)\gf’q) (fr) < )\g,q) (f1) and g satisfy the Property (A).
Hence the first part of the theorem follows.
Now we prove our results for the quotient Z—;, provided % is entire and

APD(f1) # 287 (f).
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Since T, (r) =T, (r)+O(1) and Ty, (r) < T, (r)+ T, (r), we get in
view of Theorem 3 that ” ” ”

AED(f1) > min{)\gﬁ’q) (f1) AL (fl)} ' "

Now in order to prove the equality conditions, we discuss the following two
cases:

Case L. Suppose 2! (= h) satisfies the following condition

AP (f1) > A2 (h) -

Now if possible, let )\(gi’q) (f1) > AEJZ’Q) (f1). Therefore from g; = h-go we get

g2

)\gf’Q) (fr) = Ag’;"” (f1), which is a contradiction. Therefore )\(gi’q) (fr) < Aé’;’Q) (f1)
g2

and in view of (11), we get

AED(f1) = A (1)
g2

Case II. Suppose that g—; (= h) satisfies the following condition

APD (fr) < A9 (fi) -
Therefore from g; = h - go, we get that either /\gfq) (1) = AED () or

g2
APD (1) > A2 (1)), But according to our assumption A&V (f1) * ALY (f).
Therefore )\(gim (fr) < )\gm (f1) and in view of (11), we get
g2

AED (f1) = AP (1)

Hence the theorem follows.

Theorem 11. Let f; be any meromorphic function and g1, g2 be any two entire
functions such that the relative index-pair of fi with respect to g1 and g is (p, q)
where p and ¢ are positive integers. Further let f; is of regular relative (p, ¢) growth
with respect to at least any one of g; or go. Also let gy - g2 satisfy the Property (A).
Then

pity (£1) = min { o0 (£1) 020 (F1)} -

The equality holds when pé’f ) (fr) < Pg’Q) (f1) with at least f7 is of regular relative
(p,q) growth with respect to g; where ¢ = j = 1,2 and ¢ # j and g; satisfy the
Property (A).

Theorem 12. Let f; be any meromorphic function and g1, go be any two entire
functions such that the relative index-pair of f; with respect to g1 and g is (p, q)
where p and ¢ are positive integers. Further let f; is of regular relative (p, ¢) growth
with respect to at least any one of g1 or gs. Then

P8 (£1) = min { B (£1) . ) (£1)]}
92

provided Z—; is entire and satisfy the Property (A). The equality holds when at least

f1 is of regular relative (p, q) growth with respect to ga, pé’f’q) (f1) # pg;’Q) (f1) and
g1 satisfy the Property (A).
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A similar argument in the proof of Theorem 10 will establish the results in
Theorem 11 and Theorem 12. We omit the details.
Now we state the following four theorems without their proofs as those can
easily be carried out in the line of Theorem 5 and Theorem 6 respectively.
Theorem 13. Let f1, fo be any two meromorphic functions and g, go be any
two entire functions. Also let g - g2 be satisfy the Property (A). Then for any two
positive integers p and g,

PGy (fr- o)
< max [min {pgf’q) (f1), péé”q) (fl)} ,min{ D (fa),p (fz)}] )

when the following two conditions holds:
(7) pgff ') (fi) < pé’; ) (f1) with at least fy is of regular relative (p,q) growth with
respect to g; and g; satisfy the Property (A) for i =1, 2, j = 1,2 and i # j; and
(13) pé’: D (f) < p(gf D (f,) with at least f, is of regular relative (p,q) growth with
respect to g; and g; satisfy the Property (A) for i =1, 2, j = 1,2 and i # j.
The equality holds when p&? (f;) < p? (f;) and p&? (f;) < p&? (f;) holds
simultaneously for i =1,2; j = 1,2 and i # j.

Theorem 14. Let fi, fo be any two meromorphic functions and g1, go be any
two entire functions. Also let g1 - g2, g1 and g2 be satisfy the Property (A). Then
for any two positive integers p and g,

MG, (fr - £2)
> min [masx (AL (f1), A2D (f3) }, mas { AL (£1) AL (12)}]

when the following two conditions holds:
(D) AP? (f;) > APD (f,) with at least f; is of regular relative (p,q) growth with
respect to g1 fori = 1,2, j = 1,2 and ¢ # j; and
(i7) )\E,Z’q) (fi) > )\(g’;’q) (f;) with at least f; is of regular relative (p,q) growth with
respect to go fori =1,2, 5 = 1,2 and ¢ # j.
The equality holds when AP? (f1) < APD (1) and AP () < ALD (f,) holds
simultaneously for 1 =1,2; j = 1,2 and i # j.

Theorem 15. Let f1, fo be any two meromorphic functions and g, go be any
two entire functions such that f—; is meromorphic and g—; is entire. Also let Z—;
satisfy the Property (A). Then for any two positive integers p and g,

pi? (?)
92 2
< max [min { @9 (f1), p2® (£1) b min { o@D (£2), o2 (£2) }]

when the following two conditions holds:
(i) At least fi is of regular relative (p, ¢) growth with respect to g, and p(p’Q) (fr) #
ng’q) (f1); and
(17) At least fo is of regular relative (p, q) growth with respect to go and p(p’Q) (f2) #
P (f2)-
2

The equality holds when pZ? (f;) < p? (f;) and p&? () < p? (f;) hold
simultaneously for i =1,2; j = 1,2 and i # j.
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Theorem 16. Let f, fo be any two meromorphic functions and g, g» be any
two entire functions such that % is meromorphic and g—; is entire. Also let Z—;, 91
and go be satisfy the Property (A). Then for any two positive integers p and g,

()
92 2
> min {max {)\g;’q) (f1) ,)\g’q) (fz)} ,max{ D(f1), A p’q (f2)H

when the following two conditions hold:

(i) At least f» is of regular relative (p, ¢) growth with respect to g1 and A_S}f"’) (fr) #
AL (f2); and

(1) At least fs is of regular relative (p, ¢) growth with respect to go and )\g’(n (fr) #
Aggm (f2)-

The equality holds when A% (f1) < AP (1) and AP? (f2) < AP (f5) holds
simultaneously for i =1,2; j = 1,2 and i # j.

Next we intend to find out the sum and product theorems of relative (p,q)-th
type ( respectively relative (p,q)-th lower type) and relative (p,q)-th weak type of
meromorphic function with respect to an entire function taking into consideration
of the above theorems.

Theorem 17. Let f1, fo be any two meromorphic functions and g, go be any
two entire functions. Also let p2? (1), p2? (f2), p2? (1) and p£? (f,) be all
non zero and finite where p and ¢ are positive integers.

(A) If pg, (p.a) (fi) > p(gf’q (f;) for i = j =1,2; i # j, and g; has the Property (A),
then

D(frtfo) =0l (f) i=1,2and 7D (fr £ fo) =59 (fi) |i=1,2.

(B) If pg}z’q (fi) < pg] (fl) with at least fi is of regular relative (p,q) growth
with respect to g; for i = j = 1,2; ¢ # j and g1 £ go has the Property (A), then

oD (f1) = oD (f1) [i=1,2and TPL (1) =PV (f1)]i=1,2.

(C) Assume the functions f1, f2, g1 and go satisfy the followmg conditions:
(2) p,(f’Q) (f1) < pg’q) (f1) with at least fi is of regular relative (p,q) growth with
respect to g; for ¢ = 1,2, 5 = 1,2 and ¢ # j;
(44) pﬁ,{”‘” (f2) < p_f,p"” (f2) with at least fo is of regular relative (p,q) growth with
respect to g; fori =1,2, 5 =1, 2andi7éj;
(#44) p(g’;q (fi) > p(gfq (f;) and p (fz) > pg2 (fJ) holds simultaneously for
i:1,2,]—1 2 and i # j;
(iv) p;:f (1) = max [min { oV (1), o ? (£1) b min { o7 (£2), o2 (f2)}] |
I=m=1,2, and g1 £ g» has the Property (A);
then we have
ol (fr £ fo) = o@D () [ l=m=1,2
and
Ty, (M2 f2) =38P (f) [ I=m=12.
Proof. From the definition of relative (p, ¢)-th type and relative (p, ¢)-th lower
type of meromorphic function with respect to an entire function, we have for all
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sufficiently large values of r that

p(’“”(f)

5, (1) < Ty [exo 1 { (o379 () + <) flogr 1] o
Pq”“(fk)

5, ) 2 Ty [exw = { (3 (50 ) [roge 1]
W
1 [p—1] Pgl (£x)

ie., Ty (r) < Ty, |explt= N, . (14)

(Ug)’q) (fx) — 5)

and for a sequence of values of r tending to infinity, we obtain that
PO (fr)
T3, () 2 Ty [exo 0 { (o379 () = ) flogr 1] o

logP—1 RALIN

t.e., Ty (r) < Ty, exp[q_l] _— ,
(Ug) D (fr) — 5)

and -
o (fr)
75, (1) < Ty e { (a0 () +.) [l o] ] )

where € > 0 is any arbitrary positive number £k =1, 2 and [ = 1, 2.

Case I. Suppose that p(p -9) (f1) > p(’f ) (f2) hold. Also let € (> 0) be arbitrary.
Since T, 44, (1) < Ty, (1) + Ty, (r) + O(1) for all large r, so in view of (12),
we get for all sufficiently large values of r that

Lz (1) = T {exp[pl] {(Uéﬁf’q) (f1) + 8) [1og[q71] }

(p,q)
Pa

WH (1+A) . (18)

T, [exp[p—u{( ®:0)(f3)-+¢) [logle 1 ]091 (f2>H+o(1)

(p,q) )
Tyy [exp[P—” { (o529 (f1)+¢) [logla=1 ] 71 <f1>}]

p 9 (fr) > p(zl' @) (f2), and for all sufficiently large values of r, we can make the
term A sufficiently small .
Hence for any a = 1+¢7, it follows from (18) for all sufficiently large values
of r that

PED (1)
Troar, ) < Ty [ { (ofr0 () + ) [l 7™ ] e

oE0 (1)
o Tpass (1) < Ty [oxp? 1 { (of20 () - 2) [log 1] ™

Hence making o — 1+, we get in view of Theorem 2, pg, (p.a) (f1) > péﬁ"q) (f2)
and above for all sufficiently large values of r that
log”~ T_lelifg (r)

s < (p,q)
Tﬁocp |: [g—1] le (fl:tfg) g (fl)
log }

where A = and in view of

ie, oD (fi £ fo) <P (fy) (19)
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Now we may consider that f = fi; £ f5. Since p(p @) (f1) > p,(ff’q) (f2) hold.
Then o7 (f) = o9 (f1 £ f2) < o9 (f1). Further, let fi = (f + f»). There-
fore in view of Theorem 2 and p&? (f1) > p? (f,), we obtain that p¥? () >
P79 (f,) holds. Hence in view of (19) o ¥ (1) < oV (f) = o2V (/i + f).
Therefore o ® (f) = o' (f1) = o ? (f1 £ f2) = o ? (f1).

Similarly, if we con51der p(p’q) (fr) < p,ﬁ’q)

that aézf’Q) (i fo) = Ug(vzf’Q) (f2)-

(f2), then one can easily verify

Case II. Let us consider that p(p -9) (fr) > pffl’ ) (f2) hold. Also let (> 0) be
arbitrary.

Since T+, (r) < Ty, (r)+ T}, (r)+O(1) for all large r, from (12) and (17),
we get for a sequence of values of r tending to infinity that

Ty ra) < Ty, o= { (309 () + <) [ogt 1) 5N a4 )
20)

(p,q)
T,, [exph’—ll{(a<1’=q>(f2)+g)[1og[q—” )P <f2)}]+o(1)

(p>a)
T,, |:exp[p 1]{(,,@ q)(leE) [logla=11 7] 41 <f1)H

pPD(£1) > pPD (£,), we can make the term B sufficiently small by taking n
sufficiently large and therefore using the similar technique for as executed in the

proof of Case I we get from (20) that ng’q) (£ fe)= Ué’f ) (f1) when p(p ) (f1) >

P (f2) hold.
Likewise, if we consider p( P:4) (f1) < pgf a)

that 557 (fi + fo) = 7 (fo).
Thus combining Case I and Case II, we obtain the first part of the theorem.

where B = , and in view of

(f2), then one can easily verify

Case III. Let us consider that p_,(fl)"q) (fi) < pé’; ) (f1) with at least f; is of regular
relative (p, q) growth with respect to gs.

As Ty 1y, (1) < Ty, (r) + Ty, (r) + O(1) for all large 7, in view of (14) and
(16), we obtain for a sequence of values of r tending to infinity that

1 [p—1] r (p Q)(h)
n

(05(711) * (f1) — 5)

_ [p—1] . (p.a )(f )

T exp[q 1] log Tn Pgo 1 +0(1
n { (=P (r1—e) )

T,

- oglP—1] P9 (1)

T expla—1] _loglP7Hry | Pgy 1

f1 |: (ngl),q)(fl)_g)
(p,a)

pg2 (f1), we can make the term C' sufficiently small by taking n sufficiently large.
Hence for any oo = 1+4¢1, we get from (21) and Theorem 4, for a sequence of values

T91i92 (Tn) < Tfl eXp[q_l] (1 + C) ) (21)

where C' = , and since p(p’q) (f1) <
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of r tending to infinity that

1 [p—1] . pgy " (f1)
Ty g, (ra) < Ty, [expl=t | | 20— (1+e1)
(Ugf @ (f1) — 5)
1 [p—1] . pgy  (F1)
i, Ty 4g, (rn) < Ty, exp[q_l] Og—r a,
(U_‘h (fl) )

Hence, making o — 1+, we obtain from above for a sequence of values of r
tending to infinity that

(0-!(111)7(1) (f1) — 5) [10g[q71] (Tn)j| P, (F1)

Since € > 0 is arbitrary, we find
ogrity, (1) 2 009 (1) - (22)

Now we may consider that g = g1 & go. Also p(p’q (fr) < pg’q) (f1) and at

<log" 1T L Ty (rn)

least f1 is of regular relative (p,q) growth with respect to go. Then O’ép D) (fr) =

Ufffﬂh (f1) > (p’q (f1). Further let g1 = (g £ g2). Therefore in view of The-

orem 4 and p (fl) < p((f; ) (f1), we obtain that p(p 9 (fr) < pg’; ) (f1) as at
least, f1 is of regular relative (p, q) growth with respect to go. Hence in view of

(22), o2V (f1) = o P (f1) = o P2 (f1). Therefore o (f1) = o (f1) =

91 :|:92
P8 (1) =P (f).
(p,q)

Similarly if we consider p(p’q) (f1) > pg, (fl) with at least f; is of regular

relative (p, q) growth with respect to g1, then ag’;ggz (fr) = Ugf’q) (f1).
Case IV. In this case suppose that p(p @) (fr) < pg @) (f1) with at least f; is of
regular relative (p, q) growth with respect to gs.

As Ty, 4g, (r) < Ty, (r) + Ty, (r) + O(1) for all large r, therefore from (14),
we get for all sufficiently large values of r that

ol ‘”(fl)

1og[p_” r

(‘7911)’(1) (f1) — )

1
_ [p—1] (p-,q)(f )
T;, |exple—t log r Pga 1 +0(1
f1 |: (?57’;’4)01)76) ( )

1
[p—1] (p-,q)(f )
T exp[Q*l] __loglP7Hr ) Pgy 1
f1 l: (?g’w(h)*s)
P;q

Pg. ” (f1), we can make the term D sufficiently small by taking r sufficiently large
and therefore using the similar techmque for as executed in the proof of Case II1

we get from (23) that agi?% (fi)= O'ql (fl) where p(p ) (fr) < pq2 (fl) and at
least f; is of regular relative (p,q) growth with respect to go.

Likewise if we consider p(p ) (fr) > pég )

T4y +g5 (T) <Ty, exp[qil] (1 + D) s (23)

where D =

and in view of p(p -9) (fr) <

(f1) with at least f; is of regular

relative (p, q) growth with respect to g1, then Ué’ffm (fr) = O'g]; 0 (f1)-
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Thus combining Case III and Case IV, we obtain the second part of the
theorem.

The third part of the theorem is a natural consequence of Theorem 5 and
the first part and second part of the theorem. Hence its proof is omitted.

Theorem 18. Let f1, fo be any two meromorphic functions and g, go be any

two entire functions. Also let AL? (£1), A% (£,), ALY (£,) and AL (£,) be all
non zero and finite where p and ¢ are positive integers.
(A) If A ) (fi) > Aé’i’” (f;) with at least f; is of regular relative (p,q) growth
with respect to gy fori =7 = 1,2; i # j, and g1 has the Property (A), then

PO (fi £ fo) = 7P (fi) | i=1,2 and TPV (fi £ fo) =7FD (f;) [ i=1,2.

(B) If /\éi.’"” (fr) < )\(gf’q (f1) for i = j = 1,2; i # j and g1 + go has the Property
(A), then

Ty, (F) =700 (F) i =12 and TR (f1) =700 (f1) i = 1,2

(C) Assume the functions f1, f2, 91 and g satisfy the following conditions:
(¢) pgf D (f) > pgf 9) (f;) with at least f; is of regular relative (p,q) growth with
respect to g1 for 4 —j = 1,2 and i # j;
(i7) p_f,’;"” (fi) > p;;’q (f;) with at least f; is of regular relative (p,q) growth with
respect to go for ¢ —j = 1,2 and i # j;
(7it) pfff -9) (fr) < qu (fl) and p(p -9) (f2) < pgfj ) (f2) hold simultaneously for ¢ =
j=1,2 and i # j;
(1) AL () = min [mae {339 (7). ALY ()} max (AZ2 () AE (£)}] |
l=m=1,2 and g, =+ g5 has the Property (A)
then we have

Toviys (£ f2) = 00 (f) | 1= m = 1,2
and

Tl (L £ J2) =780 (f) [1=m=1,2.

Proof. For any arbitrary positive number £(> 0), we have for all sufficiently
large values of r that

A(pq)(f)
75, (1) < T, [exp = { (749 () + ) [log[q—” ’ H (24)

Tnl) 2T {eXp[p_l] {(Tg(f’q) (fw) = a) [log[q*” o } (25)

logl? =11 T

o 09 |

and for a sequence of values of r tending to infinity we obtain

Agp’q)(fk)
75, (1) 2 Ty e { (70 (50 ) [l 1] e

ice., Ty (1) < Ty, |expli=

—~

26)

1
(p.q)
a-1] loglP 1y ) MmO

i.e., Ty (1) < Ty, |expl -—
(ng) @ (fr) = 5)
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and

APD(fr)
5, () < Ty [ex 0 (rfp0 () 4-2) [l 1] o
where Kk =1,2 and [ = 1, 2.

Case I. Let )\(gf’q) (f1) > )\(gf’q) (f2) with at least fy is of regular relative (p,q)
growth with respect to g;. Also let € (> 0) be arbitrary.

Since Ty, 14, (1) < Ty, (r) + Ty, (r) + O(1) for all large r, we get from (24)
and (29), for a sequence {r,} of values of r tending to infinity that

A(p,q)(f )
Tf+f, (Tn) < Ty, [exp[pl] {( Pi0) (f1) + 5) [IOg[q_l] Tn} " 1 }:| 1+£E).
(30)
T, [exp[p—u{( @) (f5) 1) [loglt =1 ]*g’{ “)<f2)H+O(1)

(p,a)  p
Ty, [CXP[P*I]{(Téf’Q)(f1)+5> [Iog[q—l] T,n]xgl (n)H

Aé’i’q) (f1) > AEJIZ’Q) (f2), we can make the term E sufficiently small by taking n
sufficiently large. Now with the help of Theorem 1 and using the similar technique
of Case I of Theorem 17, we get from (30) that

P (fu £ fo) <70 () (1)

Further, we may consider that f = f; £+ f5. Also suppose that )\ ( f1) >
)\g’Q) (f2) and at least f2 is of regular relative (p,q) growth with respect to gi.
Then Téf’Q) (f) = Tgl (f1 +fo) < Tg(f’q) (f1). Now let f1 = (f &+ f2). Therefore
in view of Theorem 1, )\511’ 9) (f1) > )\Ef;’q) (f2) and at least fy is of regular relative
(p, q) growth with respect to g;, we obtain that )\( P:2) (f) > )\gf’q) (f2) holds. Hence
in view of (31), Téf ) (fr) < Tg(p ) (f) = Téf ) (f1 £ f2) . Therefore Tg(f ) (f) =
T (f1) = 1D (1 £ f2) = 7Y (f).

Similarly, if we consider )\Ef; ) (fi) < )\Ef;’q) (f2) with at least fi is of regular
relative (p, ¢) growth with respect to g1 then one can easily verify that Téf ) (f1 £ f2)

= Téf & (f2)-

Case II. Let us consider that )\gf"q) (f1) > )\g’q) (f2) with at least f2 is of regular
relative (p, q) growth with respect to g1. Also let € (> 0) be arbitrary.

As Ty ay, (r) < Ty, (r) + Ty, (r) + O(1) for all large r, we obtain from (24)
for all sufficiently large values of r that

where E = and in view of

11§ (z0:0) a1y,
Troars () < Ty [ el { (700 (1) +€) o] ™ ) o

(p,q)
Ty, [exp“’*ll{(?(”*‘J)(fg)Jrs)[log["*l] T]’\gi (f2>} +0(1)

Tgy [exp[pfll{( & q)(f1)+e) [IOg[q—ll ]kpq)(fl }]

)\gfi’q) (fr) > )\(glf’q) (f2), we can make the term F sufficiently small by taking r
sufficiently large and therefore for similar reasoning of Case I we get from (32)
that 770 (£ £ f2) = 72D (1) when AL? (£1) > AP (£,) and at least fs is of
regular relative (p, q) growth with respect to g;.

where F = , and in view of
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Likewise, if we consider AZ? (1) < A%? (f,) with at least f; is of regular
relative (p, ¢) growth with respect to g; then one can easily verify that T(p’q) (f1 £ f2)

=70 (f2)
Thus combining Case I and Case II, we obtain the first part of the theorem.

Case III. Let us consider that A\L? (1) < AZ9 (f1). Since T, 1q, (r) < T}, (r) +
Ty, (r) + O(1) for all large r, we get from (26) for all sufficiently large values of r
that

_ (p q)
log[p 1] r (f1)

(Tg(?q) (f1) = 5)

1
_ [p—1] (p,q)(f )
T exp[q 1] _Jog T r ) Pg2 1 +0(1)
f1 |: (Tég’q>(f1>*5)
T
[p—1] 7_(p-,q)(f )
Ty, |expla—1] _logP7r ) 7Tgy 1
i [ (=S (51)-)

/\_g’;"” (f1), we can make the term G sufficiently small by taking r sufficiently large.
Therefore in view of Theorem 3 and using the similar technique of Case III of
Theorem 17, we get from (33) that

Tgligz (T) < Tfl exp[qill (1 + G) ) (33)

where G =

, and since )\ (fl)

7D (f1) =T (f1) (34)

g1=xg2

Further, we may consider that g = g1 & g2. As Af]’;’q) (fr) < AE}Q’” (f1), so
P9 () = g]ff;z (f1) > 779 (#1). Further let g1 = (g % go). Therefore in view of
Theorem 3 and AY"? (f1) < A%9 (f1) we obtain that AP (f1) < ALY () holds.

Hence in view of (34) Tg(f’q) (f1) > T(p’q) (f1) =720 (f). Therefore T(p’q) (f1) =

g1tg2
D (f1) = 7D (f1) = 7800 (f1)-

Likewise, if we conblder that A_Sﬁ"” (f1) > p ) (f1), then one can easily
verify that T(ff()h (fr1) = 7'92 (fl)

Case IV. In this case further we consider )\gf’q) (f1) < A_S}Z"’) (f1)-
As Ty 14, (r) < Ty, (r) + Ty, (r) + O(1) for all large 7, we obtain from (26)
and (28), for a sequence {r,} of values of r tending to infinity that

logP—1 N2 Q)(fl)
n

(Té’f * (f1) — 5)

_ p—1] . N2 )(f )
T exp[q 1] log Tn 1 +O(1
nn [ (v P (r)-¢) )
1
p—1] ,. /\(Pﬂl)(f )
T, |expla—1] _loglP7  ry ) Agy 1
f1 |: (?éﬁ'q)(.fl)—E)

(p 9 (f1), we can make the term H sufficiently small by taking n sufficiently
large and therefore using the similar technique for as executed in the proof of

Case IV of Theorem 17, we get from (35) that ngl)’i)m (fr) = ng’q) (f1) when
AT (F1) <MD (fr)-

Tyytgo (rn) < Ty, | explt™! (I+H), (35

where H = . Now in view of Ay (P.0) (f1) <
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Similarly, if we consider that /\Eff’q) (f1) > AEJZ’Q) (f1), then one can easily
verify that Té’iiéz (fr) = ng ) (f1)-

Thus combining Case III and Case IV, we obtain the second part of the
theorem.

The proof of the third part of the Theorem is omitted as it can be carried
out in view of Theorem 6 and the above cases.

In the next two theorems we reconsider the equalities in Theorem 1 to
Theorem 4 under somewhat different conditions.

Theorem 19. Let f;, f> be any two meromorphic functions and g, go be any

two entire functions. Also let p and ¢ be two positive integers.
(A) The following condition is assumed to be satisfied:
(i) Either o? (f1) # oD (f2) or 7V (£1) # 789 (f2) holds and g; has the
Property (A), then

Pé’f’Q) (fiEfo) = ngf’Q) (fr) = Pé’fm (f2) -
(B) The following conditions are assumed to be satisfied:

(i) Bither of? (f1) # 0¥ (f1) or 5H? (f1) # 7% (f1) holds and gy & go has
the Property (A);

(#i) f1 is of regular relative (p,q) growth with respect to at least any one of g; or
g2, then

Pt (1) = o (1) = P2 (£1)
Proof. Let f1, f2, g1 and g2 be any four entire functions satisfying the condi-
tions of the theorem.

Case I Suppose that p2? (f1) = p2D (f2) (0 < pZD (1), pEV (f2) < oo) Now
in view of Theorem 2 it is easy to see that p(p’q (fitfa) < p(p’Q) (f1) = pg’f’q (f2) -

If possible let
PV (f1 £ f2) < plP? (f1) = pPV (f2) (36)

Let ag’f ) (f1) # o4 p ) (f2). Then 1n view of the first part of Theorem 17
and (36) we obtain that U(p 9 (fr) = Ugl (f1 tfoF fa) = o_((ffq (f2) which is a

contradiction. Hence p (f1 + fo) = pg1 (fl) = pgf ) (f2) . Similarly with the
help of the first part of Theorem 17, one can obtain the same conclusion under the

hypothesis a(p @ (fr) # Eé’f ) (f2) . This proves the first part of the theorem.

Case II. Let us consider that p(p ) (fr) = pé’;q (f1) (0 < p(p ) (f1), pé’; ) (f1)
< ), f1is of regular relative (p, q) growth with respect to at least any one of g; or
g2 and (g1 + g2) and g; & g satisfy the Property (A). Therefore in view of Theorem

4, it follows that pg’i)gz (f1) > pé’f"” (fr)= pg’q) (f1) and if possible let

Pty (1) > P2 (1) = o (1) BT

Let us consider that o (f1) # 0¥ (f1). Then. in view of the proof of
the second part of Theorem 17 and (37) we obtam that o9 (1) = o7 (f1) =

91192F92
J_S,Z ) (f1) which is a contradiction. Hence p;fi)gz (fr) = pé’l’ ) (fr) = pé’z’ ) (fr) -
Also in view of the proof of second part of Theorem 17 one can derive the same

conclusion for the condition &% (1) # &% (f1) and therefore the second part

of the theorem is established.
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Theorem 20. Let fi, fo be any two meromorphic functions and g1, g2 be any
two entire functions. Also let p and ¢ be any two positive integers.
(A) The following conditions are assumed to be satisfied:
(7) (f1 = f2) is of regular relative (p,q) growth with respect to at least any one of
g1 or g2, and g1, 92 , g1 = g2 have the Property (A);

(i7) Either o' (f1 % fo) # o“”‘” (fi £ f2) or 520 (fi £ fo) #587 (f1 £ fo);
(iii) Either o (f1) # a 29D (f2) or a8 (f1) #8Y (f2);
(iv) Either 027 (f1) # 0% (f2) or 78 (f1) # 7% (f2); then

Py (F1 2 f2) = o0 (12) = o (F2) = o2 (F1) = 5 (£2) -

(B) The following conditions are assumed to be satisfied:
(i) f1 and fy are of regular relative (p,q) growth with respect to at least any one
of g1 or go, and g1 £ go has the Property (A);

(id) Bither 078}, (f1) # o0, (f2) or 3Ly, (F1) #5L, (f2);
(i) Either o7 (f1) # 0b ™ (f1) or 7n ™ (f1) #5™ (f1);
(iv) Either o"? (f2) # o9 () or 787 (f2) # 7% (f,); then

Polys (11 f2) = o0 (F1) = o2 (F2) = o (F1) = 2 (f2) -

We omit the proof of Theorem 20 as it is a natural consequence of Theorem
19.

Theorem 21. Let f;, fobe ant two meromorphic functions and gi,g2 be any

two entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of fi or fy is of regular relative (p,q) growth with respect to
g1 where p and ¢ are positive integers;

(#i) Either ngf’q) (fr) # ngf’q) (f2) or Tgl (fl) # F_Efl’ ) (f2) holds and ¢; has the
Property (A), then

Dk f2) = AR (F) = AR (F2)
(B) The following conditions are assumed to be satisfied:

(1) f1, g1 and go be any three entire functions such that Ag p’q (f1) and /\g;”q) (f1)
exists where p and ¢ are positive integers;

(i4) Either 737% (1) # 76 (1) or 77" (£1) # 75 (f1) holds and gy = go has
the Property (A), then

AL (1) = M (F) = A (1) -
Proof. Let f1, f2, g1 and g2 be any four entire functions satisfying the condi-
tions of the theorem.
Case I. Let )\gf’Q) (fr) = )\gf’Q) (f2) (0< )\gf’q) (f1) ,/\gf’f” (f2) < 00) and at least f;
or fy and (f1 & f2) are of regular relative (p, ) growth with respect to g;. Now, in

view of Theorem 1, it is easy to see that AP (f1 £ f2) < APD (1) = AP9 (1)
If possible let

APD(fr £ fa) < ALD (f1) = M09 (f2) - (38)

Let Tg(]f’q) (fr) # Tg(f ) (f2). Then in view of the proof of the first part of
Theorem 18 and (38) we obtain that T(p 9 (fr)= Tg(f ) (it faTF fa) = Tg(f ) (f2)
which is a contradiction. Hence /\gff D (fy £ fo) = )\g D (fy) = )\g’q) (f2) . Similarly
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in view of the proof of the first part of Theorem 18 , one can establish the same

conclusion under the hypothesis T(p e (fr) # F_((fl)’q) (f2) . This proves the first part
of the theorem.

Case II. Let us consider that )\_Eff’q) (fr) = )\g’q) (f1) (0< Ag’f’q) (f1) ,AE,Z”) (fi) <
00. Therefore in view of Theorem 3, it follows that )\{(ﬁ’i)g,z (f1) > Ag’;’Q) (fr) =
)\g’Q) (f1) and if possible let

APD (1) > AP (£1) = AP () (39)

g1£g2

Suppose Téf ) (fr) # Téf ) ( f1) - Then in view of the second part of Theorem

18 and (39), we obtain that Té (fr) = g(f)ﬂggﬁgz (fr) = Tgf ) (f1) which is a

contradiction. Hence )\qf’iqz (f1) = )\gf’q (fr) = /\g’q) (f1) - Analogously with the
help of the second part of Theorem 18, the same conclusion can also be derived
under the condition T(g” ) (fr) # T(p 9 (f1) and therefore the second part of the
theorem is established.

Theorem 22. Let f;, f> be any two meromorphic functions and g;, go be any
two entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of fi or fy is of regular relative (p,q) growth with respect to
g1 and g2 where p and ¢ are positive integers, and g1, g2, g1 = g2 have satisfy the
Property (A);
(i) Bither 747" (f1 + fo) # 7587 (f1 £ fo) or Té’?‘” (hi £ f2) 2707 (i £ s
(iid) Bither 77 (f1) # g0V (f2) or 7oV (f1) £ 7 r "D (f2);
(i) Bither 2% () # 709 (72) or 757 () £ 759 (72): then

NIy, (Fuk fa) = M0 (£1) = ME (F2) = ABD (F1) = AR (£2) -

(B) The following conditions are assumed to be satisfied:

(i) At least any one of f; or fy are of regular relative (p,q) growth with respect
to g1 + g2 where p and ¢ are any two positive integers, and g; + go has satisfy the
Property (A);

(id) Bither g%, (f1) # 740, (f2) or 708, (f1) # r;i’ng (f2) holds;

(#4i) Either T_(S;f’q (f1) # T(p ) (f1) or Té’l’ ) (fr) 7 ng (fl) holds;

(i) Bither 70 (f2) # 709 (12) or 709 () £ 747 (72) holds, then

Aty (F£ J2) = AP0 (f1) = PP (f2) = ARD (F1) = ALY (f2) -

We omit the proof of Theorem 22 as it is a natural consequence of Theorem
21.

Theorem 23. Let f1, fo be any two meromorphic functions and g, go be any
two entire functions. Also let p(p ) (f1), pé’f ) (f2), pgg ) (f1) and p(p ) (f2) are all
non zero and finite where p and ¢ are positive integers.

(A) Assume the functions f1, fo and g; satisfy the following conditions:
(i) pi™ (1) > pi™ (fy) for i = j = 1,2 and i # j;
(#i) g1 satisfies the Property (A), then

oD (fi- fo) = oD (fi) |i=1,2and TP (fi- fo) =0V (fi) | i=1,2 .
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Similarly,

ot (2) o0 (1) 1= 1.2am0 g0 (£) =apo gy 1= 1.2

holds provided (i) 4 = Is meromorphic, (i7) pé’;’q) (fi) > pgf -2) (fj)li=1,2,=1,2;
i # j and (iit) g1 satisfy the Property (A).

(B) Assume the functions g1, g2 and f; satisfy the following conditions:

(7) péf’q) (f1) < pgf; -9) (f1) with at least f; is of regular relative (p,q) growth with
respect to g; for i = j = 1,2 and 7 # j, and g; satisfy the Property (A);

(#i) g1 - go satisfy the Property (A), then

oty (f1) = oD (f1) [i =12 and G5, (f1) =780 (f) [i=1,2.
Similarly,
oD (f1) = oD (f1)[i=1,2and 707 (f) =507 (fi) |i=1,2
g2 92
hold provided (i) £ is entire and satisfy the Property (A), (ii) At least f1is of

regular relative (p,q) growth with respect to go, (#i¢) péi P0) (f1) < ng f1) | i =

1,2; 7 =1,2; 1 # j and (iv) g1 satisfy the Property (A).

(C) Assume the functions f1, f2, g1 and go satisfy the following conditions:

(1) g1 - g2 satisfy the Property (A);

(44) pgf ) (fr) < pgj ) (f1) with at least f; is of regular relative (p,q) growth with
respect to g; for ¢ = 1,2, 5 = 1,2 and i # j;

(v31) pgfj’Q) (f2) < péf"” (f2) with at least fo is of regular relative (p,q) growth with
respect to g; for ¢ = 1,2, 5 = 1,2 and i # j;

(iv) pZD (f;) > pP (f;) and pLV () > p&? (f;) hold simultaneously for i =
1,2; j=1,2 and i # j;

(v) péi:q) () = max [min {p? (£1), o (£1) fomin {p B0 (12), 087 (£2)}]
l=m =1,2; then

oD (fr- f2) = oD (f)) | 1=m=1,2 and
P (fr- fo) =D (f) [l=m=1,2.

Similarly,
O'E;i’q) (fl> gl;;q (fl) | l=m=1,2 and
o \J2
,q) fi _ B
A ()=o) | 1=m = 1.2

holds provided f—; is meromorphic function and 5% is entire function which satisfy
the following conditions:
(1) 9—; satisfy the Property (A);

(iz) At least f; is of regular relative (p, ¢) growth with respect to g2 and p(p ) (fr) #

P (f1);
(zm) At least fs is of regular relative (p, ¢) growth with respect to g and p(p ) (f2) #

(p,q)
Pg2 (f2)
(1v) pé’f ) (fi) < pé’f -9) (f;) and p(p ) (fi) < pé’;q (f;) holds simultaneously for
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1=1,2;7=1,2 and i # j;
(v) 7 (fi) = max min {pé’i"” (A5 () omin Lo (12), 082 (£2)}] |
l=m=12.

Proof. Let us consider that p (fl) pg1 (fg) pg’;" (f1) and p(p ) (f2) are

all non zero and finite.

Case 1. Suppose that p(p’q) (f1) > pé’f‘” (f2). Also let g; satisfy the Property
(A). Since Ty,.5, (r) < Ty, (1) + T}, (r) for all large r, therefore applying the same
procedure as adopted in Case I of Theorem 17 we get that

o (f1- f2) S0PV (f1) - (40)

Further without loss of any generality, let f = f; - fo and p(p ) (f2) <
p(f ) (fr)= pé’f’Q) (f) . Then in view of (40) , we obtain that J(p 9 (f)= O’éllj ) (f1+ f2)
< gép D (f1). Also f1 = f—fQ and Ty, (r) = Tﬁ( r) + O(1). Therefore Ty, (r) <

Ty (r) + Ty, (r) + O(1) and in this case also we obtain from (40) that ag(fl”Q) (f1)
< ol (f) = o7 (fi- f2). Hence of” () = ol (f1) = ol (f1- fo) =
(p,q)

Og; (fl)

Similarly, 1f we consider p(p’q) (fr) < pé’i"” (f2), then one can verify that
o (fr- f2) = o2V (f2).

Next we may suppose that f = % with f1, fo and f are all meromorphic
functions.

Sub Case In. Let p(p’q) (f2) < (p’q) (f1). Therefore in view of Theorem 9,

") (J2) < P (1) = ") (). We have = 1 Jo. So. o™ (f1) = o3 (1)
Dsq

Nz o
Sub Case Ig. Let p(p ) (f2) > p(’f ) (f1). Therefore in view of Theorem 9,
P (1) < o (f2) = ™ (f). Since Ty (1) = Ty (r) + O(1) = Tz () + O(1),

So o (4) = ol (£2).

Case IL Let pP? (f1) > p2? (f5). Also let gy satisfy the Property (A). As
Ty,.g, (r) < Ty, (r) + Ty, (r) for all large r, therefore applying the same procedure

as explored in Case II of Theorem 17, one can easily verify that cr(p 9) (fi-f2) =
g’f ) (f1) and aé’; ) (%) = *gf ) (fi) | 4 =1,2 under the conditions specified in
the theorem.
Similarly, 1f We consider p(p’q) (fr) < pgfi’q) (f2), then one can verify that
T8 (fu- £2) = TRV (f2) and 70 (4) = 70D ().
Therefore the first part of theorem follows from Case I and Case II.

Case III. Let g; - go satisfy the Property (A) and p(p’q) (fr) < pﬁ,’;’“ (f1) with at
least fi is of regular relative (p,q) growth with respect to go. Since Ty, .4, (r) <
Ty, (r) + Ty, (r) for all large r, therefore applying the same procedure as adopted
in Case III of Theorem 17 we get that

oD (f1) > oD (f)) (41)



58 T. BISWAS EJMAA-2019/7(1)

Further without loss of generality, let g = g1-g2 and p(p ) (fr) = pgff -4) (fr) <
P2 (f1) . Then in view of (41) , we obtain that o{"? (f,) = o'P'9 (f1) > P9 ().
Also g1 = g and Ty, (r) =T (r)+0(1 Therefore Ty, (r) < Ty (r)+T,, (r)+0(1
92 g1 g2
and in thls case we obtain from (41) that (rg’f ) (fr) > Uép’q) (fr) = O'g]: gl (f1)-

Hence o™ (f1) = ot (f1) = ofi) (F1) = o0t (f1).
Similarly, if we consider pél 9 (fr) > pé’; ') (f1) with at least f; is of regular
relative (p,q) growth with respect to gi, then one can verify that Jé{’?gl (fr) =
(p,9)
Og2 (fl )
Next we may suppose that g = g—;, g1, g2, g are all entire functions satisfying
the conditions specified in the theorem.

Sub Case ITIp. Let p(p ) (fr) < pé’; ') (f1). Therefore in view of Theorem 12,
o (7)) = ot () < 0™ (). We have g = g-ga. S0 037" (1) = 0" (1)
= 001 (fl)

g2
Sub Case IIIg. Let p(p’q) (fl) > pg’;"” (f1). Therefore in view of Theorem 12,
Pt (f1) = o (1) < PR (). Since T, (r) = T (r) + O(1) = Tz (r) + O(1),
So 0l (f1) = o (1),

412

Case IV. Suppose g; - go satisfy the Property (A). Also let pgf’q) (fr) < pé’; ) (f1)
with at least fi is of regular relative (p, ¢) growth with respect to ga. As Tg,.q, (1) <
Ty, (r)+T,, (r) for all large r, the same procedure as explored in Case IV of Theorem

17, one can easily verify that 05,11’ _?,)2 (fi) = ogl 9 (f1) and 0' (fl) = af}j’ ) (f1) |

i = 1,2 under the conditions Spemﬁed in the theorem.

Likewise, if we consider pg) (p.q) (f1) > pgl;q) (f1) with at least fi is of regular
relative (p,q) growth with respect to g1, then one can verify that O'élf’gl (fr) =
E_Sf;’@ (f1) and 7y, p’q (fr) = agg’q (f1). Therefore the second part of theorem follows
from Case II1 and Case IV.

Proof of the third part of the theorem is omitted as it can be carried out in
view of Theorem 13 and Theorem 15 and the above cases.

Theorem 24. Let f, fo be any two meromorphlc functlons and gl, go be any

two entire functions. Also let )\(gf’Q) (f11)s )\_Eff’q) (f2), A p’q (f1) and Ag (p.a) (f2) be all
non zero and finite where p and ¢ are all positive 1ntegerb
(A) Assume the functions fi, fo and g¢; satisfy the following conditions:

(7) )\g"n (fi) > )\gff’Q) (f;) with at least f; is of regular relative (p,q) growth with
respect to g1 for i = j = 1,2 and i # j;
(i1) g1 satisfy the Property (A), then

TV (f-fo) = PP (fi) li= 1,2 and 7D (f1- fo) =7V (fi) |i=1,2.
Similarly,

i (jﬁ) 0 (F) = 12 and 70 (2] 700 (g i =12

holds provided % is meromorphic, at least fo is of regular relative (p,q) growth

with respect to g1 where g7 satisfy the Property (A) and )\gm (fi) > )\Efi’q) (f5) |4
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=1,27=12%1i#].

ssume the functions g1, g2 and f; satisfy the following conditions:
B) A he f i df isfy the followi diti
) 1) < Ag,’ 1) fort =7 =1,2,1+# j; and g; satisty the Property
) ALD (1) < APD(fy) fori = j = 1,2, i # j; and isfy the P A
(ii) g1 - g2 satisfy the Property (A), then

mras (f1) =700 (A1) [i= 1,2 and TG, () =700 () | i=1,2.
Similarly,

0D (f1) = 730 (A1) [i = 1,2 and 75V (F1) =78 (f1) i = 1,2

g2 g2

holds provided Z—; is entire and satisfy the Property (A), g; satisfy the Property
(A) and AZ? (£1) <MD (f1) |i= 1,255 = 1,20 # j.
(C) Assume the functions fi, f2, g1 and g satisfy the following conditions:
(1) g1 - g2, g1 and g are satisfy the Property (A);
(44) )\(gf’q) (fi) > )\g’i’Q) (f;) with at least f; is of regular relative (p,q) growth with
respect to g1 fori = 1,2, j = 1,2 and i # j;
0 Agi"” (fi) > A_S}Z"’) (f;) with at least f; is of regular relative (p,q) growth with
respect to go for i = 1,2, j = 1,2 and i # j;
(1v) )\(gf’Q) (fr) < Aé’;’Q) (f1) and )\gff’Q) (f2) < )\gj’q) (f2) hold simultaneously for
1=1,2;7=1,2 and i # j;
(0) M2 (£1) = min [max {07 (£1) AL (f2) }omax (AL (£) AED (£2)}] |
l=m=1,2; then

Tg(?gg (fr-f2) = Téi’q) (f)|[ll=m=1,2 and

7D (f1- f2) =7 (f)l[l=m=12.
Similarly,

i (?) =77 (fi) [1=m =12 and

92

7pa) (fl> =72 (f) [l=m=1,2.
g2 f2

holds provided % is meromorphic and g—; is entire functions which satisfy the fol-
lowing conditions:

(2) g—;, g1 and gs satisfy the Property (A);

(i1) At least fs is of regular relative (p, q) growth with respect to g and A2 (f,) #
A (f2);

g1 2)
(1) At least fs is of regular relative (p, ¢) growth with respect to go and )\g;;,q) (f1) #
AR (f2);

g2 2)s
(iv) APD (1) < AP (f1) and AL () < AP9 () hold simultaneously for
1=1,2;7=1,2 and i # j;
(v) MR (£1) = min [max {0 (£1) AL (f2) } omax (AL (£1) M (£2)}] |
l=m=1,2.

Proof. Let us consider that A_E,’j"“ (f1), )\_Eff’q) (f2), )\E(,Z’q) (f1) and /\g;’Q) (f2) are
all non zero and finite.
Case I. Suppose \P? (f1) > APD (£,) with at least fo is of regular relative
pPp o (f o (f: [ g

(p, q) growth with respect to g1 and g satisfy the Property (A). Since Ty, .5, (r) <
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Ty, (r) + T}, (r) for all large r, therefore applying the same procedure as adopted
in Case I of Theorem 18 we get that

p’q (f1-f2) < T(p7q) (f1) - (42

Further without loss of generality, let f = f1 - fo and )\g”) (f2) < Aé’f”) (f1
= )\(p 7 (f). Then in View of (42), we obtain that T(p ) (f) = Téf ) (f1-f2)
Tg(fQ)(f) Also f1 = ande2() TL()*FO( ). Therefore T, (r) < Ty (r)

~— ~—

+ IA

Ty, (r)+O(1) and in thls case we obtain from the above arguments that T(p ) (fr
< gl (f) = 7l (fi- f2) . Hence 7l () = wP” (£1) = w0 (fi- f2)
(p:9)
Tg1 (fl)
Similarly, if we consider Ag p’q (f1) < Ag p’q (f2) with at least f7 is of regular

relative (p, ) growth with respect to g1, then one can easily verify that Téf ) (f1-f2)

= 70D (fa).
Next we may suppose that f = % with f1, fo and f are all meromorphic
functions satisfying the conditions specified in the theorem.

~—

Sub Case In. Let )y pQ) (f2) < A é’fq (f1). Therefore in view of Theorem 8,
D (F2) < ARD (F1) = AR (f). We have f1 = f - fo. So 7l (f1) = 750 (f)

=17 (%),
Sub Case IB Let )\Eff’q) (f2) > )\_Eff’q) (f1). Therefore in view of Theorem 8,
W) (F1) <AL (f2) = A5 (F)- Since Ty (r) = Ty (r) + O(1) = Tz (1) +O(1),

So 7t (41) = 72 (f2).

Case II. Let /\(glf’q) (f1) > )\gfi’q) (f2) with at least fo is of regular relative (p,q)
growth with respect to g1 where g1 satisfy the Property (A). As Ty, .4, (1) < T, (r)+
Ty, (r) for all large r, so applying the same procedure as adopted in Case II of

Theorem 18 we can easily verify that T(p’q) (fr-f2) = Té’i’q) (f1) and T(p’q) (fr) =

?é’;’q) (f1) | ¢ = 1,2 under the conditions specified in the theorem.

Similarly, if we consider )\(p 7 (fr) < )\((}i’q) (f2) with at least f7 is of regular
relative (p, ¢) growth with respect to g1, then one can easily verify that T(p 9 (frf2)
_ =)

=Tq (fQ) .

Therefore the first part of theorem follows Case I and Case II.

Case III. Let AE}}‘” (fi) < (p’q (fl) and g; - g2 satisfy the Property (A).Since

Ty.go (1) < Ty, () + Ty, (1) for all large r, therefore applying the same procedure
as adopted in Case IIT of Theorem 18 we get that

T8 (f) < PO (1) (43)

Further without loss of generality, let g = g;-g2 and )\(p -4) (f1) = )\(p ) (fr) <
2D (4. Then in view of (43) , we obtain that 737 (f1) = Téf"é (f1) > Tgp’Q) (f1).
Also g1 =L and Ty, (r) = To (r)+0(1). ThereforeT L(r) < Ty (r)+Ty, (r)+0(1)

and in thlS case we obtain from above arguments that Téf ) ( 1) > Tgp ) (fr) =

78 (f1). Hence 7iP? (f1) = 1P (f1) = 7080 (1) = 750 ? (f1).
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If APD (7)) > AP? (f,), then one can easily verify that "2 (f) =

( g1-92
ng)’q (f1)-
Next we may suppose that g = ;% with g1, g2, g are all entire functions
satisfying the conditions specified in the theorem.

Sub Case III5. Let )\gf’q) (fr) < )\g’q) (f1). Therefore in view of Theorem 10,
AP (1) = AR (f1) < AR (h). We have g1 = g-ga. So 75" (f1) = 74" (f1)
= Tfff D(f)-

Sub Case IIIB Let )\ (fl) é’;’q) (f1). Therefore in view of Theorem 10,
APD (1) = XEP (1) < M (f). Since T, (r) =T, (r)+0(1) = Tz (r) + O(1),
So i (fl) = Téf*q) (f1).

92
Case IV. Suppose Ay p’q (fi) < )\Eg’q) (f1) and g - g2 satisfy the Property (A). Since
Tyr.go (1) < Ty (1) + T , (r) for all large 7, then adopting the same procedure as
of Case IV of Theorem 18, we obtain that ?(gf’._?,)z (fr) = ngf ) (f1) and T(p 9 (fr) =

(p7q (fl) li=1,2.

Similarly if we consider that )\gl)’q) (fr) > )\g,q) (f1), then one can easily
verify that Té’l’ ?])2 (f1) = Tég %) (f1)-

Therefore the second part of the theorem follows from Case III and Case
Iv.

Proof of the third part of the Theorem is omitted as it can be carried out
in view of Theorem 14 , Theorem 16 and the above cases.

Theorem 25. Let fi, fo be any two meromorphic functions and g1, g2 be any

two entire functions. Also let p and ¢ be any two positive integers.
(A) The following condition is assumed to be satisfied:

(i) Either o (1) # o (f2) or 55 (f1) # T8 (f2) holds;
(1) g1 satisfies the Property (A), then
PP (f1 - fa) = pPD (f1) = pPD (f2) .

(B) The following conditions are assumed to be satisfied:

(¢) Either Ué’f’q) (fr) # U(p’q) (f1) or a(gf’q (fr) # U(p’q (f1) holds;
(#i) f1 is of regular relative (p,q) growth with respect to at least any one of g; or
ga. Also g - g2 satisty the Property (A). Then we have

p&D (1) = pPD (f1) = p2D (f1) .

Proof. Let fi, fo be any two meromorphic functions and ¢;, go be any two
entire functions satisfying the conditions of the theorem.

Case I. Suppose that p(p ) (fr) = pg ) (f2) (0 < p(p ) (f1), pg ) (f2) < o0) and
91 satlsfy the Property (A). Now in view of Theorem 9, it is easy to see that

Pg1 (fl f2) < /) (f1) = ,Og1 (fz) If possible let
PO (fr - f2) < oLV (f1) = pPD (f2) - (44)

Let o7 (1) # o7 (f,) . Now in view of the first part of Theorem 23 and
(44) we obtain that aé’l’ ) (fl) = agf’q) (%) = af,’j’q) (f2) which is a contradiction.
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Hence p2? (f1 - f2) = p&? (f1) = p? (f,) . Similarly with the help of the first
part of Theorem 23, one can obtain the same conclusion under the hypothesis
ngi’q) (fr) # 5_5}5“1) (f2). This prove the first part of the theorem.

Case II. Let us consider that pg) (p.q) (f1) = ng’q (f1) (0 < pg, (p.a) (f1), pgg’q (f1) <
00), f1 is of regular relative (p,q) growth with respect to at least any one of g; or
ga2. Also g - g2 satisfy the Property (A). Therefore in view of Theorem 11, it follows

that pg’.z)z (fr) > p(p ) (fr)= pg ) (f1) and if possible let
PR (1) > o (F) = 2 (f1) - (45)

Further suppose that a(p e (fr) # a(p ) (f1) - Therefore in view of the proof
of the second part of Theorem 23 and (45), we obtain that a(p ) (fr) = O'ql q2 (f1)

= 052 (f1) which is a contradiction. Hence pfh g)2 (fr) = pgf ) (fr) = pfh i (f1) -

Likewise in view of the proof of second part of Theorem 23, one can obtain the
same conclusion under the hypothesis 7% (f1) # &% (f1). This proves the
second part of the theorem.

Theorem 26. Let f, fo be any two meromorphic functions and g1, g2 be any
two entire functions. Also let p and ¢ be any two positive integers.
(A) The following conditions are assumed to be satisfied:
(7) (f1- f2) is of regular relative (p,q) growth with respect to at least any one gy
or ga;
(i) (g1 - g2), g1 and go all satisfy the Property (A);

(i4i) Either o-éﬁ”‘” <f1-f2>¢o§€*q> (fr- f2) ot 58D (1 fo) 258D (f1- fa);
(iv) Either a2 (f1) # asv'” (f2) or aé” D (1) # a“’ D (f2);
(0) Bither o2 (1) # 08 (1) or 787 () # 757 (f2): then

PP (fi- fo) = plPD) (f1) = plPD) (fo) = pD (f1) = pPD (fs) .
(B) The following conditions are assumed to be satisfied:
(1) (g1 - g2) satisfy the Property (A);
(ii) f1 and fo are of regular relative (p,q) growth with respect to at least any one
g1 Or g2;
(i) Either oy, (f1) # 031, (f2) or 94 (F1) # 7615 (fa):
(iv) Bither o0 (1) # a2 () or 231 (1) # 23 (1)
(v) Bither o0*? (f2) # o' ? (f2) or 587 (f2) # 7L (f2); then

2 (1) = o 1) = ) = g ) = AL 7

We omit the proof of Theorem 26 as it is a natural consequence of Theorem

25.

Theorem 27. Let f1, fo be any two meromorphic functions and g1, go be any
two entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of f; or fy are of regular relative (p, q) growth with respect to
g1 where p and ¢ are any two positive integers;
(i) Bither 7"V (f1) # 707 (f2) or 7 (f1) # 7™ (f2) holds.
(#i1) g1 satisfy the Property (A), then

Aé’i"” (fi-f2) = )\_Eff’q) (f1)= )\_Eff’Q) (f2) -
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(B) The following conditions are assumed to be satisfied:
(i) f1 be any meromorphic function and g1, g2 be any two entire functions such

that /\!(]1;»(1) (f1) and )\g,q) (f1) exist where p and ¢ are any two positive integers and
g1 - g2 satisfy the Property (A);

(i4) Either Tg(f’q) (fr) # Téf’q) (f1) or Tgl (fl) =+ ng ) (f1) holds, then
NG, (1) = A0 (1) = AR () -

Proof. Let f1, fo be any two meromorphic functions and ¢;, go be any two
entire functions satisfy the conditions of the theorem.

Case I. Let )\g,q) (fr) = (p 9 (f2) (0< )\g ) (f1),A (p 9 (f2) < 0), g1 satisfy the
Property (A) and at least f1 or fs is of regular relatlve (p, q) growth with respect

to g1. Now in view of Theorem 7 it is easy to see that )\gf”) (fi- f2) < /\qu) (f1)
= )\_Szf’q) (f2) . If possible let

/\(p,q) (f1- f2) < /\ngyq) (f1) = ,\211’7‘1) (f2) - (46)

Also let Tg ( f1) # Téf ) (f2) . Then in view of the proof of first part of
Theorem 24 and (46) , we obtain that 7.7 (f1) = 729 <%) = r{"? (f,) which

is a contradiction. Hence )\ (f1 f2) = )\g’q) (fr) = )\é’;’q) (f2) . Analogously, in
view of the proof of first part of Theorem 24, one can derive the same conclusion
under the hypothesis ?g ) (f1) # f{(ff ) (f2). Hence the first part of the theorem is
established.

Case II. Let us consider that )\glf ) (fL) = )\(p 9 (f1) (0< /\(p’q) (f1), /\(p’q) (fi) <
oo and ¢ - g2 satisfy the Property ( ). Therefore in view of Theorem 10, it follows

that APD (f1) > A2 () = AP (1) and if possible let
ALD, (f1) > APD (f1) = 2D (f1) (47)

Further let Téf’ ) (fr) # Tq P:a) (f1) . Then in view of second part of Theorem
24 and (47), we obtain that T(p ) (fi)= 75’1’ 33 (fr)= Téf ) (f1) which is a contra-

diction. Hence (P9 1) =Ag p 9 1 /\(p’q) 1) - Similarly by the second part of
91:92
Theorem 24, we get the same conclusmn when T(p 0 (fr) # ?_,(,Z’q) (f1) and therefore
the second part of the theorem follows.
Theorem 28. Let f1, fo be any two meromorphic functions and g1, go be any
two entire functions.
(A) The following conditions are assumed to be satisfied:
(1) g1 - g2, g1 and go satisfy the Property (A);
(i1) At least any one of f1 or fy are of regular relative (p, q) growth with respect to
g1 and go where p and ¢ are positive integers;
(iid) Bither 7" (f1 - f2) # 70D (fr - f2) or TV (fr - f2) ATV (F1 - fo)s
(iv) Either 750" (f1) # 750" (f2) ox 7579 (£1) # 7607 (fo);
(v) Bither 7" (1) # 752" (f2) or 75 (f1) # 7™ (f2); then

AED, (f1- f2) = Aé’f’q) (f1) = APD (f2) = APD (f1) = AL (f2) -
(B) The following conditions are assumed to be satisfied:
(1) g1 - g2 satisfy the Property (A);
(7i) At least any one of fi or f2 are of regular relative (p, ¢) growth with respect to
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g1 - g2 where p and q are positive integers

(iii) Bither ") (f1) # ') (f2) or 7o) (f1) # ;: %) (f2) holds;
(iv) Bither 73? (f1) # 77 (1) or Té’; D (f1) # 7Y (f1) holds;

(v) Either T(p 2 (f2) # T_éf*q) (f2) or Tq (fg) # T(p ) (f2) holds, then

A (Fu- f2) = A0 (£2) = A0 (f2) = ARD (£1) = A (f2) -
We omit the proof of Theorem 28 as it is a natural consequence of Theorem 27.

Remark 2. If we take % instead of f; - fo and Z—; instead of g7 - go where %

is meromorphic and % is entire function, and the other conditions of Theorem 25,
Theorem 26, Theorem 27 and Theorem 28 remain the same, then conclusion of
Theorem 25, Theorem 26, Theorem 27 and Theorem 28 remains valid.
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