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VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS

HARINA P. WAGHAMORE AND RAJESHWARI S.

ABSTRACT. In this paper, we study the uniqueness of entire functions sharing
a nonzero value and obtain some results improving the results obtained by
Harina P. Waghamore and Tanuja A[[5]].

1. INTRODUCTION

In the present paper, meromorphic functions are always regarded as meromorphic
in the entire complex plane. We use the standard notation of the Nevanlinna value-
distribution theory, such as T(r, f), N(r, f), N(r, f),m(r, f) etc., as explained in
Hayman [[6]], Yang [[8]], and Yi and Yang [[9]]. We denote by S(r, f) any function
such that S(r, f) = o(T(r, f)) as r — oo, possibly outside a set r of finite linear
measure.

Let a be a finite complex number and let k& be a positive integer. By Ey(a, f),
we denote the set of zeros of f —a with multiplicities at most k, where each zero is
counted according to its multiplicity. Also let Ek) (a, f) be the set of zeros of f —a

whose multiplicities are not greater than k and each zero is counted only once. In
addition, by N <r, ﬁ) (OT‘N(k (r, ﬁ)) , we denote the counting function with
respect to the set Ey(a, f)(orEy)(a, f)).

We set
1 — 1 — 1 — 1
Ny <T7f—a,) _N<T7f—a> —|—N(2 (T’, f—a) —|——|—]\7(;~C <7‘,f_a)
and define
N (r+%)
=1-1 —_—
Ole. /) =1 ~limsup =707
and
B 1—1i M (rf%)
a, f)=1-limsup ————%,
Ha ) =1 B T gy

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share the value a CM(counting multiplicities)
if f and g have the same a-points with the same multiplicities. We also say that
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f and g share the value a IM(ignoring multiplicities) if we do not consider the
multiplicities. We denote by N, (r, f—ia) the counting function for a-points of both

f and g at which f has larger multiplicity than g (in the case where the multiplicities
are not counted). Similarly, we have the notation N (r, gfla) Further, by No(r, %),
we denote the counting function of those zeros of F’ that are not zeros of F(F —1).
Recently, R. S. Dyavanal [[2]] proved the following theorems.
Theorem A([[2]]). Let f and g be two non-constant meromorphic functions,
whose zeros and poles are of multiplicities atleast s, where s is a positive integer.
Let n > 2 be an integer satisfying (n 4+ 1)s > 12. If f"f’ and g"¢’ share the value
1 CM, then either f = dg, for some (n + 1)-th root of unity d or g(z) = ¢1e* and
f(2) = coe™* where c1, c2 and ¢ are constants satisfying (c1co)"1c? = —1.
Theorem B([[2]]). Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n
be an integer satisfying (n — 2)s > 10. If f*(f —1)f’ and ¢g"(g — 1)¢’ share the
value 1 CM, then
(n+2)(1— hntl) (n+2)(1—h"tHa

C (n+ 1D —hmt2) T (n 4 1)(1 — hnt2)

where h is a non-constant meromorphic function.

Theorem C([[2]]). Let f and g be two transcendental entire functions, whose
zeros are of multiplicities atleast s, where s is a positive integer. Let nm be an
integer satisfying (n —2)s > 7. If f™f’ and g™¢g’ share the value 1 CM, then either
f = dg, for some (n + 1)-th root of unity d or g(z) = c1e%* and f(z) = cae™ %,
where ¢1, ¢ and ¢ are constants satisfying (0102)7”102 =—1.

Theorem D([[2]]). Let f and g be two transcendental entire functions, whose
zeros are of multiplicities atleast s, where s is a positive integer. Let m be an
integer satisfying (n — 2)s > 5. If f*(f — 1)f’ and ¢g"(g — 1)g’ share the value 1
CM, then f =g.

In 2014, Harina P. Waghamore and Tanuja A.[[5]] ask whether there exists a
corresponding unicity theorem for [f"P(f)]**) where P(f) is a polynomial. In
this paper, they gave a positive answer to above question by proving the following
Theorems.

Theorem E. Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
P(f)=amf™+ am_1fm 1+ ...+ arf + ao, (am #0), and a;(i = 0,1, ...,m) is the
first nonzero coefficient from the right, and let n, k, m be three positive integers
with s(n+m) > 4k +12. If [f"P(f)]*®) and [¢" P(g)]*®) share the value 1 CM, then
either f = tg for a constant ¢ such that t¢ = 1, where d = (n+m, ..n+m —i,...n),
Gm—; # 0 for some i = 0,1...m, or f and g satisfy the algebraic equation R(f, g) = 0,
where R(wy,ws) = wlP(wy) — wh Pws).

Corollary 1. Let f and g be two non-constant entire functions, whose zeros and
poles are of multiplicities atleast s, where s is a positive integer. Let P(f) =
A f™ + 1 f N+ o+ arf + ao, (am # 0), and a;(i = 0,1,...,m) is the first
nonzero coefficient from the right, and let n, k, m be three positive integers with
s(n+m) > 2k +6. If [f*P(f)]* and [¢"P(g)]®) share the value 1 CM, then the
conclusions of Theorem E hold.

Theorem F. Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
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P(f)=amf™+am_1f™t+...+arf +ag, (am #0), and a;(i = 0,1,...,m) is the
first nonzero coefficient from the right, and let n, k, m be three positive integers
with s(n+m) > 9k +16. If [f"P(f)]*® and [¢"P(g)]*) share the value 1 IM, then
either f = tg for a constant ¢ such that t¢ = 1, where d = (n+m, ..n+m —i,...n),
Gm—; # 0 for some i = 0,1...m, or f and g satisfy the algebraic equation R(f, g) = 0,
where R(wy,ws) = wlP(wy) — wh P(ws).
Corollary 2. Let f and g be two non-constant entire functions, whose zeros and
poles are of multiplicities atleast s, where s is a positive integer. Let P(f) =
A f™ + @1 f™ 1 + o+ arf + ag, (an #0), and a;(i = 0,1,...,m) is the first
nonzero coefficient from the right, and let n, k, m be three positive integers with
s(n+m) > 5k +9. If [f*P(f)]* and [¢"P(g)]*) share the value 1 IM, then the
conclusions of Theorem F hold.

In the present paper, we always use L(z) to denote an arbitrary polynomial of
degree n, i.e.,

L(z) = anz" + an 12" P+ . Fag=an(z—c)" (z— ). (z— ) (1)

where a;,i = 0,1,...,n,a, # 0, and ¢;,j = 1,2,...,s, are finite complex number
constants; ¢y, ca, ..., ¢s are all distinct zeros of L(z),l1,ls,...,ls. s,n are all positive
integers satisfying the equality

Lh+lb+..+ls=nandl=max{ly,ls..1s} (2)

In this paper, we study the existence of solutions for [L(f)]*) and the corresponding
uniqueness theorems. Thus, we obtain the following results as a generalization of
the theorems presented above:

Theorem 1.1. Let f(z) and g(z) be two non constant entire functions and let n, k
and [ be three positive integers such that 41 > 3n+ 2k +8. If [L(f)]*®) and [L(g)]*)
share 1 CM, then either f = b1e®* + ¢ and g = bae %% + ¢ or f and g satisfy the
algebraic equation R(f,g) = 0, where by,bs and b are three constants such that
(—l)k(blbg)n(nb)Qk =1 and R(wl,wg) = L(wl) — L(wg)

Remark 1. Put [ = n in theorem 1.1, we get n > 2k + 4.

Theorem 1.2. Let f(z) and g(z) be two non constant entire functions and let n, k
and [ be three positive integers such that 71 > 6n + 5k 4 7. If [L(f)]*) and [L(g)]*)
share 1 IM, then either f = b1e?* + ¢, and g = bye™%* + c or f and g satisfy the
algebraic equation R(f,g) = 0. where b1,by and b are three constants such that
(=1)%(bybe)™(nb)?* =1 and R(wy,ws) = L(w;) — L(ws).

Remark 2. Put [ = n in theorem 1.2, we get n > 5k + 7.

Remark 3. If L(f) = L(g), then we get

anf™ 4 a1 [N ot arf = ang” + an1g" T+ L+ ang.

Let h = 5. If h is a constant, then we substitute f = gh in this equation and
obtain a,g"(h™ — 1) + a,_19" *(h""! — 1) + ... + a;g(h — 1) = 0. This yields
ht=1,d= (n,...,n—i,..1), and a,_; # 0 for some i = 0,1,...,n — 1. Thus f =tg
for a constant ¢ such that ¢t = 1. If h is not a constant, then by virtue of the
equation presented above, we know that f and g satisfy the algebraic equation
R(f,9) =0, where R(wy,ws) = L(w1) — L(wz).
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2. SOME LEMMAS

Lemma 2.1([[6]]) Let f be a non-constant meromorphic function, let k be a
positive integer, and let ¢ be a non-zero finite complex number. Then

N(r,f)+ N (7’, }) + N <T7f(k)1—c) - N <’/‘, f(k1+1)> + S(r, f)

N(r, f) + Ngs1 (r, }) +N (r,f(k)l_c) — Ny (T, f(k1+1)> + S(r, f).

where Ny (r, ﬁ) is the counting function which only counts those points such

that f*+1) =0 but f(f*) —¢) #0.
Lemma 2.2([[6]]) Let f(z) be a nonconstant meromorphic function and let a;(z)
and as(z) be two meromorphic functions such that T'(r,a;) = S(r, f),i = 1,2. Then

1 — 1
m)“!‘N(T,m)"‘v‘S(ﬁf)

Lemma 2.3([[9]]) Let a,,(# 0), an—1...ag be constants and let f be a nonconstant
meromorphic function. Then

T(”‘a anfn + an—lfnil + ...+ 0,0) = nT(r, f)

T(r, f)

IN

IN

T(r, f) < N(r, f) + N(r,

Lemma 2.4([[4]]) Let f and g be two transcendental entire functions, and let k be
a positive integer. If f(*) and ¢*) share the value 1 CM and

A= [®<O’f) + @(Oag) + 6k+1(07f) + 5k+1(07g)] >3

then either f*g¢*¥) =1 or f = g.
Lemma 2.5([[7]]) Let f and g be two transcendental entire functions, and let k be
a positive integer. If f(*) and ¢(*) share the value 1 IM and

A = [@(Oa f) + 9(079) + 26k+1 (07 f) + 36k+1(0>g)] >0

then either f*g*k) =1 or f = g.
Lemma 2.6([[5]]) Let f(z) be a nonconstant entire function and let k(> 2) be a
positive integer. If ff*) £ 0, then f = e***° where a and b are constants.

3. PROOFS OF THE THEOREMS.

Proof of Theorem 1.1. Let L(z) and I be given by (1.1) and (1.2), respectively.
Without loss of generality, we can assume that a, = 1, [ = l; and ¢ = ¢;. This
yields

)
@07Lf :1—limsup7L(f)
(0, L(f)) roo T(r,L(f))
o1 j=1 ' f—cj >1_7>;
> 1:18;1) nT(r, f) - no-on
similarly, we get
1 —
00, L(g) = = W
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Moreover, we have

0k+1(0, L(f))=1— lim sup —=———=5—

> et N (ry ﬁ) + Niga (ry gr2gy)

> 1 —limsup,_ oo

21h?gp@—UT@f%%;J?fWJ%+ﬂnﬂ
21—S+k > l—k—-1
n n
and similarly
Si1(0,L(g)) > T -

Since 41 > 3n + 3k + 8, from (3.1) to (3.4), we get
A = [0(0, f) +06(0,9) + 0r+1(0, f) + dk+1(0,9)] > 3 we conclude that h(z) = 0,
i.e.,

f(k+2) (z) f(k+1)(z) g(k+2) (z) g(k+1)(z)

— = -2
FEDG) " F0(E 1 gt(z) Mz -1
Solving this equation, we obtain

1 bg™ta—b

FE—1 7 gm o1

we can write the above equation as

1 _bL(9)®) +a—b ™
IH® -1 Lg®—1
Further, we consider the following three cases:
Case I. If b # 0 and a = b, then it follows from (3.9) that
1 _ bL(g)™
L1~ Lg® 1
1.1. If b # —1, then it follows from (3.9) that [L(f)®][L(g)*)] =1, i.e.,

[(f =)' (f = )"c(f =) ]PN(g =) (g = )=lg =)W =1 (9)

1.1.1. If s = 1, then we can rewrite (3.11) as follows:

[(f =" P(g— )™ =1.
and 4] > 3n + 2k 4+ 4, | = n, we conclude that n > 2k + 4. Hence, f — ¢ # 0 and
g — ¢ # 0. Thus, according to Lemma 2.4 we find

f=bie"” ¢, g=bye "+,

where by, by and b are three constants such that (—1)%(b;by)"(nb)?* = 1.

1.1.2. For s > 2, we note that 4] > 3n + 2k + 4. Hence, [ > 2k + 4. Suppose
that zg is an [-fold zero of f — ¢. We know that zo must be an (I — k)-fold zero of
[(f =) f —)2...(f — c5)']*). Note that it follows from (3.9) that g is an entire
function. This is a contradiction. Hence, f — ¢ # 0 and g — ¢ # 0. Thus, we get
f =e**) 4+ ¢, where a(z) is a non constant entire function. Therefore,

[FI® = [(e* +¢)|®) = pi(o/, 0", ..., aF)e'™, i =1,2,...,n, (10)
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where p;,i = 1,2,...,n, are differential polynomials in o/, ", ...,a®). Clearly, if
p; 20 and T(r,p;) = S(r, f),i = 1,2,...,n, then it follows from (3.11) and (3.12)
that

1

) =5 T, .
P e +p1) (r.f)
In view of Lemmas 2.2 and 2.3 and the fact that f = e® 4 ¢, we get

(n=1T(r, f —¢) = T(r,pne™V* + ... 4+ p1) + S(r, f)
1 — 1
Tppe(n—la —|—p1) + N, prem=Da 4 4 poea
1
) + S T.,
pne(n—2)a + .. +p2) ( f)
< (ni Q)T(T.?ffc) +S(Taf)7
which is a contradiction.
1.2. If a = b # —1, then relation (3.10) can be rewritten as
1 1

LY = rmm— anm

N(r

< N(r

< N(r

From (3.13), we get
— 1
N T — v
By relation (3.14) and Lemma 2.1, we obtain
nT'(r, f) =T(r, L(f)) + O(1)
1 1
< Niga(r, m) + N(r, L™ -1+ b)/b)
1 1
s IR Vs o oy 2
< (k+8)T(r. f) < (k+n—1+1)T(r f)+ S, f)
which is a contradiction because 4l > 3n + 2k + 4.

Case II. b # 0 and a # b. We discuss the following sub cases:
2.1. Suppose that b = —1. Then a # 0 and relation (3.9) can be rewritten as

L(NH* =

)=N(r,g) = S(r,f). (12)

+5(r, f)

S Nk+1(7n7

) +5(r, f)

a

a+1—L(g)*" (13)

It follows from (3.15) that
1

N(r,——————)=N =5 . 14
" gm) = N = Sng) (14)
In view of (3.16) and Lemma 2.1 and 2.4, we find

nT(r, g) = T(r, L(g)) + O(1) < Neg (1, ﬁ) + 5(r,g).

Further, by using the argument as in Case 1.2, we arrive at a contradiction.
2.2. suppose that b # —1. then relation (3.9) be rewritten as

w_b+tl _—a 1
L) b b2 L(g)® +(a—b)/b

(15)
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It follows from (3.17) that

— 1 .
N(r, L™ = b+ 1)/b) = N(r,g). (16)

By using (3.18) and Lemmas 2.1 and 2.4, we arrive at a contradiction in exactly
the same way as in Case 1.2.
Case IIL. b = 0 and a # 0. Then relation (3.9) can be rewritten as

L(g)® = aL(/)M + (1 - a), (17)

L(g) = aL(f) + (1 — a)p1(2), (18)
where p; is a polynomial with degp; < k. If a # 1, then (1 — a)p; # 0. Together
with (3.20) and Lemma 2.2, this yields

nT(r,g) = T(r,L(g)) + O(1) < N(r, )4+ N(r,

1
LA 1

<N )+ YN )+ 5000) (19)

< S[T(r, ) + T(r.g)] + S(rs ).

Since n = [+ls+...4+1s, we get n—1l = lo+...+1ls > s—1,ie., n—1 > s—1,n—s > [—1.
In view of the inequality 4/ > 3n + 2k + 4, we conclude that

I1—-1>3n—0)+2k+4>3(s—1)+2k+3

and hence,
n—s>1—1>3(s—1)+2k+3,
ie, n—s>3(s—1)+ 2k + 3. Therefore,
n — 2k
4

s <

and thus,

-2k
[T(r,g) +T(r, f)] + S(r,9). (20)
On the other hand, it follows from (3.20) and Lemma 2.3 that
T(r,g) =T(r,f)+5(r.9).
Substituting this relation in (3.24), we conclude that

3n + 4k
4

nT(r,g) < o

T(r,g) <S(r,9),

which is a contradiction.

Thus a = 1 and therefore, it follows from (3.20) that L(f) = L(g).

Further, we consider the case where f and g are polynomials. Suppose that f — ¢
and g — ¢ have v and v pairwise distinct zeros, respectively. Then f —c and g — ¢
admit the representations

f—c=ki(z—a1)" (z —a2)™...(z — a,)™,
g—c=ka(z—0b1)™ (2 —ba)™...(z — by,)™,
and hence,
[f — ' = ki(z—a1)!" (2 — ag)'"2 ..z — @), (21)
[g—d' = kL(z — b))l (2 — by)lm2 (2 — by)lmo, (22)
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where k; and ko are nonzero constants, n;l > 2k +4, m;l > 2k +4, and n;, m;,j =
1,2,...,u,7 =1,2,...,v, are positive integers. Differentiating (3.20), we get

L(g)**Y = aL(f)* Y. (23)
It follows from (3.23)(3.24) and (3.25) that
(z — al)l"l_k_l(z — az)l"2_k_1...(z — au)l"u_k_lfl (2)
=(z— bl)lml_k_l(z — bg)lm’z_k_l...(z — bv)lm“_k_léz(z),

where & and & are polynomials, degéy = (n — 1)3¥ yn; + (v — 1)(k + 1), and
deg€s = (n—1)X7_ym;+(v—1)(k+1). Thus, in view of the fact that 4/ > 3n+2k+4,
we find 3l —2n > (n—1)+2k+4 > 2k+4. Then (3l —2n)n; > 2k+4, (3l—2n)m; >
2k+4, i=1,2,...,u,7=1,2,...,v. Hence,
Sl — (B+1D)] =2 ni(n—1) =31 [n;(3l — 2n) — (k + 1))
>ulk+3) > (u—1)(k+1),

(24)

ie.
Sl —(k+1)] > (n—DZ_n; + (u—1)(k+1).
Similarly,
i qmil = (k+1)] > (n=D)Xj_ym; + (v —1)(k+1).

Thus, by using (3.26), we show that there exists zg such that L(f(z0)) = L(g(20)) =
0, where the multiplicity of z is greater than 2k 4 4. Together with (3.20), this
yields p1(z) = 0, which also proves the claim.

Therefore, it follows from (3.19) and (3.20) that a = 1 and, therefore, L(f) = L(g).
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2.

Let f(z) and I be given by (1.1) and (1.2), respectively. Without loss of generality,
we can assume that a, = 1, [l =1; and ¢ = ¢;. This yields

N(r, ()
: » L(f)
L =1-1 —
>1—limsu Z;ZIN(T’ f_lc’) >1-2> -1
- r%oop nT(r, f) B noon
similarly, we get
1 —
00, L(g) > — (26)
Moreover, we have
l— k-1
r4+1(0, L(f)) = — (27)
l—k—-1
r+1(0,L(g)) = Y (28)

Since (4k + 14)1 > (4k 4+ 13)n 4+ 9k + 12, from (3.23) to (3.36), we get
A= [@(0, F) + @(0, G) + 5k+1(O7F) + 5k+1(07 G)] >6

Proceeding as in the proof of the theorem 1.1, we get Theorem 1.2.
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