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CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH
CERTAIN INTEGRAL OPERATOR

T. M. SEOUDY

ABSTRACT. In this paper, we introduce two classes of analytic functions as-
sociated with certain integral operator and investigate convolution properties,
coefficient estimates and inclusion properties of these classes.

1. INTRODUCTION

Let A denote the class of analytic functions of the form:
(oo}
f(z)=z+ Zakzk (1)
k=2

which are analytic in the open unit disc U = {z € C : |z| < 1}. Let S(vy) and
K (v) (0 <~ < 1) denote the subclasses of A that consists, respectively, of starlike
of order v and convex of order v in U. It is well-known that S (v) C §(0) = S and
K (v) =K (0) =K (see [10]).

If f(2) and g(z) are analytic in U, we say that f(z) is subordinate to g (z),
written f(z) < g(z) if there exists a Schwarz function w, which (by definition)
is analytic in U with w(0) = 0 and |w(z)| < 1 for all z € U, such that f(z) =
g(w(z)), z € U. Furthermore, if the function g (z) is univalent in U, then we have
the following equivalence, (cf., e.g., [8] and [9]):

f(z) < g(2) & f(0) = g(0) and f(U) C g(U).
For functions f(z) given by (1) and g(z) given by

9(z) =2+ Y b, (2)
k=2
the Hadamard product (or convolution ) of f(z) and g(z) is defined by

(f*9)(2) =2+ arbez" = (g9 f) (2). 3)
k=2
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Making use of the principal of subordination between analytic functions, we
introduce the subclasses S [A, B] and K [A, B] of the class Afor -1 < B< A<1
(see [1], [4], [5], [6] and [11]) which are defined by

S[A,B]:{feA:Zf/(z)<l+Az (zEU)}, (@)

f (2 1+ Bz
and

(:£' @) 144

K[A,Bl]=<q feA: e <1+Bz

(z€U) %, (5)

We note that

S[1=2v,-1=8(7), L[l =27, -1]=K(y) (0<~y<1).
Jung et al. [7] introduced the integral operator Qf : A — A as follows:

atf AN
Q5f(2) = < B >Z[3f0 (1_z> (0 dt (a>0:8> 1), g
() (a=0;5>-1).
For f € A given by (1), then from (6), we deduce that

r — T k
@5 /(z) = (ra(;fir)l) DT (a(i;+)k) a2’ (@2 0:5> 1) (7)
It is easily verified from the definition (7) that (see [7])
2(Q4F(2) = (a+8)Q5 " f(2) — (a+ 8- 1) Q5F(2). (8)

Next, by using the integral operator @3, we introduce the following classes of
analytic functions for a > 0; 5 > —land -1 < B<A<1:

S§[A,Bl={feA:Q%f(2) € S[A, B]}, (9)
and
K$[A,Bl={feA:Q3f(z) e K[A B]}. (10)
We also note that
f(2) €KS[A,B] & 2f (2) € S§[A, B]. (11)

In this paper, we investigate convolution properties for functions belongs to the
classes S§ [A, B] and K§ [A, B] associated with the integral operator Q3. Using
convolution properties, we find the necessary and sufficient conditions, coefficient
estimates and inclusion properties for these classes.

2. CONVOLUTION PROPERTIES

Unless otherwise mentioned, we assume throughout this paper that 0 < 6 < 2,
—-1<B<A<1l,a>0and 8> —1.

Lemma 1 [2]. The function f defined by (1) is in the class S [A, B] if and only
if

1 5 er—EAzz
Z[f(z)*(l_z)zl#O(zEU). (12)
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Lemma 2 [2]. The function f (z) defined by (1) is in the class K [A, B] if and
only if
20704 A+B 2
1 z— T2y
- 2) % 0 (z€0U). 13
e A | #0 Gew (13
Theorem 1. A necessary and sufficient condition for the function f defined by
(1) to be in the class Sg [A, B] is that

) Z(k-=1)e -~ A+ kBT (a+B+1)T(B+k)
-2 A—B LB+ 1) (a+B+k)

k=2

arz"1#£0 (2 €U). (14)

Proof. From Lemma 1, we find that f € S§ [A, B] if and only if

1 . Z_erEAZQ
2 Qﬁf(z)*W #0 (z€U). (15)

From (8), the left hand side of (15) may be written as

o z e 4 A 22
lQﬂf(z)*<(lz)2 A—_B (12)2>]

@) - S s @) - asso)]

B ~(k—1)e™® —~ A+ kBT (a+B8+1)T(B+k) ,_
1=2, A-B T(B+ 1T (atB+k)** 1

—_

N

W | =

k=2

Thus, the proof of The Theorem 1 is completed. ([l

Theorem 2. A necessary and sufficient condition for the function f defined by
(1) to be in the class g [A, B] is that

1_ik(k—1)e*i9—A+kBF(a+ﬁ+1)F(B+k)

A-B r(ﬁ+1)r(a+ﬁ+k)a’“2kil7&0 (z€ ). 16)

Proof. From Lemma 1, we find that f € K§ [A, B] if and only if

1 5 2e’i9+A+Bz2
~ Q5 f(2) * A= #£0  (z€D). (17)
5 | B (1- Z)S
From (8), the left hand side of (17) may be written as
11 ., z 2" +A+B 2z
leﬂf() ((1—2)3 A-B (1—2)3>]

z no 2079+ A+B 5, "
O CHO

> (kf1)<r“’fAJrkBF(onrBJr1)F(5+k)aZ,H
A-B TB+DT(a+B+k) 7

I
-

this proves Theorem 2. O
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3. COEFFICIENT ESTIMATES AND INCLUSION PROPERTIES

In this section, we determine coefficient estimates and inclusion properties for a
function of the form (1) to be in the classes S§ [A, B] and K§ [A, B].
Theorem 3. If the function f defined by (1) belongs to the class S§ [A, BJ, then

= (a+B8+1)T(B+k)
B+ (a+B+k)

r
(k:—l—f—A—k:B)F lak| < A— B. (18)
k=2
Proof. Since
Z(k—1)e® —A+ kBT (a+B8+1)T(B+k)
1—5 arpz
P A-B FrB+1H)T(a+p+k)

(k—l)e—”—A+kB’F(a+,8+1)r(ﬁ+k)

o0
>1—Z
k=

. A-B T@ET T @+ a1k
and
(k—1)e ™ —A+kB| |(k—1)e " — A+EkB| _k-1+A-kB
A-B A-B - A-B ’
the result follows from Theorem 1. (|

Similarly, we can prove the following theorem.
Theorem 4. If the function f defined by (1) belongs to the class K§ [A, BJ,
then
D(a+B8+1)T(B+k)

Z:k(l“HA*kB)F(6+1)F(a+,6’+k)

k=2

ol <A-B. (19)

We will discuss two inclusion relations for the classes S§ [A, B] and K§ [A, B].
To prove these results we shall require the following lemma:

Lemma 3 [3]. Let h be convex (univalent) in U, with R {vh (z) + n} > 0 for all
z € U. If p is analytic in U, with p(0) = h(0), then

p()+ 2B ) S pe) <h).

P (2)+n
Theorem 5. Suppose that
z a+p
§R{1+Bz}>_A—B (z € ). (20)

If f € 857" [A, B] with & > 1 and Q§ f(2) # 0 for all z € U, then f € 8§ [A, B].

Proof. Suppose that f € ngl [A, B], and let define the function

’

2 (Q5/(2)
p(z) = (ng(z)) (z€U). (21)
Then p is analytic in U with p(0) = 1, and using the relation (8), from (21) we
obtain .
) +atf-1=(atp 2 10 (22)

Q5f(2)
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Taking the logarithmic differentiation on both sides of (22) and then using (21), we
deduce that

’

zp (2) 1+ Az
+ < . 23
p(z) p(z)+a+p—-1 1+ Bz (23)
14+ Az . .
From (20), we see that § 11 B +a+8—1; >0,z € U. Since the function
1+ Az, . . . -
T3 B, ® convex (univalent) in U, according to Lemma 3 the subordination (23)
implies p (z) < 1rdz hich proves that f € S5 [A, B] O
p p 1 T Bzv w prove B I .

From the duality formula (11), the above theorem yields the following inclusion:
Theorem 6. Suppose that (20) holds.If f € ICg“l [A, Bl with o > 1 andQf f(2) #
0 for all z € U, then f € KF [A4, B].

Proof. Applying (11) and Theorem 5, we observe that

feKAB] < zf €857 [A,B] (from11)
= zf € S5 [A, Bl ( by Theorem 5 )
> feK5[A B].

which evidently proves Theorem 6. O
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