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GENERALIZATION OF TITCHMARSH’S THEOREM FOR THE
JACOBI-DUNKL TRANSFORM

S. EL OUADIH, R. DAHER, A. BELKHADIR

ABSTRACT. In this paper, using a generalized Jacobi-Dunkl translation oper-
ator, we prove an analog of Titchmarsh’s Theorem for functions satisfying the
Jacobi-Dunkl Lipschitz condition in L?(R, Ay g(t)dt),a > 8 > %1, a# %1

1. INTRODUCTION

Titchmarsh’s [[10], Theorem 85] characterized the set of functions in L?(R) satis-
fying the Cauchy-Lipschitz Condition by means of an asymptotic estimate growth
of the norm of their Fourier transform, namely we have

Theorem 1.1 [[I0]] Let a € (0,1) and assume that f € L?*(R). Then, the fol-
lowing are equivalents:
(a) [f(t+h) = f@O)=0(r*), as h—0,
(b) / FO)2dN = O(2%) as - oo,
A=
where f stand for the Fourier transform of f.

In this paper, we prove in analog of Theorem 1.1 for the Jacobi-Dunkl trans-
form for functions satisfying the Jacobi-Dunkl Lipschitz condition in the space
L?*(R, An p(t)dt). For this purpose, we use the generalized translation operator.
similar results have been established in the context of non compact rank one Rie-
mannian symetric spaces [[9]].

In section 2 below, we recapitulate from [[I],[2],[3],[5]] some results related to the
harmonic analysis associated with Jacobi-Dunkl operator A, g.

Section 3 is devoted to the main result after defining the class Lip(, 2, «, 8) of func-
tions in Li, 5(R) satisfying the ¢-Jacobi-Dunkl Lipschitz condition correspondent
to the generalized Jacobi-Dunkl translation.
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2. NOTATION AND PRELIMINARIES

The Jacobi-Dunkl function with parameters («, 5),a > 8 > _71, o # _71, defined
by the formula

ol (z) = 3 dhept(x) if A e C\{0}

1 ifA=0

Vo e R, 93P (x) =

with A2 = p2 + p?, p = a+ B + 1 and ¢# is the Jacobi function given by

i) = F (25 2 a1, ).

F is the Gausse hypergeometric function (see [[I],[6],[7]]).
z/Jf’ﬂ is the unique C'°°-solution on R of the differentiel-difference equation

Aa g =iNd AeC

U) =1
where A, g is the Jacobi-Dunkl operator given by
Aap(@) = % +[(2a+ 1) cothz + (26 + 1) tanh 2] x wa
x

The operator A, s is a particular case of the operator D given by
di(z)  Al(x) U(z) —U(-x)
D =
Ulw) ar A(x) % 2 ’

where A(z) = |z|?*T1B(z), and B a function of class C* on R, even and positive.
The operator A, g corresponds to the function

Aq () = 2°(sinh |z[)2* T (cosh |z[) 2P F1.

Using the relation

d 0.5 ):_u2+p2
4(a+1)

the function Q/J/o\"ﬁ can be written in the form above (see [[2]])

sinh(2x)<p;f+1”8+1(x),

fﬁ(x) = cpfj’ﬂ(x) +i sinh(2x)<pfj+1’ﬂ+1(ac), z € R.

A
4(a+1)

Denote Li’B(R) = Liﬁ(R,Aaﬁ(t)dt) the space of measurable functions f on R
such that

1/2
1152, = [ 11OPAws0) <4,

Using the eigenfunctions 1/13’6 of the operator A, g called the Jacobi-Dunkl kernels
, we define the Jacobi-Dunkl transform of a function f € Li’ 5(R) by

Fasf N = [ 100570 A0s(t)dt, AR,
and the inversion formula

f(t) = /R Fas L ()do(N),
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where N
do(A) = Ly (A)dA.
» 87/ A2 = p2|Co (/A2 — p?)| R\]—p,pl(A)
Here,
20~ (a4 1)['( '

L(z(p+ip)L(5(a =B +1+ip))’
and 1g\j—p, [ is the characteristic function of R\] — p, p[.
Denote L2(R) = L?(R,do()\)). The Jacobi-Dunkl transform is a unitary isomor-
phism from L2 ;(R) onto L7 (R), i.e.

1=z @) = 1Fas(HllLz@)- (1)
The operator of Jacobi-Dunkl translation is defined by
T.1w) = [ Fobze). veyeR
where ng (z), x,y € R are the signed measures given by

Ka,ﬁ(l',y, Z)Aoz,ﬁ(z)dz if v,y € R*

a,B _
vy (=) =14 5, if y=0
Oy ifx=0
Here, §, is the Dirac measure at x. And,
Kap(z,y,z) = A4aﬁ($nh(hﬂ)$nhUyDfﬂnhOZD)_Qalfay><j/ po(z,y, 2)
0
x  (go(z,y, z))j“fB*l sin?? 0do
Loy = [=l=l = lyl, ==l = yl] U [[l=] = |yll, |z| + [y]]
Po (l’, Y, Z) = 1- Uz,y,z + Ug,%y + 0—27971?

cosh(z)+cosh(y)—cosh(z) cos(0) if Ty 7& 0
sinh(z) sinh(y) )
VzeR,0 e [0777],0'24}& =

0 Jifxzy =0
go(x,y, 2) = 1 — cosh?(z) — cosh?(y) — cosh?(z) + 2 cosh(x) cosh(y) cosh(z) cos 6
t ift>0
t+ =
0 ift<0
and,
_ 27Tt
Ve >0
My g =
0 ifa=p
In [[2]], we have
Fas(Tnh)N) = 637 (M Fas(NO); A hER. (2)

For a > %1, we introduce the Bessel normalized function of the first kind defined
by

. N e

alz) =T 1 T T
Jal2) (o )Zn!F(n+a+1)

n=0

zeC.
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Moreover, we see that

. ]oc (Z) -1
llg%) 22 70,
by consequence , there exists C; > 0 and 1 > 0 satisfying

2] <n = [ja(z) — 1] > C12 (3)

Lemma 2.1. The following inequalities are valids for Jacobi functions ¢ (t):
() lep?(l <1,

(@) [1—p28(0)] < (2 + 7).
Proof. (See[[§]],Lemma 3.1,Lemma 3.2).

Lemma 2.2. Let a > 8 > _71,04 =+ _71 Then for |v| < p, there exists a posi-
tive constant Cy such that

11— 28, (O] > Call = jalut)].

Proof. (See[[]],Lemma 9).

3. MAIN RESULT
In this section we give the main result of this paper. We need first to define the
1p-Jacobi-Dunkl Lipschitz class.
Definition 3.1. A function f € Li,B(R) is said to be in the -Jacobi-Dunkl
Lipschitz class, denoted by Lip(v, 2, «, ), if
[NnfIl = O((h)), as h—0,
where Ny = Ty +T_, — 21, I is the unit operator in the space Li ﬁ(R) and ¥

is a continuous increasing function on [0,00),%(0) = 0 , ¥(ts) = w(t>w(s) for all
t,s € [0,00) and this function verify

1/h
/ sy(s72)ds = O(—(h?)) as h—0.
0
Lemma 3.2. For f € Liﬁ(R), then
INLFIE =4 [ 1670 = 1PIF s SOV o).

Proof. We us formula , we conclude that
Fon(Nuf)N) = W57 () +437 (=h) = 2) Fas (H) V),

Since

P (h) = 5P (h) +i sinh(2h)p5 A (h),

4(a+1)
U3 () = o (h) —

and @27 is even (see [[2]]), then

Fas(Nuf)(N) = 20057 (h) = 1) Fas(/)(N).

A atl,5+1
o+ 1) sinh(2h)yp;, (=h),
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By Parseval’s identity (formula (1])), we have the result.

Theorem 3.3. Let f € L? ;(R). Then the following are equivalents
a,B

(@) [ Fasl DO = 0@ ), as 1 oc,

[A[>r
Proof. (i) = (it). Assume that f € Lip(¢, 2, a, ), then we have

[Nwfll = O((h)), as h—0.

From lemma 3.2, we have

1N FIP =4 [ 1= e (01 Fa (D) ()
By (B) and lemma 2.2, we get
/ 11— ()| Fo s ()N P (V) > C2C2 / A1 F s (F) V) Pdo ().
<M< E <IN E
From g < [A| < 3 we have
n 2 2,2 (1 2 2
<2h> PSR (h) P
n2
= M2h2 2 Z o p2h2
Take h < 2L, then we have p?h? > C3 = C3(n).
So,
/ 18 () 2| Fa () (V) Pilr( >>clcQC§/ Fo s (F)N)[2do ()
<M< E <ML E

There exists then a positive constant C such that
/ Fa s DOPdr(N) < C [ 1= (0 FIFa s o) < Cui?)
<A<
For all 0 < h < L. Then we have ,
/ Fas(DOVdIO) < CoE2r72), 7= .

<|A|L2r
Thus there exists K > 0 such that

[ FaalDOPo) < KU, o

<|A|L2r

Furthermore , we obtain

/MZT Fas(NPdo(A) = Z/MQKW Fas(FN)Pdo(N)

= O ) +¢27%r ) +..)
= OWE ) +y(r ) +..)
= O((r=?)).
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This proves that

/IAzr Fas(DNPdr() = 0@ ), as 7 ox.
(i) = (¢). Suppose now that

/|>\2r | Fas(FYN)2do(X) = O(p(r~2)), as r— oo,
and write
/ . WIZesNORE0) = /|,\<1 1= ‘pz’ﬁ(h)|2|}—a,ﬁ(f)(/\)|2da(>\)

o LA O

Using the inequality (c) of lemma 2.1, we get

/ 11— 0P (0P| Fa s (SN Pda(N) < 4/ | Fas (F)N)[Pdo(N).
[A]> 1 by

=" IAI> L
Then

/|A>1 11— 2P (h) 2| Fas(SN)2do(X) = O((h?)), as h—0.  (4)
Set

o = [ | Fas (@) 2do ().

An integration by parts gives
1 1

| s nPe) = [T =i
0

0

11 W
= —ﬁ¢(g)+2/0 Ad(\)dA

%A A72)dA
2/0 BA2)

OG5 0().

IN

From lemma 2.1 , we get

/ 11— 8 (0| Fa s (F) V)P (M) é/ 11— B (0)|| Fus ()N Pdor(N)
A<+ A<+
< / (2 + P )2 Fo s (1) (V) [P ()
IA<E
<

h /W N[ Fa s (DN Pdo(3)

= O u(r?)

= O(w(h?)).
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Hence,
/|)\|<1 1= 02 (M)?| Fa,p (/) (N)Pdo(N) = O((h%)). (5)
<%
Finally, we conclude from and that

/R 11— B (W)2|Fa s (F) (V)P (M)

I
s~
A

+
>
v

And this ends the proof.
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