Electronic Journal of Mathematical Analysis and Applications,

Vol. 4(1) Jan. 2016, pp. 155-161.

ISSN: 2090-729(online)

http://fcag-egypt.com/Journals/EJMAA/

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE JACOBI-DUNKL TRANSFORM

S. EL OUADIH, R. DAHER, A. BELKHADIR

ABSTRACT. In this paper, using a generalized Jacobi-Dunkl translation operator, we prove an analog of Titchmarsh's Theorem for functions satisfying the Jacobi-Dunkl Lipschitz condition in $L^2(\mathbb{R}, A_{\alpha,\beta}(t)dt), \alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq \frac{-1}{2}$.

1. INTRODUCTION

Titchmarsh's [[10], Theorem 85] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy-Lipschitz Condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have

Theorem 1.1 [[10]] Let $\alpha \in (0,1)$ and assume that $f \in L^2(\mathbb{R})$. Then, the following are equivalents:

(a)
$$||f(t+h) - f(t)|| = 0(h^{\alpha}), \text{ as } h \to 0,$$

(a)
$$||f(t+h) - f(t)|| = 0(h^{\alpha}),$$
 as $h \to 0$,
(b) $\int_{[\lambda] \ge r} |\widehat{f}(\lambda)|^2 d\lambda = O(r^{-2\alpha})$ as $r \to \infty$,

where f stand for the Fourier transform of f.

In this paper, we prove in analog of Theorem 1.1 for the Jacobi-Dunkl transform for functions satisfying the Jacobi-Dunkl Lipschitz condition in the space $L^2(\mathbb{R}, A_{\alpha,\beta}(t)dt)$. For this purpose, we use the generalized translation operator. similar results have been established in the context of non compact rank one Riemannian symetric spaces [[9]].

In section 2 below, we recapitulate from [[1],[2],[3],[5]] some results related to the harmonic analysis associated with Jacobi-Dunkl operator $\Lambda_{\alpha,\beta}$.

Section 3 is devoted to the main result after defining the class $Lip(\psi, 2, \alpha, \beta)$ of functions in $L^2_{\alpha,\beta}(\mathbb{R})$ satisfying the ψ -Jacobi-Dunkl Lipschitz condition correspondent to the generalized Jacobi-Dunkl translation.

²⁰¹⁰ Mathematics Subject Classification. 42B37.

Key words and phrases. Jacobi-Dunkl operator, Jacobi-Dunkl transform, generalized Jacobi-Dunkl translation.

Submitted June 26, 2015.

2. NOTATION AND PRELIMINARIES

The Jacobi-Dunkl function with parameters (α, β) , $\alpha \ge \beta \ge \frac{-1}{2}$, $\alpha \ne \frac{-1}{2}$, defined by the formula

$$\forall x \in \mathbb{R}, \psi_{\lambda}^{\alpha,\beta}(x) = \begin{cases} \varphi_{\mu}^{\alpha,\beta}(x) - \frac{i}{\lambda} \frac{d}{dx} \varphi_{\mu}^{\alpha,\beta}(x) & \text{if } \lambda \in \mathbb{C} \setminus \{0\} \\ 1 & \text{if } \lambda = 0 \end{cases}$$

with $\lambda^2 = \mu^2 + \rho^2$, $\rho = \alpha + \beta + 1$ and $\varphi_{\mu}^{\alpha,\beta}$ is the Jacobi function given by

$$\varphi_{\mu}^{\alpha,\beta}(x) = F\left(\frac{\rho+i\mu}{2}, \frac{\rho-i\mu}{2}, \alpha+1, -(\sinh(x))^2\right),$$

F is the Gausse hypergeometric function (see [[1],[6],[7]]). $\psi_{\lambda}^{\alpha,\beta}$ is the unique C^{∞} -solution on \mathbb{R} of the differential-difference equation

$$\begin{cases} \Lambda_{\alpha,\beta}\mathcal{U} = i\lambda\mathcal{U} &, \lambda \in \mathbb{C} \\ \mathcal{U}(0) = 1 \end{cases}$$

where $\Lambda_{\alpha,\beta}$ is the Jacobi-Dunkl operator given by

$$\Lambda_{\alpha,\beta}\mathcal{U}(x) = \frac{d\mathcal{U}(x)}{dx} + \left[(2\alpha + 1)\coth x + (2\beta + 1)\tanh x \right] \times \frac{\mathcal{U}(x) - \mathcal{U}(-x)}{2}.$$

The operator $\Lambda_{\alpha,\beta}$ is a particular case of the operator D given by

$$D\mathcal{U}(x) = \frac{d\mathcal{U}(x)}{dx} + \frac{A'(x)}{A(x)} \times \left(\frac{\mathcal{U}(x) - \mathcal{U}(-x)}{2}\right),\,$$

where $A(x) = |x|^{2\alpha+1}B(x)$, and B a function of class C^{∞} on \mathbb{R} , even and positive. The operator $\Lambda_{\alpha,\beta}$ corresponds to the function

$$A_{\alpha,\beta}(x) = 2^{\rho} (\sinh|x|)^{2\alpha+1} (\cosh|x|)^{2\beta+1}.$$

Using the relation

$$\frac{d}{dx}\varphi_{\mu}^{\alpha,\beta}(x) = -\frac{\mu^2 + \rho^2}{4(\alpha + 1)}\sinh(2x)\varphi_{\mu}^{\alpha+1,\beta+1}(x),$$

the function $\psi_{\lambda}^{\alpha,\beta}$ can be written in the form above (see [[2]])

$$\psi_{\lambda}^{\alpha,\beta}(x) = \varphi_{\mu}^{\alpha,\beta}(x) + i \frac{\lambda}{4(\alpha+1)} \sinh(2x) \varphi_{\mu}^{\alpha+1,\beta+1}(x), \quad x \in \mathbb{R}.$$

Denote $L^2_{\alpha,\beta}(\mathbb{R}) = L^2_{\alpha,\beta}(\mathbb{R}, A_{\alpha,\beta}(t)dt)$ the space of measurable functions f on \mathbb{R} such that

$$||f||_{L^2_{\alpha,\beta}(\mathbb{R})} = \left(\int_{\mathbb{R}} |f(t)|^2 A_{\alpha,\beta}(t) dt\right)^{1/2} < +\infty.$$

Using the eigenfunctions $\psi_{\lambda}^{\alpha,\beta}$ of the operator $\Lambda_{\alpha,\beta}$ called the Jacobi-Dunkl kernels, we define the Jacobi-Dunkl transform of a function $f \in L^2_{\alpha,\beta}(\mathbb{R})$ by

$$\mathcal{F}_{\alpha,\beta}f(\lambda) = \int_{\mathbb{R}} f(t)\psi_{\lambda}^{\alpha,\beta}(t)A_{\alpha,\beta}(t)dt, \quad \lambda \in \mathbb{R},$$

and the inversion formula

$$f(t) = \int_{\mathbb{R}} \mathcal{F}_{\alpha,\beta} f(\lambda) \psi_{-\lambda}^{\alpha,\beta}(t) d\sigma(\lambda),$$

where

$$d\sigma(\lambda) = \frac{|\lambda|}{8\pi\sqrt{\lambda^2 - \rho^2}|C_{\alpha,\beta}(\sqrt{\lambda^2 - \rho^2})|} 1_{\mathbb{R}\setminus]-\rho,\rho[}(\lambda)d\lambda.$$

Here,

$$C_{\alpha,\beta}(\mu) = \frac{2^{\rho-i\mu}\Gamma(\alpha+1)\Gamma(i\mu)}{\Gamma(\frac{1}{2}(\rho+i\mu))\Gamma(\frac{1}{2}(\alpha-\beta+1+i\mu))}, \quad \mu \in \mathbb{C} \backslash (i\mathbb{N})$$

and $1_{\mathbb{R}\setminus]-\rho,\rho[}$ is the characteristic function of $\mathbb{R}\setminus]-\rho,\rho[$.

Denote $L^2_{\sigma}(\mathbb{R}) = L^2(\mathbb{R}, d\sigma(\lambda))$. The Jacobi-Dunkl transform is a unitary isomorphism from $L^2_{\alpha,\beta}(\mathbb{R})$ onto $L^2_{\sigma}(\mathbb{R})$, i.e.

$$||f|| := ||f||_{L^2_{\sigma,\beta}(\mathbb{R})} = ||\mathcal{F}_{\alpha,\beta}(f)||_{L^2_{\sigma}(\mathbb{R})}.$$
 (1)

The operator of Jacobi-Dunkl translation is defined by

$$T_x f(y) = \int_{\mathbb{D}} f(z) d\nu_{x,y}^{\alpha,\beta}(z), \quad \forall x, y \in \mathbb{R}$$

where $\nu_{x,y}^{\alpha,\beta}(z)$, $x,y \in \mathbb{R}$ are the signed measures given by

$$d\nu_{x,y}^{\alpha,\beta}(z) = \begin{cases} K_{\alpha,\beta}(x,y,z)A_{\alpha,\beta}(z)dz & \text{if } x,y \in \mathbb{R}^* \\ \delta_x & \text{if } y = 0 \\ \delta_y & \text{if } x = 0 \end{cases}$$

Here, δ_x is the Dirac measure at x. And,

$$K_{\alpha,\beta}(x,y,z) = M_{\alpha,\beta}(\sinh(|x|)\sinh(|y|)\sinh(|z|))^{-2\alpha}1_{I_{x,y}} \times \int_{0}^{\pi} \rho_{\theta}(x,y,z) \times (g_{\theta}(x,y,z))_{+}^{\alpha-\beta-1}\sin^{2\beta}\theta d\theta$$

$$I_{x,y} = [-|x| - |y|, -||x| - |y||] \cup [||x| - |y||, |x| + |y|]$$

$$\rho_{\theta}(x,y,z) = 1 - \sigma_{x,y,z}^{\theta} + \sigma_{z,x,y}^{\theta} + \sigma_{z,y,x}^{\theta}$$

$$I_{x,y} = [-|x| - |y|, -||x| - |y|]] \cup [||x| - |y||, |x| + |y|]$$

$$\rho_{\theta}(x, y, z) = 1 - \sigma_{x,y,z}^{\theta} + \sigma_{z,x,y}^{\theta} + \sigma_{z,y,x}^{\theta}$$

$$\forall z \in \mathbb{R}, \theta \in [0, \pi], \sigma_{x,y,z}^{\theta} = \begin{cases} \frac{\cosh(x) + \cosh(y) - \cosh(z)\cos(\theta)}{\sinh(x)\sinh(y)} & \text{,if } xy \neq 0 \\ 0 & \text{,if } xy = 0 \end{cases}$$

$$g_{\theta}(x,y,z) = 1 - \cosh^2(x) - \cosh^2(y) - \cosh^2(z) + 2\cosh(x)\cosh(y)\cosh(z)\cos\theta$$

$$t_{+} = \begin{cases} t & \text{,if } t > 0 \\ 0 & \text{,if } t \leq 0 \end{cases}$$

and,

$$M_{\alpha,\beta} = \begin{cases} \frac{2^{-2\rho}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha-\beta)\Gamma(\beta+\frac{1}{2})} & \text{,if } \alpha > \beta \\ 0 & \text{,if } \alpha = \beta \end{cases}$$

In [2], we have

$$\mathcal{F}_{\alpha,\beta}(T_h f)(\lambda) = \psi_{\lambda}^{\alpha,\beta}(h) \mathcal{F}_{\alpha,\beta}(f)(\lambda); \quad \lambda, h \in \mathbb{R}.$$
 (2)

For $\alpha \geq \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind defined by

$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{2})^{2n}}{n! \Gamma(n+\alpha+1)}, \quad z \in \mathbb{C}.$$

Moreover, we see that

$$\lim_{z \to 0} \frac{j_{\alpha}(z) - 1}{z^2} \neq 0,$$

by consequence, there exists $C_1 > 0$ and $\eta > 0$ satisfying

$$|z| \le \eta \Rightarrow |j_{\alpha}(z) - 1| \ge C_1 |z|^2 \tag{3}$$

Lemma 2.1. The following inequalities are valids for Jacobi functions $\varphi_{\mu}^{\alpha,\beta}(t)$:

(c) $|\varphi_{\mu}^{\alpha,\beta}(t)| \leq 1$, (d) $|1 - \varphi_{\mu}^{\alpha,\beta}(t)| \leq t^2(\mu^2 + \rho^2)$. **Proof.** (See[[8]],Lemma 3.1,Lemma 3.2).

Lemma 2.2. Let $\alpha \geq \beta \geq \frac{-1}{2}$, $\alpha \neq \frac{-1}{2}$. Then for $|\nu| \leq \rho$, there exists a positive constant C_2 such that

$$|1 - \varphi_{\mu+i\nu}^{\alpha,\beta}(t)| \ge C_2 |1 - j_{\alpha}(\mu t)|.$$

Proof. (See[4]],Lemma 9).

3. MAIN RESULT

In this section we give the main result of this paper. We need first to define the ψ -Jacobi-Dunkl Lipschitz class.

Definition 3.1. A function $f \in L^2_{\alpha,\beta}(\mathbb{R})$ is said to be in the ψ -Jacobi-Dunkl Lipschitz class, denoted by $Lip(\psi, 2, \alpha, \beta)$, if

$$||N_h f|| = O(\psi(h)), \quad as \quad h \to 0,$$

where $N_h = T_h + T_{-h} - 2I$, I is the unit operator in the space $L^2_{\alpha,\beta}(\mathbb{R})$ and ψ is a continuous increasing function on $[0,\infty), \psi(0)=0$, $\psi(ts)=\psi(t)\psi(s)$ for all $t,s\in[0,\infty)$ and this function verify

$$\int_0^{1/h} s\psi(s^{-2})ds = O(\frac{1}{h^2}\psi(h^2)) \quad \text{as} \quad h \to 0.$$

Lemma 3.2. For $f \in L^2_{\alpha,\beta}(\mathbb{R})$, then

$$||N_h f||^2 = 4 \int_{\mathbb{R}} |\varphi_{\mu}^{\alpha,\beta}(h) - 1|^2 |\mathcal{F}_{\alpha,\beta} f(\lambda)|^2 d\sigma(\lambda).$$

Proof. We us formula (2), we conclude that

$$\mathcal{F}_{\alpha,\beta}(N_h f)(\lambda) = (\psi_{\lambda}^{\alpha,\beta}(h) + \psi_{\lambda}^{\alpha,\beta}(-h) - 2)\mathcal{F}_{\alpha,\beta}(f)(\lambda),$$

Since

$$\psi_{\lambda}^{\alpha,\beta}(h) = \varphi_{\mu}^{\alpha,\beta}(h) + i\frac{\lambda}{4(\alpha+1)}\sinh(2h)\varphi_{\mu}^{\alpha+1,\beta+1}(h),$$

$$\psi_{\lambda}^{\alpha,\beta}(-h) = \varphi_{\mu}^{\alpha,\beta}(-h) - i\frac{\lambda}{4(\alpha+1)}\sinh(2h)\varphi_{\mu}^{\alpha+1,\beta+1}(-h),$$

and $\varphi_{\mu}^{\alpha,\beta}$ is even (see [[2]]), then

$$\mathcal{F}_{\alpha,\beta}(N_h f)(\lambda) = 2(\varphi_{\mu}^{\alpha,\beta}(h) - 1)\mathcal{F}_{\alpha,\beta}(f)(\lambda).$$

By Parseval's identity (formula (1)), we have the result.

Theorem 3.3. Let $f \in L^2_{\alpha,\beta}(\mathbb{R})$. Then the following are equivalents

(i)
$$f \in Lip(\psi, 2, \alpha, \beta)$$
,

(ii)
$$\int_{|\lambda|>r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O(\psi(r^{-2})), \quad as \quad r \to \infty.$$

Proof. $(i) \Rightarrow (ii)$. Assume that $f \in Lip(\psi, 2, \alpha, \beta)$, then we have

$$||N_h f|| = O(\psi(h)), \quad as \quad h \to 0.$$

From lemma 3.2, we have

$$||N_h f||^2 = 4 \int_{\mathbb{R}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda)$$

By (3) and lemma 2.2, we get

$$\int_{\frac{\eta}{2h} \le |\lambda| \le \frac{\eta}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \ge C_1^2 C_2^2 \int_{\frac{\eta}{2h} \le |\lambda| \le \frac{\eta}{h}} |\mu h|^4 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda).$$

From $\frac{\eta}{2h} \leq |\lambda| \leq \frac{\eta}{h}$ we have

$$\left(\frac{\eta}{2h}\right)^2 - \rho^2 \le \mu^2 \le \left(\frac{\eta}{h}\right)^2 - \rho^2$$

$$\Rightarrow \mu^2 h^2 \ge \frac{\eta^2}{4} - \rho^2 h^2.$$

Take $h \leq \frac{\eta}{3\rho}$, then we have $\mu^2 h^2 \geq C_3 = C_3(\eta)$.

$$\int_{\frac{\eta}{2h} \le |\lambda| \le \frac{\eta}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \ge C_1^2 C_2^2 C_3^2 \int_{\frac{\eta}{2h} \le |\lambda| \le \frac{\eta}{h}} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda).$$

There exists then a positive constant C such that

$$\int_{\frac{\eta}{2h} \le |\lambda| \le \frac{\eta}{h}} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \le C \int_{\mathbb{R}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \le C \psi(h^2).$$

For all $0 < h < \frac{\eta}{3\rho}$. Then we have,

$$\int_{r \le |\lambda| \le 2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \le C\psi(2^{-2}\eta r^{-2}), \quad r \to \infty.$$

Thus there exists K > 0 such that

$$\int_{r \le |\lambda| \le 2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \le K\psi(r^{-2}), \quad r \to \infty.$$

Furthermore , we obtain

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = \sum_{i=0}^{\infty} \int_{2^i r \le |\lambda| \le 2^{i+1} r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda)
= O(\psi(r^{-2}) + \psi(2^{-2}r^{-2}) + ...)
= O(\psi(r^{-2}) + \psi(r^{-2}) + ...)
= O(\psi(r^{-2})).$$

This proves that

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O(\psi(r^{-2})), \quad as \quad r \to \infty.$$

 $(ii) \Rightarrow (i)$. Suppose now that

$$\int_{|\lambda| > r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O(\psi(r^{-2})), \quad as \quad r \to \infty,$$

and write

$$\int_{\mathbb{R}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda) = \int_{|\lambda| < \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda) + \int_{|\lambda| \ge \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda).$$

Using the inequality (c) of lemma 2.1, we get

$$\int_{|\lambda| \ge \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) \le 4 \int_{|\lambda| \ge \frac{1}{h}} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda).$$

Then

$$\int_{|\lambda| \ge \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O(\psi(h^2)), \quad as \quad h \to 0.$$
 (4)

Set

$$\phi(\lambda) = \int_{\lambda}^{\infty} |\mathcal{F}_{\alpha,\beta}(f)(x)|^2 d\sigma(x).$$

An integration by parts gives

$$\begin{split} \int_0^{\frac{1}{h}} \lambda^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) &= \int_0^{\frac{1}{h}} -\lambda^2 \phi'(\lambda) d\lambda \\ &= -\frac{1}{h^2} \phi(\frac{1}{h}) + 2 \int_0^{\frac{1}{h}} \lambda \phi(\lambda) d\lambda \\ &\leq 2 \int_0^{\frac{1}{h}} \lambda \psi(\lambda^{-2}) d\lambda \\ &= O(\frac{1}{h^2} \psi(h^2)). \end{split}$$

From lemma 2.1, we get

$$\int_{|\lambda| \leq \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda) \leq \int_{|\lambda| \leq \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)| |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda) \\
\leq \int_{|\lambda| \leq \frac{1}{h}} (\mu^{2} + \rho^{2}) h^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda) \\
\leq h^{2} \int_{|\lambda| \leq \frac{1}{h}} \lambda^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda) \\
= O(h^{2} \frac{1}{h^{2}} \psi(h^{2})) \\
= O(\psi(h^{2})).$$

Hence,

$$\int_{|\lambda| \le \frac{1}{h}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^2 |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O(\psi(h^2)). \tag{5}$$

Finally, we conclude from (4) and (5) that

we conclude from (4) and (6) shape
$$\int_{\mathbb{R}} |1 - \varphi_{\mu}^{\alpha,\beta}(h)|^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma(\lambda) = \int_{|\lambda| < \frac{1}{h}} + \int_{|\lambda| \ge \frac{1}{h}} \\
= O(\psi(h^{2})) + O(\psi(h^{2})) \\
= O(\psi(h^{2})).$$

And this ends the proof.

Acknowledgements

The authors would like to thank the referee for his valuable comments and suggestions.

References

- Ben Mohamed. H and Mejjaoli. H, Distributional Jacobi-Dunkl transform and applications, Afr. Diaspora J. Math 1(2004), 24-46.
- [2] Ben Mohamed. H, The Jacobi-Dunkl transform on \mathbb{R} and the convolution product on new space of distributions, Ramanujan J.21(2010), 145-175.
- [3] Ben Salem. N and Ahmed Salem. A, Convolution structure associated with the Jacobi-Dunkl operator on R, Ramanuy J.12(3) (2006), 359-378.
- [4] Bray. W. O and Pinsky. M. A, Growth properties of Fourier transforms via module of continuity, Journal of Functional Analysis.255(288), 2256-2285.
- [5] Chouchane. F, Mili. M and Trimche. K, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R, J.Anal. Appl.1(4)(2003), 387-412.
- [6] Koornwinder. T. H, Jacobi functions and analysis on noncompact semi-simple Lie groups.in: Askey.RA, Koornwinder.TH and Schempp.W(eds) Special Functions: Group theatrical aspects and applications.D.Reidel, Dordrecht (1984).
- [7] Koornwinder. T. H , A new proof of a Paley-Wiener type theorems for the Jacobi transform , Ark.Math.13(1975),145-159.
- [8] Platonov. S. S, Approximation of functions in L_2 -metric on noncompact rank 1 symmetric space. Algebra Analiz .11(1) (1999), 244-270.
- [9] Platonov. S. S, The Fourier transform of function satisfying the Lipshitz condition on rank 1 symetric spaces, Siberian Math.J.46(2) (2005), 1108-1118.
- [10] Titchmarsh. E. C, Introduction to the theory of Fourier integrals. Claredon, oxford, 1948, Komkniga.Moxow.2005.

S. EL OUADIH

DEPARTEMENT OF MATHEMATICS, FACULTY OF SCIENCES AÏN CHOCK, UNIVERSITY HASSAN II, CASABLANCA, MOROCCO

E-mail address: salahwadih@gmail.com

R. DAHER.

DEPARTEMENT OF MATHEMATICS, FACULTY OF SCIENCES AÏN CHOCK, UNIVERSITY HASSAN II, CASABLANCA, MOROCCO

E-mail address: rjdaher024@gmail.com

A. BELKHADIR

DEPARTEMENT OF MATHEMATICS, FACULTY OF SCIENCES AÏN CHOCK, UNIVERSITY HASSAN II, CASABLANCA, MOROCCO

 $E\text{-}mail\ address: \verb"abdelhakbelkhadir@gmail.com"}$