
Electronic Journal of Mathematical Analysis and Applications,

Vol. 4(1) Jan. 2016, pp. 86-98.

ISSN: 2090-729(online)

http://fcag-egypt.com/Journals/EJMAA/

————————————————————————————————

AN APPROXIMATE SOLUTION OF SYSTEMS OF

HIGH-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH

VARIABLE COEFFICIENTS BY MEANS OF A RATIONAL

CHEBYSHEV COLLOCATION METHOD

MOHAMED A. RAMADAN, KAMAL. R. RASLAN, MAHMOUD A. NASSAR

Abstract. The purpose of this paper is to investigate the use of rational
Chebyshev collocation method for solving systems of high-order linear ordinary
differential equations with variable coefficients. Using the rational Chebyshev

collocation points, this method transforms the system of high-order linear or-
dinary differential equations and the given conditions to matrix equations with
unknown rational Chebyshev coefficients. By means of the obtained matrix

equations, a new system of equations which corresponds to the system of linear
algebraic equations is gained. Numerical examples are given to illustrative the
validity and applicability of the method. The proposed method is numerically
compared with others existing methods where it maintains better accuracy.

1. Introduction

Recently many authors studied the application of Chebyshev polynomials and
rational Chebyshev functions for solving different problems of differential equations
and some other physical problems with variable coefficients. Akyüz and Sezer [2]
developed the use of Chebyshev collocation method for the solution of systems of
high-order linear differential equations with variable coefficients. Gökmen and Sezer
[5] developed the use of Taylor collocation method for the solution of systems of
high-order linear differential difference equations with variable coefficients.Yüksel
et al. [11] considered a Chebyshev polynomial approach for higher order linear
Fredholm Volterra integro-differential equations. Saeid Abbasbandy et al. [1] in-
vestigated the use of rational Chebyshev collocation method to get an approximate
solution of Magnetohydrodynamic (MHD) flow of an incompressible viscous fluid
over a stretching sheet. Yalçinbaş et al. [10] and Ramadan et al. [8] investigated
the use of rational Chebyshev functions to obtain an approximate solution of higher
order linear differential equations. In their approach they developed the Chebyshev
tau and the Taylor collocation methods in mth order linear nonhomogenous differ-
ential equation with mixed conditions where the solution is expressed in terms of
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the rational Chebyshev functions. In [7] Parand and Razzaghi introduced rational
Chebyshev functions as a new computational method for solving Volterra model for
population growth of a species within a closed system where the Volterra popula-
tion model is first converted to an equivalent nonlinear ODE, the solution of which
is then approximated by a rational Chebyshev functions with unknown coefficients.
The operational matrices of derivative and product of rational Chebyshev functions
are given.

The organization of this paper is as follows. In Section 2, Preliminaries intro-
duced while in Section 3 Properties of the rational Chebyshev (RC) functions are
presented. In Section 4, we formulated the fundamental matrix relation and in
Section 5 matrix relations based on collocation Points Section of the problem are
derived. In Section 6, method of solution is presented. Section 7 contains numer-
ical illustrations and results are compared with the exact solution and other exist
methods to demonstrate the accuracy of the present method.

2. Preliminaries

A system of k linear differential equations with variable coefficients is a set of k
equations of the mth order in the form [2]

m∑
n=0

k∑
j=1

pnij (t) y
(n)
j (t) = fi (t) , i = 1, 2, . . . , k (1)

This system can be written in compact notation as

m∑
i=0

P i (t)y
(i) (t) = f (t) (2)

where

P i(t) =


pi11 pi12 ... pi1k
pi21 pi22 ... pi2k
. . .
. . .
. . .

pik1 pik2 ... pikk

 , y (i)(t) =



y
(i)
1 (t)

y
(i)
2 (t)
.
.
.

y
(i)
k (t)


, f (t) =


f1(t)
f2(t)
.
.
.

fk(t)


We consider the above system under the mixed condition defined as

m−1∑
i=0

a iy
(i) (a) + biy

(i) (b) + ciy
(i) (c) = λi, a ≤ c ≤ b (3)

where a i, bi, ci and λi are real valued matrices and we assume that the solution
of this system can be expressed in terms of a truncated rational Chebyshev series
as follows:

yi(t) =

N∑
n=0

ainRn(t) , i = 1, 2, ..., k , 0 ≤ t < ∞ (4)

where N is chosen any positive integer such that N ≥ m and ain are unknown
rational Chebyshev coefficients.
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3. Properties Of The Rational Chebyshev (Rc) Functions [10]

In cases when errors near the ends of an interval [a, b] are particular importance,

a weighting function which is the for1/
√
(t− a)(b− t)is often useful. It is supposed

again that a linear change in variables has transformed the given interval into the
interval [-1, 1], so that the weighting function becomes w (t) = 1/

√
1− t2. In other

words a great variety of other types of least – square polynomial approximation can
be formulated in terms of other weighting functions. In particular, for the weighting

function w (t) = (1− t)
α
(1 + t)

β
, (α > −1,β > −1) over [-1, 1], which reduces

to Legendre case when α = β = 0 and to the Chebyshev case when α = β =
−1/2.The well-known Chebyshev polynomials are orthogonal in the interval [-1, 1]

with respect to the weight function w (t) = 1/
√
1− t2and can be determined with

the aid of the recurrence formulae

T0(t) = 1, T1(t) = t, Tn+1(t) = 2t Tn(t)− Tn−1(t) n ≥ 1

The RC functions are defined by

Rn(t) = Tn

(
t− 1

t+ 1

)
or clearly

R0(t) = 1, R1(t) =
t− 1

t+ 1
, Rn+1 = 2

(
t− 1

t+ 1

)
Rn −Rn−1, n ≥ 1 (5)

These functions are orthogonal with respect to the weight functionw(t) = 1
/
((t+ 1)

√
t)

in the interval [0, 8).
If we use the expression v= t−1

t+1 in the RC function (4), we have

R(t) = V (t)CT (6)

where R (t) and V (t) are matrices of the form:

R(t) =
[
R0(t) R1(t) ... RN (t)

]
V (t) =

[
v0(t) v1(t) ... vN (t)

]
and CT is a matrix with its inverse given by

C−1 =



1 0 0 0 ... 0 0
0 1 0 0 ... 0 0

1/2 0 1/2 0 ... 0 0
0 3/4 0 1/4 0 0
. . . . . .
. . . . . .
. . . . . .

1
2N

(
N

N−0
2

)
0 1

2N−1

(
N

N−2
2

)
0 ... 1

2N−1

(
N
0

)
0

0 1
2N−1

(
N

N−1
2

)
0 1

2N−1

(
N

N−3
2

)
... 0 1

2N−1

(
N
0

)


In this case, we are going to use the last row for odd values of N, and otherwise

we use the second row from below of matrix C−1.
For example, in the cases N = 3 and N = 4, the matrix C becomes

C =


1 0 0 0
0 1 0 0
−1 0 2 0
0 −3 0 4

 , C =


1 0 0 0 0
0 1 0 0 0
−1 0 2 0 0
0 −3 0 4 0
1 0 −8 0 8


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Consequently, thejth derivative of the matrix R(t), can be obtained as

R(j)(t) = V (j)(t)CT (7)

where

R(j)(t) =
[
R

(j)
0 (t) R

(j)
1 (t) ... R

(j)
N (t)

]
V(j)(t) =

[
(v0(t))(j) (v1(t))(j) ... (vN (t))(j)

]
and

v0(x) = 1 , v1(x) =
x− 1

x+ 1
, v2(x) =

(
x− 1

x+ 1

)2

, . . . , vN (x) =

(
x− 1

x+ 1

)N

4. Fundamental Matrix Relation

Let us first assume that the solution yi(t)of Eq. (1) can be expressed in the form
(4), which is a truncated Chebyshev series in terms of RC functions. Then yi(t)

and its derivative y
(j)
i (t) can be put in the matrix forms

yi(t) = R(t)Ai (8)

and

y
(j)
i (t) = R(j)(t)Aii = 1, 2, . . . , k, j = 0, 1, . . . ,m ≤ N (9)

where

Ai =
[
ai0 ai1 · · · aiN

]T
,

Substituting relation (7) into Eq. (9), we get

y
(j)
i (t) = V (j)(t)CTAi j = 0, 1, . . . ,m ≤ N (10)

Hence, the matrix y (i)( t)defined as a column matrix that is formed of ith deriva-
tives of unknown functions, can be expressed by

y (i)(t) = V (i)(t)CTA (11)

where

V(i)(t) =


V (i)(t) 0 · · · 0

0 V (i)(t) · · · 0
...

...
. . .

...

0 0 · · · V (i)(t)


k×k

,CT =


CT 0 · · · 0

0 CT · · · 0
...

...
. . .

...
0 0 · · · CT


k×k

, A=


A0

A1

...
Ak


k×1

5. Matrix Relation Based On Collocation Points

Now, let us define the collocation points as

ts =
c

N
s, s = 0, 1, . . . , N (12)

so that 0 ≤ ts ≤ c < ∞; c ∈ IR+.
Then we substitute the collocation points (12) into Eq. (2) to obtain the system

m∑
i=0

P̃ iY
(i) = F (13)
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where

P̃ i =


P i(t0) 0 · · · 0

0 P i(t1) · · · 0
...

...
. . .

...
0 0 · · · P i(tN )

 ,Y (i) =


y (i)(t0)
y (i)(t1)

...
y (i)(tN )

 ,F =


f (t0)
f (t1)
...

f (tN )

 ,

By putting the collocation points xs,s = 0, 1, . . . , N in relation (11) we have the
matrix system

y (i)(ts) = V (i)(ts)C
TA (14)

This system can be written as

Y (i) = Ṽ
(i)
CTA

where

Ṽ
(i)

=


V (i)(t0)

V (i)(t1)
...

V (i)(tN )


with the aid of this equation, expression (13) becomes

m∑
i=0

P̃ i Ṽ
(i)
CTA = F (15)

Similarly, we form the matrix representations of the mixed conditions.
Substituting the matrix y(i)(a) and y(i)(b) which depends on the rational Cheby-

shev coefficients matrix A into the Eq. (3) and simplifying the result we obtain

m−1∑
i=0

{a iV
(i)(a) + biV

(i)(b) + ciV
(i)(c)}CTA = λi (16)

6. Method Of Solution

The fundamental matrix equation (15) for Eq. (1) corresponds to a system of k
(N +1) algebraic equations for the k (N +1) unknown coefficientsai0, ai1, . . . , aiN ; i =
1, 2, . . . , k.

Briefly we can write Eq. (15) as

W A =F or[W; F ] (17)

where

W = [wpq] =
m∑
i=0

P̃ i Ṽ
(i)
CT , p, q = 1, 2, . . . , k(N + 1)

We can obtain the matrix form for the mixed conditions (3), by means of Eq. (16)
briefly as

UA = λi (18)

where

U =
m−1∑
i=0

{a iV
(i)(a) + biV

(i)(b) + ciV
(i)(c)}CT
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Consequently, replacing the rows of the matrix U and λi by the last rows of the
matrix W and F respectively, we have

W̃A = F̃ or
[
W̃ ; F̃

]
(19)

In case, the number of conditions is mk, the augmented matrix of the above system
is following

[
W̃ ; F̃

]
=



w1,1 w1,2 · · · w1,k(N+1) ; f1(t0)
w2,1 w2.2 · · · w2,k(N+1) ; f2(t0)
...

...
...

...
...

wk,1 wk,2 · · · wk,k(N+1) ; fk(t0)
wk+1,1 wk+1,2 · · · wk+1,k(N+1) ; f1(t1)

...
...

...
...

...
wk(N−m+1),1 wk(N−m+1),2 · · · wk(N−m+1),k(N+1) ; fk(tN−m)

u1,1 u1,2 · · · u1,k(N+1) ; λ1

u2,1 u2,2 · · · u2,k(N+1) ; λ2

...
...

...
...

...
umk,1 umk,2 · · · umk,k(N+1) ; λmk


Hence rational Chebyshev coefficients can be simply computed and the solution

of system (2) under the mixed conditions (3) can then be obtained.

7. Numerical Examples

In this section, several numerical examples are given to illustrate the accuracy
and effectiveness of the proposed method. All examples are performed on the
computer using a program written in MATHEMATICA 7.0. The absolute errors
in the Tables are the values of |y(t)− yN (t)| at selected points.

Example 1Consider the linear system

x′(t) + y′(t) = 17−7t
2(1+t)3

x′(t)− y′(t) + 3
1+tx(t)−

2
1+ty(t) =

3+11t
2(1+t)3

x ∈ [0, 1]

withx(0) = 0, y(0) = 0
Then, for N =2, the collocation points are t0 = 0, t1 = 1/2, t2 = 1
The fundamental matrix equation (15) of problem is

{P̃0Ṽ
(0)

+ P̃1Ṽ
(1)}CTA = F

whereP̃0, P̃1, Ṽ
(0)

,Ṽ
(1)

,CTare matrices of order (6×6) given, for this example,

P̃0 =


0 0 0 0 0 0
3 −2 0 0 0 0
0 0 0 0 0 0
0 0 2 − 4

3 0 0
0 0 0 0 0 0
0 0 0 0 3

2 −1

 , P̃1 =


1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

 ,
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Ṽ
(0)

=


1 −1 1 0 0 0
0 0 0 1 −1 1
1 −1

3
1
9 0 0 0

0 0 0 1 −1
3

1
9

1 0 0 0 0 0
0 0 0 1 0 0

 , Ṽ
(1)

=


0 2 −4 0 0 0
0 0 0 0 2 4
0 8

9 −16
27 0 0 0

0 0 0 0 8
9 −16

27
0 1

2 0 0 0 0
0 0 0 0 1

2 0

 ,

CT =


1 0 −1 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 2

 ,[W̃ ;F̃ ] =


0 2 −8 0 2 −8 ; 17

2
3 −1 −5 −2 0 6 ; 3

2
0 8

9 − 32
27 0 8

9 −32
27 ; 2

2 2
9 − 74

27 −4
3 − 4

9
20
9 ; 34

27
1 −1 1 0 0 0 ; 0
0 0 0 1 −1 1 ; 0

.
Then we obtain the solution

A =
[
1 1

2 − 1
2 1 3

4 −1
4

]T
Therefore, we find the solution

yi(t) =

2∑
n=0

ainRn(t)

Then

x(t) = R0 +
1

2
R1 −

1

2
R2 and y(t) = R0 +

3

4
R1 −

1

4
R2

or in the form

x(t) =
5t+ t2

(t+ 1)2
, y(t) =

7t+ 3t2

2(t+ 1)2

which is exact solution of this problem.
Example 2 Consider the two solvable linear time varying differential algebraic

equations in Campbell paper [3][
−t 1
0 0

] [
x′

y′

]
+

[
0 0
−t 1

] [
x
y

]
=

[
1
0

]
with the exact solutionsx = 1, y = t. For this example we have,

k = 2,m = 1, f1(t) = 1, f2(t) = 0, p011(t) = 0, p012(t) = 0, p021(t) = −t,
p022(t) = 1, p111(t) = −t, p112(t) = 1, p121(t) = 0, p122(t) = 0

Then, for N =4, the collocation points are t0 = 0, t1 = 1/4, t2 = 1/2, t3 =
3/4, t4 = 1 and the fundamental matrix equation of problem is

{P̃0Ṽ
(0)

CT + P̃1Ṽ
(1)

CT}A = F

Following the procedure in Section 7, we find the matrix in (19) for N = 4 as:
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[W̃ ; F̃ ] =



0 0 0 0 0 0 2 −8 18 −32 ; 1
0 0 0 0 0 1 −1 1 −1 1 ; 0
0 − 8

25
96
125 −264

625 −2688
3125 0 32

25 − 384
125

1056
625

10752
3125 ; 1

− 1
4

2
5 − 43

100
2

125
527
2500 1 −3

5 − 7
25

117
125 − 527

625 ; 0
0 − 4

9
16
27

20
27 −448

243 0 8
9 −32

27 −40
27

896
243 ; 1

− 1
2

2
3 −11

18 − 11
18 − 17

162 1 −1
3 − 7

9
23
27

17
81 ; 0

0 −24
49

96
343

3240
2401 − 18048

16807 0 32
49 − 128

343 −4320
2401

24064
1601 ; 1

− 3
4

6
7 − 153

196
150
343 −6051

9604 1 −1
7 −47

49
143
343

2017
2401 ; 0

0 − 1
2 0 3

2 0 0 1
2 0 − 3

2 0 ; 1
−1 0 −1 1 −1 1 0 −1 0 1 ; 0


We find the rational Chebyshev coefficients matrix for N =4, as:

A =
[

11899
16384 − 241

512 −1301
4096 − 73

512 − 743
16384

31711
16384

2757
1024

3971
4096

251
1024

533
16384

]
We obtain the approximate solutions by rational Chebyshev functions for t ∈ [0, 1]
of example2 for N = 4, 6 and 8 as shown in tables 1 and 2. In tables 3 and 4 given
numerical results of approximate solution and absolute error functions by rational
Chebyshev functions for t ∈ [0, 2] of example2 for N = 8.

Table 1 Approximate solution and exact values of x (t) for Example 2

ti Exact solution Present Method
x(t) = 1 N = 4 N = 6 N = 8

0 1 0.976525 0.997427983539 0.999699592590
0.2 1 1.003405912422 1.000067552918 0.999997454604
0.4 1 0.999560729904 0.999996121724 1.000000248814
0.6 1 1.000672507934 0.999998259446 1.000000085493
0.8 1 1.000672772824 1.000005930571 0.999999900682
1 1 0.99853515625 0.999959812242 0.999998826533

Table 2 Approximate solution and exact values of y(t) for Example 2

ti Exact solution Present Method
y(t) = t N = 4 N = 6 N = 8

0 0 0 0 0
0.2 0.2 0.200840326003 0.200009991261 0.199999346434
0.4 0.4 0.399742294877 0.399999403611 0.400000091682
0.6 0.6 0.599893569946 0.599998527103 0.600000053991
0.8 0.8 0.800506782502 0.800005053424 0.799999926184
1 1 0.99853515625 0.999959812243 0.999998826534



94 M. A. RAMADAN, K. R. RASLAN, M. A. NASSAR EJMAA-2016/4(1)

Table 3 Approximate solution, exact values and absolute error of x (t),t ∈
[0, 2]of Example2 for N = 8

ti Exact solution N = 8, x(ti) ex,8(ti)
0.2 1 1.00355470 3.55470e-003
0.4 1 0.99981014 1.89854e-004
0.6 1 0.99999611 3.88115e-006
0.8 1 1.00000853 8.53007e-006
1 1 0.99999571 4.29153e-006
1.2 1 1.00000171 1.71298e-006
1.4 1 0.99999985 1.51436e-007
1.6 1 0.99999866 1.34171e-006
1.8 1 1.00000405 4.04565e-006
2 1 0.99998828 1.17214e-005

Table 4 Approximate solution, exact values and absolute error of y (t),

t ∈ [0, 2]of Example2for N = 8

ti Exact solution N = 8, x(ti) ex,8(ti)
0 0 0 0
0.2 0.2 0.20085708 8.57081e-004
0.4 0.4 0.39990250 9.74955e-005
0.6 0.6 0.60000112 1.12515e-006
0.8 0.8 0.80000629 6.28638e-006
1 1 0.99999571 4.29153e-006
1.2 1.2 1.20000216 2.16355e-006
1.4 1.4 1.39999965 3.46774e-007
1.6 1.6 1.59999801 1.99441e-006
1.8 1.8 1.80000712 7.11585e-006
2 2 1.99997656 2.34429e-005

Example 3 Let us consider the initial value problem [4]

x′(t) + y′(t) + y(t) = t− e−t

x′(t) + 4y′(t) + x(t) = 1 + 2e−t

with the initial conditions x(0) = 1, y(0) = 0, and the exact solutions

x(t) = e−t + 3e−t/3 − 3, y(t) = −1

2
e−t +

3

2
e−t/3 − 1 + t

The numerical solutions obtained from the rational Chebyshev collocation method
for N = 5 are compared with the results, using the Chebyshev collocation method
[2] with N = 5 and Stehfest’s method with M = 8, given by Davies and Crann [4]
in Tables 5 and 6.
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Table 5 Comparison between absolute error functions obtained by present

methods and other existed methods forx(t)of Example 3 for N=5

ti Stehfestmethod[4] Chebyshev collocation [2] Presentmethod
0.1 6.7614e-005 4.510522e-005 6.2951e-005
0.2 8.4949e-005 7.985043e-005 1.5714e-004
0.5 3.1897e-003 9.719089e-005 4.3862e-004
0.8 5.2028e-003 8.006002e-005 8.0076e-004
1 1.1937e-002 1.067677e-004 1.0598e-003

Table 6 Comparison between absolute error functions obtained by present

method and other existed methods for y(t)of Example 3 for N=5

ti Stehfestmethod[4] Chebyshev collocation [2] Presentmethod
0.1 8.4086e-006 2.247723e-005 4.5250e-004
0.2 1.9575e-005 3. 984701e-005 6.5580e-004
0.5 2.242e-004 4.890662e-005 6.7891e-004
0.8 4.464e-004 4.064222e-005 7.8896e-004
1 4.710e-004 5.390356e-005 1.2735e-003

Example 4
Consider the following linear differential system [9]

x′(t) + y′(t) + x(t) + y(t) = 1
y′(t)− 2x(t)− y(t) = 0 t ∈ [0, 1]

with the initial condition y1(0) = 0, y2 = (0) = 1,and the exact solution y1(t) =
e−t − 1, y2(t) = 2− e−t .

For the example,

k = 2,m = 1,
f1(t) = 1, f2(2) = 0, p011(t) = 1, p012(t) = 1, p021(t) = −2,
p022(t) = −1, p111(t) = 1, p112(t) = 1, p121(t) = 0, p122(t) = 1.

For (15) the fundamental matrix equation of the problem is

{P̃0Ṽ
(0)

+ P̃1Ṽ
(1)}CTA = F

We obtain the approximate solutions by RC functions of the problem for N = 6, 8
in tables 7, 8. The numerical results obtained by the present method for N = 6,
are compared with the differential transform method [9], of this system. It is seen
form the tables that the present method is better than the differential transform
method in [9].
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Table 7 Comparison between Exact solution and approximate solutions ob-

tained by present method and other existed methods for x(t)of Example 4

ti Exact solution Transform method[9] Present method
x(t) = e−t − 1 N = 6, x(ti) N = 6, x(ti) N = 8, x(ti)

0 0 0 0 0
0.2 -0.1812692469220 -0.165693777778 -0.1812493115195 -0.18126925925619
0.4 -0.3296799539643 -0.278471111111 -0.3296650977943 -0.32967996462728
0.6 -0.4511883639059 -0.349692000000 -0.4511761317037 -0.45118837253673
0.8 -0.5506710358827 -0.384369777778 -0.5506606459551 -0.55067104269892
1 -0.6321205588285 -0.398611111111 -0.6321177527222 -0.63212049548008

Table 8 Comparison between exact solution and approximate solutions

obtained by present and other existed methods fory(t)of Example 4

ti Exact solution Transform method[9] Present method
y(ti) = 2− e−t N = 6, y(ti) N = 6, y(ti) N = 8, y(ti)

0 1 1 1 1
0.2 1.18126924692202 1.18359546667 1.1812493115195 1.1812692592562
0.4 1.32967995396436 1.34654720000 1.3296650977943 1.3296799646273
0.6 1.45118836390597 1.50568720000 1.4511761317037 1.4511883725367
0.8 1.55067103588278 1.68261546667 1.5506606459551 1.5506710426989
1 1.63212055882856 1.91250000000 1.6321177527222 1.6321204954801

Table 9 Comparison between absolute error functions obtained by present

and other existed method forx(t)of Example 3 for N=6, 8

ti Transform method[9] ex,6(ti) Present method
ex,6(ti) ex,8(ti)

0 0 0 0
0.2 1.5575e-002 1.9935e-005 1.2334e-008
0.4 5.1209e-002 1.4856e-005 1.0663e-008
0.6 1.0150e-001 1.2232e-005 8.6308e-009
0.8 1.6630e-001 1.039e-005 6.8161e-009
1 2.3351e-001 2.8061e-006 6.3349e-008
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Table 10 Comparison between absolute error functions obtained by present

and other existed method for y(t)of Example 3 for N=6, 8

ti Transform method[9] ey,6(ti) Present method
ey,6(ti) ey,8(ti)

0 0 0 0
0.2 2.3262e-003 1.9935e-005 1.2334e-008
0.4 1.6867e-002 1.4856e-005 1.0663e-008
0.6 5.4499e-002 1.2232e-005 8.6308e-009
0.8 1.3194e-001 1.039e-005 6.8161e-009
1 2.8038e-001 2.8061e-006 6.3349e-008

Example 5
Consider the fourth order linear system differential equation

x(4)(t) + 3y(3)(t) + x′′(t) + 3y′ − 1
1+tx(t) + y(t) = 0

1
5 (1 + t)3y(4)(t) + x(3)(t)− 12x′′(t) + 3y′′(t) + 6y′(t) = 0

with conditions

x(0) = 1, x(1) =
1

8
, x′(0) = −3, x′′(0) = 12, y(0) = 1, y(1) =

1

16
, y′(0) = −4, y′′(0) = 20.

Following the procedure in Section 7, we find the rational Chebyshev coefficients
matrix for N =4 by using rational Chebyshev collocation method as:

A =
[

5
16 − 15

32
3
16 − 1

32 0 35
128 − 7

16
7
32 − 1

16
1

128

]T
Thus the solution of Example 5 becomes

x(t) =
1

(t+ 1)3
, y(t) =

1

(t+ 1)4

which is exact solution of this example

8. Conclusion

The rational Chebyshev collocation for solving systems of high-order linear ordi-
nary differential equations with variable coefficients numerically is presented. A
considerable advantage of the method is that the rational Chebyshev coefficients
of the solution are found very easily by using computer programs. For this reason,
this process is faster than the other methods. Also, an interesting feature of this
method is that when a differential system has linearly independent polynomial so-
lution of degree N or less than N. In addition, an interesting feature of this method
is to find the analytical solutions if the system has an exact solutions that are a
rational functions. Besides, we see that there exists a solution which is closer to
the exact solution if the truncation limit N is increased. The method can also be
extended to system of linear integral and integro differential equations. In addition,
it can be applied to systems of partial differential equations. Illustrative examples
with the satisfactory results are used to demonstrate the application, effectiveness
and accuracy of this method.
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