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SOLVABILITY OF DEGENERATED p(x)-PARABOLIC

EQUATIONS WITH THREE UNBOUNDED NONLINEARITIES.

Y. AKDIM , C. ALLALOU, N. EL GORCH

Abstract. In this paper, we study the existence of renormalized solutions for

the nonlinear p(x)-parabolic problem with f ∈ L1(Q) and b(x, u0) ∈ L1(Ω).

The main contribution of our work is to prove the existence of renormalized
solutions of the weighted variable exponent Sobolev spaces and we suppose

that H(x, t, u,∇u) is the nonlinear term satisfying some growth condition but

no sign condition or the coercivity condition.

1. Introduction

Let Ω be a bounded domain in RN (N ≥ 1), T is a positive real number, and Q =
Ω × (0, T ). We are interested in existence of renormalized solutions to the following
nonlinear parabolic problem

(P)


∂b(x,u)
∂t

− div(a(x, t, u,∇u)) +H(x, t, u,∇u) = f in Q = Ω× (0, T )

b(x, u) |t=0= b(x, u0) in Ω

u = 0 on ∂Ω× (0, T ),

where f ∈ L1(Q), b(x, u0) ∈ L1(Ω) . The operator −div(a(x, t, u,∇u) is a Leray-Lions

operator defined on Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) (see assumption (3.3)-(3.5) of section 3) which

is coercive b(x, u) is an unbounded function of u, H is a nonlinear lower order term. The
notion of renormalized solutions was introduced by R. J. Diperna and P. L. Lions [10] for
the study of the Boltzmann equation. It was then used by L. Boccardo and al [6] when

the right hand side is in W−1,p′(Ω) and by J. M Rakoston [11] when the right hand side
is in L1(Ω).
It is our purpose to prove the existence of renormalized solution of weighted variable
exponent Sobolev spaces for the problem (P) setting without the sign condition and
without the coercivity condition, the critical growth condition on H is only with respect
to ∇u and not with respect to u (see assumption H2). Where the right hand side is
assumed to satisfy: f belongs to L1(Q). Other work in this direction can be found in [
[1],[4],[19],[20]].
For the convenience of the readers, we recall some definitions and basic properties of
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the weighted variable exponent Lebesgue spaces Lp(x)(Ω, ω) and the weighted variable

exponent Sobolev spaces W 1,p(x)(Ω, ω). Set

C+(Ω) = {p ∈ C(Ω) : min
x∈Ω

p(x) > 1}.

For any p ∈ C+(Ω), we define p+ = maxx∈Ω p(x), p− = minx∈Ω p(x).

For any p ∈ C+(Ω), we introduce the weighted variable exponent Lebesgue space Lp(x)(Ω, ω)
that consists of all measurable real-valued functions u such that

Lp(x)(Ω, ω) = {u : Ω→ R,measurable,
∫

Ω

|u(x)|p(x)ω(x)dx <∞}.

Then, Lp(x)(Ω, ω) endowed with the Luxemburg norm

|u|Lp(x)(Ω,ω) = inf{λ > 0 :

∫
Ω

|u(x)

λ
|p(x)ω(x)dx ≤ 1}

becomes a normed space. When ω(x) ≡ 1, we have Lp(x)(Ω, ω) ≡ Lp(x)(Ω) and we use
the notation |u|Lp(x)(Ω) instead of |u|Lp(x)(Ω,w). The following Hölder type inequality is

useful for the next sections. The weighted variable exponent Sobolev space W 1,p(x)(Ω, ω)
is defined by

W 1,p(x)(Ω, ω) = {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω, ω)},
where the norm is

‖u‖W1,p(x)(Ω,ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω,ω) (1.1)

or, equivalently

‖u‖W1,p(x)(Ω,ω) = inf{λ > 0 :

∫
Ω

|u(x)

λ
|p(x) + ω(x)|∇u(x)

λ
|p(x)dx ≤ 1}

for all u ∈W 1,p(x)(Ω, ω).

It is significant that smooth functions are not dense in W 1,p(x)(Ω) without additional as-
sumptions on the exponent p(x). This feature was observed by Zhikov [21] in connection
with the Lavrentiev phenomenon. However, if the exponent p(x) is log-Hölder continuous,
i.e., there is a constant C such that

|p(x)− p(y)| ≤ C

− log |x− y| (1.2)

for every x, y with |x − y| ≤ 1
2
, then smooth functions are dense in variable exponent

Sobolev spaces and there is no confusion in defining the Sobolev space with zero boundary
values, W 1,p(x)(Ω), as the completion of C∞0 (Ω) with respect to the norm ‖u‖W1,p(x)(Ω)

(see [12]).

W
1,p(x)
0 (Ω, ω) is defined as the completion of C∞0 (Ω) in W 1,p(x)(Ω, ω) with respect to the

norm ‖u‖W1,p(x)(Ω,ω).

Throughout the paper, we assume that p ∈ C+(Ω) and ω is a measurable positive and a.e.
finite function in Ω.
This paper is organized as follows. In Section 2, we state some basic results for the
weighted variable exponent Lebesgue-Sobolev spaces which is given in [16]. In Section 3,
we make precise all the assumption on b, a, H, f and b(x, u0) and give the definition of a
renormalized solution of the problem (P) and main results, which is proved in Section 4.

2. Preliminaries.

In this Section, we state some elementary properties for the (weighted) variable expo-
nent Lebesgue-Sobolev spaces which will be used in the next sections. The basic properties
of the variable exponent Lebesgue-Sobolev spaces, that is when ω(x) ≡ 1 can be found
from [13, 15].
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Lemma 2.1. (See [13, 15].)(Generalised Hölder inequality).

i) For any functions u ∈ Lp(·)(Ω) and v ∈ Lp
′(.)(Ω), we have

|
∫

Ω
uvdx| ≤ ( 1

p− + 1
p′− )||u||p(·)||v||p′(.) ≤ 2||u||p(·)||v||p′(.).

ii) For all p, q ∈ C+(Ω̄) such that p(x) ≤ q(x) a.e. in Ω, we have

Lq(.) ↪→ Lp(·) and the embedding is continuous.

Lemma 2.2. (See [16].) Denote ρ(u) =
∫

Ω
ω(x)|u(x)|p(x)dx for all u ∈ Lp(x)(Ω, ω).

Then,

|u|Lp(x)(Ω,ω) < 1(= 1;> 1) if and only if ρ(u) < 1(= 1;> 1), (2.1)

if |u|Lp(x)(Ω,ω) > 1 then |u|p
−

Lp(x)(Ω,ω)
≤ ρ(u) ≤ |u|p

+

Lp(x)(Ω,ω)
, (2.2)

if |u|Lp(x)(Ω,ω) < 1 then |u|p
+

Lp(x)(Ω,ω)
≤ ρ(u) ≤ |u|p

−

Lp(x)(Ω,ω)
. (2.3)

Remark 2.3. ([17].) If we set

I(u) =

∫
Ω

|u(x)|p(x) + ω(x)|∇u(x)|p(x)dx.

Then, following the same argumen, we have

min{‖u‖p
−

W1,p(x)(Ω,ω)
, ‖u‖p

+

W1,p(x)(Ω,ω)
} ≤ I(u) ≤ max{‖u‖p

−

W1,p(x)(Ω,ω)
, ‖u‖p

+

W1,p(x)(Ω,ω)
}.

Throughout the paper, we assume that ω is a measurable positive and
a.e.finite function in Ω satisfying that

(W1) ω ∈ L1
loc(Ω) and ω

− 1
(p(x)−1) ∈ L1

loc(Ω);

(W2) ω−s(x) ∈ L1(Ω) with s(x) ∈ ( N
p(x)

,∞) ∩ [ 1
p(x)−1

,∞).

The reasons that we assume (W1) and (W2) can be found in [16].

Remark 2.4. ([16].)

(i) If ω is a positive measurable and finite function, then Lp(x)(Ω, ω) is a reflexive Banach
space.
(ii) Moreover, if (W1) holds, then W 1,p(x)(Ω, ω) is a reflexive Banach space.

For p, s ∈ C+(Ω), denote

ps(x) = p(x)s(x)
s(x)+1

< p(x), where s(x) is given in (W2).

Assume that we fix the variable exponent restrictions{
p∗s(x) = p(x)s(x)N

(s(x)+1)N−p(x)s(x)
if N > ps(x),

p∗s(x) arbitrary if N ≤ ps(x)

for almost all x ∈ Ω. These definitions play a key role in our paper. We shall frequently
make use of the following (compact) imbedding theorem for the weighted variable exponent
Lebesgue-Sobolev space in the next sections.

Lemma 2.5. ([16].) Let p, s ∈ C+(Ω) satisfy the log-Hölder continuity condition (1.2),

and let (W1) and (W2) be satisfied. If r ∈ C+(Ω)) and 1 < r(x) ≤ p∗s. Then, we obtain
the continuous imbedding

W 1,p(x)(Ω, ω) ↪→ Lr(x)(Ω).

Moreover, we have the compact imbedding

W 1,p(x)(Ω, ω) ↪→ Lr(x)(Ω),

provided that 1 < r(x) < p∗s(x) for all x ∈ Ω.

From Lemma 2.5, we have Poincaré-type inequality immediately.
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Corollary 2.6. ([16].) Let p ∈ C+(Ω) satisfy the log-Hölder continuity condition (1.2).
If (W1) and (W2) hold, then the estimate

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω,ω)

holds, for every u ∈ C∞0 (Ω) with a positive constant C independent of u.

Throughout this paper, let p ∈ C+(Ω) satisfy the log-Hölder continuity condition (1.2)

and X := W
1,p(x)
0 (Ω, ω) be the weighted variable exponent Sobolev space that consists of

all real valued functions u from W 1,p(x)(Ω, ω) which vanish on the boundary ∂Ω, endowed
with the norm

‖u‖X = inf{λ > 0 :

∫
Ω

∣∣∣∇u(x)

λ

∣∣∣p(x)

ω(x)dx ≤ 1},

which is equivalent to the norm (1.1) due to Corollary 2.6. The following proposition

gives the characterization of the dual space (W
k,p(x)
0 (Ω, ω))∗, which is analogous to [[15],

Theorem 3.16]. We recall that the dual space of weighted Sobolev spaces W
1,p(x)
0 (Ω, ω) is

equivalent to W−1,p′(x)(Ω, ω), where ω∗ = ω1−p′(x).

Lemma 2.7. ([5].) Let g ∈ Lp(·)(Q,ω) and let gn ∈ Lp(·)(Q,ω), with ‖gn‖Lp(·)(Q,ω) ≤ c,

1 < r(x) < ∞. If gn(x) → g(x) a.e. in Q, then gn ⇀ g in Lp(·)(Q,ω), where ⇀ denotes
weak convergence and ω is a weight function on Q.

We will also use the standard notation for Bochner spaces, i.e., if q ≥ 1 and X is a Ba-
nach space then Lq(0, T ;X) denotes the space of strongly measurable function u : (0, T )→
X for which t→ ‖u(t)‖X ∈ Lq(0, T ) Morever, C([0;T ];X) denotes the space of continuous
function u : [0;T ]→ X endowed with the norm ‖u‖C([0;T ];X) = maxt∈[0;T ]‖u‖X ,

Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) = {u : (0, T )→W

1,p(·)
0 (Ω, ω) measurable;

(

∫ T

0

‖u(t)‖p
−

W
1,p(·)
0 (Ω,ω)

)1/p−

<∞}

and we define the space

L∞(0, T ;X) = {u : (0, T )→ X measurable;∃C > 0/‖u(t)‖X ≤ C a.e.}

where the norm is defined by:

‖u‖L∞(0,T ;X) = inf{C > 0; ‖u(t)‖X ≤ C a.e.}.

We introduce the functional space see [5]

V = {f ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)); |∇f | ∈ Lp(·)(Q,ω)}, (2.4)

which endowed with the norm:

‖f‖V = ‖∇f‖Lp(·)(Q,ω)

or, the equivalent norm :

‖|f‖|V = ‖f‖
Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

+ ‖∇f‖Lp(·)(Q,ω),

is a separable and reflexive Banach space. The equivalence of the two norms is an easy

consequence of the continuous embedding Lp(·)(Q) ↪→ Lp
−

(0, T ;Lp(·)(Ω)) and the Poincaré
inequality. We state some further properties of V in the following lemma.

Lemma 2.8. Let V be defined as in (2.4) and its dual space be denote by V ∗. Then,
i) We have the following continuous dense embeddings:

Lp
+

(0, T ;W
1,p(·)
0 (Ω, ω)) ↪→ V ↪→ Lp

−
(0, T ;W

1,p(·)
0 (Ω, ω)).
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In particular, since D(Q) is dense in Lp
+

(0, T ;W
1,p(·)
0 (Ω, ω), it is dense in V

and for the corresponding dual spaces, we have

L(p−)
′

(0, T ; (W
1,p(·)
0 (Ω, ω))∗) ↪→ V ∗ ↪→ L(p+)

′

(0, T ;W
1,p(·)
0 (Ω, ω))∗).

Note that, we have the following continuous dense embeddings

Lp
+

(0, T ;Lp(·)(Ω, ω)) ↪→ Lp(·)(Q,ω) ↪→ Lp
−

(0, T ;Lp(·)(Ω, ω)).

ii) One can represent the elements of V ∗ as follows: if T ∈ V ∗, then there exists

F = (f1, ...., fN ) ∈ (Lp
′(.)(Q))N such that T = divXF and

〈T, ξ〉V ∗,V =

∫ T

0

∫
Ω

F · ∇ξdxdt

for any ξ ∈ V . Moreover, we have

‖T‖V ∗ = max{‖fi‖Lp(·)(Q,ω), i = 1, ...., n}.

Remark 2.9. The space V ∩ L∞(Q), is endowed with the norm definie by the formula:

‖v‖V ∩L∞(Q) = max{‖v‖V , ‖v‖L∞(Q)}, v ∈ V ∩ L∞(Q),

is a Banach space. In fact, it is the dual space of the Banach space V + L1(Q) endowed
with the norm:

‖v‖V ∗+L1(Q) := inf{‖v1‖V ∗ + ‖v2‖L1(Q)}; v = v1 + v2, v1 ∈ V ∗, v2 ∈ L1(Q).

2.1. Some Technical Results.

Lemma 2.10. Assume (3.3) -(3.5) and let (un)n be a sequence in Lp
−

(0, T,W
1,p(·)
0 (Ω, ω))

such that un ⇀ u weakly in Lp
−

(0, T,W
1,p(·)
0 (Ω, ω)) and∫

Q

(
a(x, t, un,∇un)− a(x, t, un,∇u)

)
· ∇(un − u)dxdt→ 0. (2.5)

Then, un → u strongly in Lp
−

(0, T,W
1,p(·)
0 (Ω, ω)).

Proof.
Let Dn = [a(x, t, un,∇un) − a(x, t, un,∇u)]∇(un − u), thanks to (3.4), we have Dn is a
positive function, and by (2.5) , Dn → 0 in L1(Q) as n→∞.
Extracting a subsequence, still denoted by un, we can write un ⇀ u a.e. in Q and since
Dn → 0 a.e. in Q. There exists a subset B in Q with measure zero such that for all
(t, x) ∈ Q\B,

|u(x, t)| <∞, |∇u(x, t)| <∞, K(x, t) <∞, un → u, Dn → 0.

Taking ξn = ∇un and ξ = ∇u , we have

Dn(x, t) = [a(x, t, un, ξn)− a(x, t, un, ξ)] · (ξn − ξ)
= a(x, t, un, ξn)ξn + a(x, t, un, ξ)ξ − a(x, t, un, ξn)ξ − a(x, t, un, ξ)ξn

≥ αω(x)|ξn|p(x) + αω(x)|ξ|p(x)

− βω1/p(x)(x)
(
k(x, t) + ω1/p′(x)(x)|un|p(x)−1 + ω1/p′(x)(x)|ξn|p(x)−1

)
|ξ|

− βω1/p(x)(x)
(
k(x, t) + ω1/p′(x)(x)|un|p(x)−1 + ω1/p′(x)(x)|ξ|p(x)−1

)
|ξn|

≥ αω(x)|ξn|p(x) − Cx,t[1 + ω1/p′(x)(x)|ξn|p(x)−1 + ω1/p(x)(x)|ξn|],

where Cx,t depending on x, but does not depend on n. (Since un(x, t) → u(x, t) then,
(un)n is bounded), we obtain

Dn(x, t) ≥ |ξn|p(x)
(
αω(x)− Cx,t

|ξn|p(x)
− Cx,tω

1
p′(x)

|ξn|
− Cx,tω

1
p(x)

|ξn|p(x)−1

)
,
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by the standard argument (ξn)n is bounded almost everywhere in Q. Indeed, if |ξn| → ∞
in a measurable subset E ∈ Q then,

lim
n→∞

∫
Q

Dn(x, t)dx ≥ lim
n→∞

∫
E

|ξn|p(x)
(
αω(x)− Cx,t

|ξn|p(x)
− Cx,tω

1
p′(x)

|ξn|
− Cx,tω

1
p(x)

|ξn|p(x)−1

)
=∞,

which is absurd since Dn(x, t)→ 0 in L1(Q)). Let ξ∗ an accumulation point of (ξn)n, we
have |ξ∗| <∞ and by continuity of a(., ., ., .), we obtain

a(x, t, u(x, t), ξ∗)− a(x, t, u(x, t), ξ)] · (ξn − ξ) = 0,

thanks to (3.4), we have ξ∗ = ξ, the uniqueness of the accumulation point implies
that ∇un(x, t) → ∇u(x, t) a.e. in Q. Since the sequence a(x, t, u,∇un) is bounded in

(Lp
′(x)(Q,ω∗))N and a(x, t, u,∇un)→ a(x, t, u,∇u) a.e. in Q, Lemma 2.7 implies

a(x, t, un,∇un) ⇀ a(x, t, u,∇u) in (Lp
′(x)(Q,ω∗))N .

Let us taking ȳn = a(x, t, un,∇un)∇un and ȳ = a(x, t, u,∇u)∇u, then ȳn → ȳ in L1(Q),
according to the condition (3.5), we have

αω(x)|∇un|p(x) ≤ a(x, t, un,∇un)∇un.

Let zn = |∇un|p(x)ω, z = |∇u|p(x)ω and yn = ȳn
α
, y = ȳ

α
. Then, by Fatou’s Lemma, we

obtain ∫
Q

2ydxdt ≤ lim inf
n→∞

∫
Q

(yn + y − |zn − z|)dxdt,

i.e., 0 ≤ lim supn→∞
∫
Q
|zn − z|dxdt, hence

0 ≤ lim inf
n→∞

∫
Q

|zn − z|dx ≤≤ lim sup
n→∞

∫
Q

|zn − z|dx ≤ 0,

this implies

∇un → ∇u in (Lp(x)(Q,ω))N ,

we deduce that

un → u in Lp
−

(0, T,W
1,p(·)
0 (Ω, ω)),

which completes our proof.

LetX = Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)), the dual space ofX isX∗ = Lp

−
(0, T ; (W

1,p(x)
0 (Ω, ω))∗).

Lemma 2.11. (See[17].)

W :=
{
u ∈ V ;ut ∈ V ∗ + L1(Q)

}
↪→ C([0, T ];L1(Ω))

and

W ∩ L∞(Q) ↪→ C([0, T ];L2(Ω)).

Definition 2.12. A monotone map T : D(T ) → X∗ is called maximal monotone if its
graph

G(T ) =
{

(u, T (u)) ∈ X ×X∗ for all u ∈ D(T )
}
,

is not a proper subset of any monotone set in X ×X∗.
Let us consider the operator ∂

∂t
which induces a linear map L from the subset

D(L) =
{
v ∈ X : v′ ∈ X∗, v(0) = 0

}
of X in to X∗ by〈

Lu, v
〉
X

=

∫ T

0

〈u′(t), v(t)〉V dt u ∈ D(L), v ∈ X.

Definition 2.13. A mapping S is called pseudo-monotone with un ⇀ u and Lun ⇀ Lu
and limn→∞ sup〈S(un), un − u〉 ≤ 0, that we have

limn→∞ sup
〈
S(un), un − u

〉
= 0 and S(un) ⇀ S(u) as n→∞.
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3. Assumption and Main Results

Throughout the paper, we assume that the following assumption hold true.
Assumption (H1)

Let Ω be a bounded open subset of RN (N ≥ 1), p ∈ C+(Ω) and
b : Ω × R → R is a Carathéodory function such that for every x ∈ Ω, b(x, .) is a strictly
increasing C1 function with

b(x, 0) = 0. (3.1)

Next, for any k > 0, there exist λk > 0 and functions Ak ∈ L∞(Ω) and Bk ∈ Lp(·)(Ω)
such that

λk ≤
∂b(x, s)

∂s
≤ Ak(x) and

∣∣∣Dx(∂b(x, s)
∂s

)∣∣∣ ≤ Bk(x), (3.2)

for almost every x ∈ Ω and every s such that |s| ≤ k, we denote by
Dx(∂b(x, s) \ ∂s) the gradient of ∂b(x, s) \ ∂s defined in the sense of distributions.
Assumption (H2)
We consider a Leray -Lions operator defined by the formula:

Au = −div a(x, t, u,∇u),

where a : Ω×[0, T ]×R×RN → R is a Caratheodory function i.e., (measurable with respect
to x in Ω for every (s, ξ) in R× RN and continuous with respect to (s, ξ) in R× RN , for

almost every x in Ω) which satisfies the following conditions there exist k ∈ Lp
′(.)(Q) and

α > 0, β > 0 such that for almost every (x, t) ∈ Q all (s, ξ) ∈ R× RN .

|a(x, t, s, ξ)| ≤ βω1/p(x)(x)[k(x, t) + ω1/p′(x)|s|p(x)−1 + ω1/p′(x)(x)|ξ|p(x)−1], (3.3)

[a(x, t, s, ξ)− a(x, t, s, η)] · (ξ − η) > 0 ∀ ξ 6= η ∈ RN , (3.4)

a(x, t, s, ξ) · ξ ≥ αω|ξ|p(x). (3.5)

Assumption (H3)
Let H : Ω× [0, T ]×R×RN → R is a Carathéodory function such that for a.e. (x, t) ∈ Q
and for all s ∈ R, ξ ∈ RN , the growth condition

|H(x, t, s, ξ)| ≤ γ(x, t) + g(s)ω|ξ|p(x) (3.6)

is satisfied, where g : R → R+ is a bounded continuous positive function that belongs to
L1(R), while γ ∈ L1(Q).
We recall that, for k > 0 and s ∈ R, the truncation function Tk(.) defined by

Tk(s) =

{
s if |s| ≤ k
k s
|s| if |s| > k.

Definition 3.1. Let f ∈ L1(Q) and b(., u0) ∈ L1(Ω). A real-valued function u defined on
Q is renormalized solutions of problem (P) if:

Tk(u) ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) for all k ≥ 0, b(x, u) ∈ L∞(0, T ;L1(Ω)), (3.7)∫

{m≤|u|≤m+1}
a(x, t, u,∇u)∇udxdt→ 0 as m→∞, (3.8)

∂BS(x, u)

∂t
− div

(
S′(u)a(x, t, u,∇u)

)
+ S′′(u)a(x, t, u,∇u)∇u

+H(x, t, u,∇u)S′(u) = fS′(u) in D′(Q), (3.9)

for all S ∈ W 2,∞(R), which are piecewise C1 and such that S′ has a compact support in

R, where BS(x, z) =
∫ z

0

∂b(x,r)
∂r

S′(r)dr and

BS(x, u) |t=0= BS(x, u0) in Ω. (3.10)
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Remark 3.2. Equation (3.9) is formally obtained through pointwise multiplication of problem
(P) by S′(u). However, while a(x, t, u,∇u) and H(x, t, u,∇u) do not in general make
sense in (P), all the terms in (3.9) have a meaning in D′(Q). Indeed, if M is such that
supp S ⊂ [−M,M ], the following identifications are made in (3.9):

• S(u) belongs to V ∩ L∞(Q). Since S is a bounded function.
• S′(u) a(x, t, u,∇u) identifies with S′(u) a(x, t, TM (u),∇TM (u)) a.e. in Q,

for any ϕ ∈ D(Q), using Hölder inequality∫
Q

S′(u)a(x, t, u,∇u)∇ϕdxdt =

∫
Q

S′(u)a(x, t, TM (u),∇TM (u))∇ϕdxdt

≤ CM‖S′‖L∞(Q) max
{(∫

Q

|∇TM (u)|p(x)ω
) 1
p′− ,

(∫
Q

|∇TM (u)|p(x)ω
) 1
p′+
}
‖∇ϕ‖Lp(·)(Q),

where M > 0 is that supp S′ ⊂ [−M,M ]. As D(Q) is dense in V, we deduce that

div(S′(u)a(x, t, u,∇u)) ∈ V ∗.

• S′′(u) a(x, t, u,∇u)∇u identifies with S′′(u) a(x, u, TM (u),∇TM (u))∇TM (u) and

S′′(u)a(x, u, TM (u),∇TM (u))∇TM (u) ∈ L1(Q).

• S′(u)H(x, t, u,∇u) identifies with S′(u)H(x, t, TM (u),∇TM (u))
a.e. in Q. Since |TM (u)| ≤M a.e. in Q and S′(u) ∈ L∞(Q),
we see from (3.6) and (3.7) that S′(u)H(x, t, TM (u),∇TM (u)) ∈ L1(Q).

• S′(u) f belongs to L1(Q).

The above considerations show that equation (3.9) hold in D′(Q) and that

∂BS(x, u)

∂t
∈ V ∗ + L1(Q).

Due to the properties of S and (3.9), ∂S(u)
∂t
∈ V ∗+L1(Q), using Lemma 2.11 which implies

that S(u) ∈ C0([0, T );L1(Ω)). So that the initial condition (3.10) makes sense since, due
to the properties of S (increasing) and (3.2), we have∣∣∣(BS(x, r)−BS(x, r′)

∣∣∣ ≤ Ak(x)
∣∣∣S(r)− S(r′)

∣∣∣ for all r, r′ ∈ R. (3.11)

Theorem 3.3. Let f ∈ L1(Q), p(·) ∈ C+(Ω̄) and assume that u0 is a measurable
function such that b(., u0) ∈ L1(Ω). Assume that (H1) − (H3) hold true. Then there,
exists a renormalized solution u of problem (P) in the sense of Definition 3.1.

4. Proof of Main Results.

4.1. Approximate problem. For n > 0, we define approximations of b,H, f and u0.
First set

bn(x, r) = b(x, Tn(r)) +
1

n
r. (4.1)

bn is a Carathéodory function and satisfies (3.2). There exist λn > 0 and functions

An ∈ L∞(Ω) and Bn ∈ Lp(·)(Ω) such that

λn ≤
∂bn(x, s)

∂s
≤ An(x) and

∣∣∣Dx(∂bn(x, s)

∂s

)∣∣∣ ≤ Bn(x) a.e. in Ω, s ∈ R.

Next, set

Hn(x, t, s, ξ) =
H(x, t, s, ξ)

1 + 1
n
|H(x, t, s, ξ)|

.

Note that |Hn(x, t, s, ξ)| ≤ |H(x, t, s, ξ)|
and |Hn(x, t, s, ξ)| ≤ n for all (s, ξ) ∈ R× RN
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and select fn, u0n and bn. So that

fn ∈ Lp
′(.)(Q) and fn → f a.e. in Q, strongly in L1(Q) as n →∞, (4.2)

u0n ∈ D(Ω), ‖bn(x, u0n)‖L1(Ω) ≤ ‖ bn(x, u0)‖L1(Ω), (4.3)

bn(x, u0n)→ b(x, u0) a.e. in Ω and strongly in L1(Ω). (4.4)

Let us now consider the approximate problem

(Pn)


∂bn(x,un)

∂t
− div(a(x, t, un,∇un)) +Hn(x, t, un,∇un) = fn in D′(Q),

bn(x, un) |t=0= bn(x, u0n) in Ω,

un = 0 on ∂Ω× (0, T ) un ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)).

Theorem 4.1. Let fn ∈ Lp
′−

(0, T ;W−1,p′(.)(Ω, ω∗)), p(·) ∈ C+(Ω) for fixed n, the ap-

proximate problem (Pn) has at least one weak solution un ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)).

Proof.
We define the operator Ln : Lp

−
(0, T ;W

1,p(x)
0 (Ω, ω))→ Lp

′−
(0, T ;W−1,p′(.)(Ω, ω∗)) by〈

Lnu, v
〉

=
∫
Q

∂bn(x,u)
∂t

vdxdt =
∫
Q

∂bn(x,u)
∂u

∂u
∂t
vdxdt ∀u, v ∈ Lp

−
(0, T ;W

1,p(·)
0 (Ω, ω)),

then, ∣∣∣〈Lnu, v〉∣∣∣ ≤ ∣∣∣ ∫ T

0

∫
Ω

An(x)
∂u

∂t
vdxdt

∣∣∣ =
∣∣∣ ∫ T

0

∫
Ω

An(x)
∂u

∂t
ω
− 1
p(x) vω

1
p(x) dxdt

∣∣∣
≤
( 1

p−
+

1

p′−

)
‖An‖L∞

∫ T

0

‖∂u
∂t
‖
Lp
′(x)(Ω,ω∗)‖v‖Lp(x)(Ω,w)dt

≤ C
( 1

p−
+

1

p′−

)
‖An‖L∞

∫ T

0

‖∂u
∂t
‖
W−1,p′(.)(Ω,ω∗)‖v‖W1,p(x)

0 (Ω,ω)
dt (4.5)

≤ C
( 1

p−
+

1

p′−

)
‖An‖L∞‖

∂u

∂t
‖
Lp
′−

(0,T,W−1,p′(.)(Ω,ω∗))
‖v‖

Lp
−

(0,T,W
1,p(x)
0 (Ω,ω))

≤ C1‖v‖Lp− (0,T,W
1,p(x)
0 (Ω,ω))

.

We define the operator Gn : Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω))→ Lp

−
(0, T,W−1,p′(.)(Ω, ω∗))

by,
〈
Gnu, v

〉
=

∫
Q

Hn(x, t, u,∇u)vdxdt ∀u, v ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)).

Thanks to the Hölder inequality, we have that for u, v ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω))∫

Q

Hn(x, t, u,∇u)vdxdt ≤
∣∣∣ ∫ T

0

∫
Ω

Hn(x, t, u,∇u)vdxdt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

Hn(x, t, u,∇u)ω
− 1
p(x) vω

1
p(x) dxdt

∣∣∣
≤
( 1

p−
+

1

p′−

)∫ T

0

(∫
Ω

∣∣∣Hn(x, t, u,∇u)
∣∣∣p′(x)

ω
− p
′(x)
p(x) dx

)θ
‖v‖Lp(x)(Ω,ω)dt

≤ C
( 1

p−
+

1

p′−

)∫ T

0

nθp
′+(∫

Ω

ω
− p
′(x)
p(x) dx

)θ
‖v‖

W
1,p(x)
0 (Ω,ω)

dt

≤ C2‖v‖Lp− (0,T ;W
1,p(·)
0 (Ω,ω))

. (4.6)

with θ =

{
1/p′− if ‖Hn(x, t, u,∇u)‖L1(Q) > 1

1/p′+ if ‖Hn(x, t, u,∇u)‖L1(Q) ≤ 1.

Lemma 4.2. Let Bn : Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω))→ Lp

′−
(0, T,W−1,p′(.)(Ω, ω∗)).

The operator Bn = A+Gn is
a)coercive
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b) pseudo-monotone
c) bounded and demi continuous.

Proof. a) For the coercivity, we have for any u ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω))〈

Bnu, u
〉

=
〈
Gnu, u

〉
+
〈
Au, u

〉
⇒
〈
Bnu, u

〉
−
〈
Gnu, u

〉
=
〈
Au, u

〉
then,

〈
Bnu, u

〉
−
〈
Gnu, u

〉
=

∫
Q

a(x, t, u,∇u)∇udxdt

=

∫ T

0

∫
Ω

a(x, t, u,∇u)∇udxdt

≥
∫ T

0

α(

∫
Ω

|∇u|p(x)ω(x)dx)dt (using (3.5))

≥ α‖∇u‖δ
Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

≥ β‖u‖δ
Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

,

which is due to Poincaré inequality with

δ =

p
− if ‖∇u‖

Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

> 1

p+ if ‖∇u‖
Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

≤ 1,

hence,
〈
Bnu, u

〉
−
〈
Gnu, u

〉
≥ β‖u‖δ

Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

then,
〈
Bnu, u

〉
≥ β‖ u‖δ

Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

− C2‖u‖Lp− (0,T ;W
1,p(·)
0 (Ω,ω))

then, we have 〈
Bnu, u

〉
‖u‖

Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

≥ β‖u‖δ−1

Lp
−

(0,T ;W
1,p(·)
0 (Ω,w))

− C2 → +∞

⇒

〈
Bnu, u

〉
‖u‖

Lp
−

(0,T ;W
1,p(x)
0 (Ω,ω))

→ +∞ as ‖u‖
Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

→ +∞

then, Bn is coercive.
b)It remains to show that Bn is pseudo-monotone.

Let (uk)k a sequence in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) such that

uk ⇀ u in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω))

Lnuk ⇀ Lnu in Lp
′−

(0, T ;W−1,p′(.)(Ω, ω∗)) (4.7)

lim
k→∞

sup
〈
Bnuk, uk − u

〉
≤ 0

that, we have prove that

Bnuk ⇀ Bnu in Lp
′−

(0, T ;W
1,p(·)
0 (Ω, ω)) and 〈Bnuk, uk〉 → 〈Bnu, u〉.

By the definition of the operator Ln defined in definition 2.12, we obtain that uk is

bounded in W
1,p(·)
0 (Ω, ω) and since W

1,p(·)
0 (Ω, ω) ↪→ Lp

′(.)(Ω),

then uk → u in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)), then the growth condition (3.3) (a(x, t, uk,∇uk))k

is bounded in (Lp
′(.)(Q,ω∗))N therefore, there exists a function ϕ ∈ (Lp

′(.)(Q,ω∗))N such
that

a(x, t, uk,∇uk) ⇀ ϕ as k → +∞. (4.8)
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Similarly, using condition (3.6),
(
Hn(x, t, uk,∇uk)

)
k

is bounded in L1(Q), then there

exists a function ψn ∈ L1(Q) such that:

Hn(x, t, uk,∇uk)→ ψn in L1(Q) as k → +∞. (4.9)

lim
k→∞

〈
Bnuk, uk

〉
= limk→∞

[〈
Gnuk, uk

〉
+
〈
Auk, uk

〉]
= lim
k→∞

[ ∫
Q

a(x, t, uk,∇uk)∇ukdxdt+

∫
Q

H(x, t, uk,∇uk)ukdxdt
]

=

∫
Q

ϕ∇ukdxdt+

∫
Q

ψnukdxdt (4.10)

using (4.7) and (4.10), we obtain

lim
k→∞

sup
〈
Bnuk, uk

〉
= lim

k→∞
sup

{∫
Q

a(x, t, uk,∇uk)∇ukdxdt

+

∫
Q

H(x, t, uk,∇uk)ukdxdt
}

≤
∫
Q

ϕ∇udxdt+

∫
Q

ψnudxdt (4.11)

thanks to ( 4.9), we have:∫
Q

Hn(x, t, uk,∇uk)dxdt→
∫
Q

ψndxdt. (4.12)

therefore,

lim
k→∞

sup

∫
Q

a(x, t, uk,∇uk)∇uk ≤
∫
Q

ϕ∇udxdt (4.13)

on the other hand, using (3.4), we have∫
Q

[
a(x, t, uk,∇uk)− a(x, t, uk,∇u)

]
(∇uk −∇u)dxdt ≥ 0. (4.14)

Then, ∫
Q

a(x, t, uk,∇uk)∇ukdxdt ≥ −
∫
Q

a(x, t, uk,∇u)∇udxdt

+

∫
Q

a(x, t, uk,∇uk)∇udxdt

+

∫
Q

a(x, t, uk,∇u)∇ukdxdt

and by (4.8), we get

lim
k→∞

inf

∫
Q

a(x, t, uk,∇uk)∇ukdxdt ≥
∫
Q

ϕ∇udxdt,

this implies, thanks to (4.13) that

lim
k→∞

∫
Q

a(x, t, uk,∇uk)∇ukdxdt =

∫
Q

ϕ∇udxdt. (4.15)

Now, by(4.15), we can obtain

lim
k→∞

∫
Q

a(x, t, uk,∇uk)− a(x, t, uk,∇u))(∇uk −∇u)dxdt = 0.
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In view of the Lemma 2.10, we obtain

uk → u in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)),

∇uk → ∇u a.e. in Q.

Then,

a(x, t, uk,∇uk) ⇀ a(x, t, u,∇u) in (Lp
′(.)(Q,ω∗))N ,

Hn(x, t, uk,∇uk) ⇀ Hn(x, t, u,∇u) in L1(Q),

we deduce that

Auk ⇀ Au in (Lp
′−

(Q,ω∗))N

and

Gnuk ⇀ Gnu in L1(Q),

which implies

Bnuk ⇀ Bnu in Lp
′−

(0, T ;W
1,p(·)
0 (Ω, ω))

and 〈
Bnuk, uk

〉
→
〈
Bnu, u

〉
completing the proof of assertion(b).
c) Using Hölder′s inequality and the growth condition (3.3), we can show that the oper-
ator A is bounded, and by using (4.6), we conclude that Bn is bounded. For to show that
Bn is demicontinuous.

Let uk → u in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) and prove that:〈

Bnuk, ψ
〉
→ 〈Bnu, ψ〉 for all ψ ∈ Lp

−
(0, T ;W

1,p(·)
0 (Ω, ω)).

Since a(x, t, uk,∇uk)→ a(x, t, u,∇u) as k →∞ a.e. inQ. Then, by the growth condition
(3.3) and Lemma 2.7

a(x, t, uk,∇uk) ⇀ a(x, t, u,∇u) in (Lp
′(.)(Q,ω∗))N

and for all ϕ ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)), 〈Auk, ϕ〉 → 〈Au,ϕ〉 as k →∞

similarly, Gnuk → Gnu as k → ∞ a.e. in Q, then by the (3.6) and Lemma 2.7 Gnuk ⇀

Gnu in Lp
′(.)(Q,ω∗) and for all φ ∈ Lp

−
(0, T ;W

1,p(·)
0 (Ω, ω)),〈

Gnuk, φ
〉
→
〈
Gnu, φ

〉
as k →∞ which implies Bn is demi continuous.

In view of Theorem 4.1, there exists at least one weak solution un ∈ Lp
−

(0;T ;W
1,p(·)
0 (Ω, ω))

of the problem (Pn).( See [14].)

4.2. A Priori Estimates.

Proposition 4.3. Let un a solution of the approximate problem (Pn). Then, there exists
a constant C( which does not depend on the n and k) such that

‖Tk(un)‖
Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

≤ kC ∀k > 0.

Proof.
Let ϕ ∈ Lp

−
(0, T ;W

1,p(·)
0 (Ω, ω)) ∩ L∞(Q), with ϕ > 0. Choosing v = exp(G(un))ϕ as a

test function in (Pn), where

G(s) =

∫ s

0

(
g(r)

α
)dr,

(the function g appears in (3.6)), we have∫
Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt+

∫
Q

a(x, t, un,∇un)∇(exp(G(un))ϕ)dxdt

+

∫
Q

Hn(x, t, un,∇un) exp(G(un))ϕdxdt =

∫
Q

fn exp(G(un))ϕdxdt.
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In view of (3.6), we obtain∫
Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt+

∫
Q

a(x, t, un,∇un)∇un
g(un)

α
exp(G(un))ϕdxdt

+

∫
Q

a(x, t, un,∇un) exp(G(un))∇ϕdxdt ≤
∫
Q

γ(x, t) exp(G(un))ϕdxdt

+

∫
Q

fn exp(G(un))ϕdxdt+

∫
Q

g(un)|∇un|p(x)ω(x) exp(G(un))ϕdxdt.

By using (3.5), we obtain∫
Q

∂bn(x, un)

∂t
exp(G(un))ϕdxdt+

∫
Q

a(x, t, un,∇un) exp(G(un))∇ϕdxdt

≤
∫
Q

γ(x, t) exp(G(un))ϕdxdt+

∫
Q

fn exp(G(un))ϕdxdt (4.16)

for all ϕ ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) ∩ L∞(Q), with ϕ > 0.

On the other hand, taking v = exp(−G(un))ϕ as a test function in (Pn),
we deduce as in (4.16) that∫

Q

∂bn(x, un)

∂t
exp(−G(un))ϕdxdt+

∫
Q

a(x, t, un,∇un) exp(−G(un))∇ϕdxdt

+

∫
Q

γ(x, t) exp(−G(un))ϕdxdt ≥
∫
Q

fn exp(−G(un))ϕdxdt (4.17)

for all ϕ ∈ Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) ∩ L∞(Q), with ϕ > 0.

Letting ϕ = Tk(un)+χ(0,τ) for every τ ∈ [0, T ], in (4.16), we have∫
Ω

Bnk,G(x, un(τ))dx+

∫
Qτ

a(x, t, un,∇un) exp(G(un))∇Tk(un)+dxdt

≤
∫
Qτ

γ(x, t) exp(G(un))Tk(un)+dxdt+

∫
Qτ

fn exp(G(un))Tk(un)+dxdt

+

∫
Ω

Bnk,G(x, u0n)dx, (4.18)

where,

Bnk,G(x, r) =

∫ r

0

∂bn(x, s)

∂s
Tk(s)+ exp(G(s))ds.

Due to the definition of Bnk,G and |G(un)| ≤ exp(
‖g‖

L1(R)
α

), we have

0 ≤
∫

Ω

Bnk,G(x, u0n)dx ≤ k exp
(‖g‖L1(R)

α

)
‖b(., u0‖L1(Ω). (4.19)

Using (4.19), Bnk,G(x, un) ≥ 0, we obtain∫
Qτ

a(x, t, un,∇Tk(un)+) exp(G(un))∇Tk(un)+dxdt

≤ k exp
(‖g‖L1(R)

α

)[
‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]
.

Thanks to (3.5), we have

α

∫
Qτ
|∇Tk(un)+|p(x)ω(x) exp(G(un))dxdt ≤ k exp

(‖g‖L1(R)

α

)[
‖fn‖L1(Q)

+ ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]
. (4.20)
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Let us observe that if we take: ϕ = ρ(un) =
∫ un

0
g(s)χ{s>0}ds in (4.16)

and use (3.5), we obtain∫
Ω

[
Bng (x, un)

]T
0
dx+ α

∫
Q

|∇un|p(x)ω(x)g(un)χ{un>0} exp(G(un))dxdt

≤
(∫ ∞

0

g(s)ds
)

exp
(‖g‖L1(R)

α

)[
‖fn‖L1(Q) + ‖γ‖L1(Q)

]
,

where

Bng (x, r) =

∫ r

0

∂bn(x, s)

∂s
ρ(s) exp(G(s))ds,

which implies, using Bng (x, r) ≥ 0, we obtain

α

∫
{un>0}

|∇un|p(x)ω(x)g(un) exp(G(un))dxdt

≤ ‖g‖∞ exp
(‖g‖L1(R)

α

)[
‖γ‖L1(Q) + ‖fn‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]
then,

∫
{un>0}

g(un)|∇un|p(x)ω(x) exp(G(un))dxdt ≤ C3.

Similarly, taking ϕ =
∫ 0

un
g(s)χ{s<0}ds as a test function in (4.17),

we conclude that ∫
{un<0}

g(un)|∇un|p(x)ω(x) exp(G(un))dxdt ≤ C4.

Consequently, ∫
Q

g(un)|∇un|p(x)ω(x) exp(G(un))dxdt ≤ C5. (4.21)

Above, C1, ...., C5 are constants independent of n, we deduce that

∫
Q

|∇Tk(un)+|p(x)ω(x)dxdt ≤ k C6. (4.22)

Similarly to (4.22), we take ϕ = Tk(un)−χ(0, τ) in (4.17) to deduce that

∫
Q

|∇Tk(un)−|p(x)ω(x)dxdt ≤ k C7. (4.23)

Combining (4.22), (4.23) and Remark 2.3, we conclude that∫ T

0

min
{
‖Tk(un)‖p

+

W
1,p(·)
0 (Ω,ω)

, ‖Tk(un)‖p
−

W
1,p(·)
0 (Ω,ω)

}
dt ≤ ρ(∇Tk(un)) ≤ kC8.

‖Tk(un)‖
Lp
−

(0,T ;W
1,p(·)
0 (Ω,ω))

≤ k C8. (4.24)

Where C6, C7, C8 are constants independent of n. Thus, Tk(un) is bounded

in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) independently of n for any k > 0. Then,

we deduce from (4.18), (4.19) and (4.24) that∫
Ω

Bnk,G(x, un(τ))dx ≤ kC. (4.25)
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4.3. Almost everywhere convergence of the gradients. Now, we turn to proving the
almost everywhere convergence of un and bn(x, un). Consider a non decreasing function

gk ∈ C2(R) such that: gk(s) =

{
s if |s| ≤ k

2

k if |s| ≥ k.
Multiplying the approximate equation by g′k(un), we get

∂Bnk (x, un)

∂t
− div(a(x, t, un,∇un)g′k(un)) + a(x, t, un,∇un)g′′k (un)∇un

+Hn(x, t, un,∇un)g′k(un) = fng
′
k(un), (4.26)

where

Bnk (x, z) =

∫ z

0

∂bn(x, s))

∂s
g′k(s)ds.

As a consequence of (4.24), we deduce that gk(un) is bounded in

Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) and

∂Bnk (x,un)

∂t
is bounded in L1(Q) + V ∗. Due to the properties

of gk and (3.2), we conclude that ∂gk(un)
∂t

is bounded in L1(Q) + V ∗, which implies that

gk(un) is compact in L1(Q).
Due to the choice of gk, we conclude that for each k, the sequence Tk(un) converges
almost everywhere in Q, which implies that un converges almost everywhere to some
measurable function v in Q. Thus by using the same argument as in [7], [8], [9], we can
show the following lemma.

Lemma 4.4. Let un be a solution of the approximate problem (Pn) then,

un → u a.e. in Q.

bn(x, un) → b(x, u) a.e. in Q.

We can deduce from (4.24) that

Tk(un) ⇀ Tk(u) in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω))

which implies, by using (3.3), that for all k > 0 there exists ϕk ∈ (Lp
′(.)(Q,ω∗))N , such

that

a(x, t, Tk(un),∇Tk(un)) ⇀ ϕk in
(
Lp
′(.)(Q,ω∗)

)N
.

Remark 4.5. b(., u) it belongs to L∞(0, T ;L1(Ω)).

Proof.
Let un be a solution of the approximate problem (Pn) passing to lim inf in (4.25) as
n→∞, we obtain

1

k

∫
Ω

Bk,G(x, u(τ))dx ≤ C, for a.e. τ in [0, τ ].

Due to the definition of Bk,G(x, s) and the fact that 1
k
Bk,G(x, s) converge pointwise to∫ u

0
sgn(s) ∂b(x,s)

∂s
exp(G(s))ds ≥ |b(x, u)| as k → ∞, it follows that b(., u) belongs to

L∞(0, T ;L1(Ω)).

Lemma 4.6. Let un be a solution of the approximate problem (Pn). Then,

lim
m→∞

lim sup
n→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇undxdt = 0. (4.27)

Proof.
Set ϕ = T1(un − Tm(un))+ = αm(un) in (4.16), this function is admissible since ϕ ∈
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Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) and ϕ ≥ 0. Then, we have∫
Q

∂bn(x, un)

∂t
exp(G(un))αm(un)dxdt

+

∫
{m≤un≤m+1}

a(x, t, un,∇un) exp(G(un))∇undxdt

≤
∫
Q

|γ(x, t)| exp(G(un))αm(un)dxdt+

∫
Q

|fn| exp(G(un))αm(un)dxdt.

This gives, by setting

Bmn,G(x, r) =

∫ r

0

∂bn(x, s)

∂s
exp(G(s))αm(s)ds,

and by Young’s Inequality,∫
Ω

Bmn,G(x, un)(T )dx+

∫
{m≤un≤m+1}

a(x, t, un,∇un) exp(G(un))∇undxdt

≤ exp
(‖g‖L1(R)

α

)[ ∫
{|un|>m}

[|γ|+ |fn|+ ‖bn(x, u0n‖L1(Ω)

]
dxdt.

Since Bmn,G(x, un)(T ) > 0 and use (3.5), we obtain

α

∫
{m≤un≤m+1}

|∇un)|p(x) exp(G(un))∇undxdt

≤ exp
(‖g‖L1(R)

α

)[ ∫
{|un|>m}

|γ|+ |fn|dxdt+ ‖bn(x, u0n‖L1(Ω)

]
. (4.28)

Taking ϕ = ρm(un) =
∫ T

0
g(s)χ{s>m}ds as a test function in (4.16), we obtain[ ∫

Ω

Bmm,n(x, un)dx
]T

0
+

∫
Q

a(x, t, un,∇un) exp(G(un))g(un)∇unχ{un>m}dxdt

≤
(∫ ∞

m

g(s)χ{un>m}ds
)

exp
(‖g‖L1(R)

α

)[
‖fn‖L1(Q) + ‖γ‖L1(Q)

]
,

where Bmm,n(x, r) =
∫ r

0

∂bn(x,s)
∂s

ρm(s) exp(G(s))ds which implies,
since Bmm,n(x, r) ≥ 0, by (3.5) and Young’s Inequality

α

∫
{un>m}

|∇un|p(x)ω(x)g(un) exp(G(un))dxdt ≤

(∫ ∞
m

g(s)ds
)

exp
(‖g‖L1(R)

α

)[
‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]
. (4.29)

Using (4.29) and the strong convergence of fn in L1(Ω) and bn(x, u0n) in L1(Ω), γ ∈
L1(Ω), g ∈ L1(R), by Lebesgue’s theorem, passing to limit in (4.28), we conclude that

lim
m→∞

lim sup
n→∞

∫
{m≤un≤m+1}

a(x, t, un,∇un)∇undxdt = 0. (4.30)

On the other hand, taking ϕ = T1(un − Tm(un))− as a test function
in (4.17) and reasoning as in the proof (4.30), we deduce that

lim
m→∞

lim sup
n→∞

∫
{−(m+1)≤un≤−m}

a(x, t, un,∇un)∇undxdt = 0. (4.31)

By using (4.30) and (4.31), we have

lim
m→∞

lim sup
n→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇undxdt = 0. (4.32)

To this end, we prove the strong convergence of truncation of Tk(un) that we will use the
following function of one real variable s, which is define as where m > k,
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hm(s) =


1 if |s| ≤ m
0 if |s| > m+ 1

m+ 1 + |s| if m ≤ |s| ≤ m+ 1.

Let ψi ∈ D(Ω) be a sequence which converges strongly to u0 in L1(Ω).
Set wiµ = (Tk(u))µ + e−µtTk(ψi) where (Tk(u))µ is the mollification of Tk(u) with respect

to time. Note that wiµ is a smooth function having the following properties:

∂wiµ
∂t

= µ(Tk(u)− wiµ), wiµ(0) = Tk(ψi), |wiµ| ≤ k, (4.33)

wiµ → Tk(u) in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) as µ→∞. (4.34)

The very definition of the sequence wiµ makes it possible to establish the following lemma.

Lemma 4.7. (See[9, 2].) For k ≥ 0, we have∫
{Tk(un)−wiµ≥0}

∂bn(x, un)

∂t
exp(G(un))(Tk(un)− wiµ)hm(un)dxdt ≥ ε(n,m, µ, i).

Proposition 4.8. The subsequence of un solution of problem (Pn) satisfies for any k ≥ 0
following assertion:

lim
n→∞

∫
Q

[
a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))

]
·
[
∇Tk(un)−∇Tk(u)

]
dxdt = 0.

Proof.
For m > k, let ϕ = (Tk(un)−wiµ)+hm(un) ∈ Lp

−
(0, T ;W

1,p(·)
0 (Ω, ω))∩L∞(Q) and ϕ ≥ 0

. If we take this function in (4.16), we obtain∫
{Tk(un)−wiµ≥0}

∂bn(x, un)

∂t
exp(G(un))(Tk(un)− wiµ)hm(un)dxdt

+

∫
{Tk(un)−wiµ≥0}

a(x, t, un,∇un)∇(Tk(un)− wiµ)hm(un)dxdt

−
∫
{m≤un≤m+1}

exp(G(un))a(x, t, un,∇un)∇un(Tk(un)− wiµ)+dxdt

≤
∫
Q

(fn + γ) exp(G(un))(Tk(un)− wiµ)+hm(un)dxdt (4.35)

Observe that,∣∣∣ ∫
{m≤un≤m+1}

exp(G(un))a(x, t, un,∇un)∇un(Tk(un)− wiµ)+dxdt
∣∣∣

≤ 2k exp
(‖g‖L1(R)

α

)∫
{m≤un≤m+1}

a(x, t, un,∇un)∇undxdt.

Tanks to (4.27) the third and fourth integrals on the right hand side tend to zero as n

and m tend to infinity and by Lebesgue’s theorem, we deduce that the right hand side

converges to zero as n, m and µ tend to infinity . Since
(
Tk(un) − wiµ

)+

hm(un) ⇀(
Tk(u) − wiµ

)+

hm(u) in L∞(Q) as n → ∞ and strongly in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) and

(Tk(un)−wiµ)+hm(un) ⇀ 0 in L∞(Q) and strongly in Lp
−

(0, T ;W
1,p(·)
0 (Ω, ω)) as µ→∞,

it follows that the first and second integrals on the right-hand side of (4.35) converge to

zeros as n, m, µ → ∞, using [3] Lemma 4.7 and Lemma 2.10, the proof of Proposition

4.8 is complete. Thanks to the Lemma 2.10, we have

Tk(un)→ Tk(u) strongly in Lp−(0, T ;W
1,p(·)
0 (Ω, ω)), ∀k (4.36)
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and ∇un → ∇u a.e. in Q, which implies that

a(x, t, Tk(un),∇Tk(un)) ⇀ a(x, t, Tk(u),∇Tk(u)) in (Lp′(.)(Q,ω∗))N . (4.37)

4.4. Equi-Integrability of the non Linearity Sequence.

Proposition 4.9. Let un be a solution of problem (Pn). Then Hn(x, t, un,∇un)→
H(x, t, u,∇u) strongly in L1(Q).

Proof. By using Vitali’s theorem. Since Hn(x, t, un,∇un)→ H(x, t, u,∇u) a.e.
in Q, considering now, ϕ = ρh(un) =

∫ un
0

g(s)χ{s>h}ds as a test function in (4.16),
we obtain[ ∫

Ω

Bnh (x, un)dx
]T

0
+

∫
Q

a(x, t, un,∇un)∇ung(un)χ{un>h} exp(G(un))dxdt

≤
(∫ ∞

h

g(s)χ{s>h}ds
)

exp
(‖g‖L1(R)

α

)[
‖fn‖L1(Q) + ‖γ‖L1(Q)

]
,

where Bn
h (x, r) =

∫ r

0
∂bn(x,s)

∂s ρh(s) exp(G(s))ds,
which implies, in view of Bn

h (x, r) ≥ 0 and (3.5)

α

∫
{un>h}

|∇un|p(x)ω(x)g(un) exp(G(un))dxdt

≤
(∫ ∞

h

g(s)ds
)

exp
(‖g‖L1(R)

α

)[
‖fn‖L1(Q) + ‖γ‖L1(Q) + ‖bn(x, u0n‖L1(Ω)

]
and since g ∈ L1(R), we deduce that

lim
h→∞

sup
n∈N

∫
{un>h}

|∇un|p(x)ω(x)g(un)dxdt = 0.

Similarly, taking ϕ = ρh(un) =
∫ 0

un
g(s)χ{s<−h}ds as a test function in (4.17),

we conclude that: limh→∞ supn∈N
∫
{un<−h} |∇un|

p(x)ω(x)g(un)dxdt = 0.

Consequently, limh→∞ supn∈N
∫
{|un|>h} |∇un|

p(x)ω(x)g(un)dxdt = 0.

Which implies, for h large enough and for a subset E of Q,

lim
measE→0

∫
E

|∇un|p(x)ω(x)g(un)dxdt ≤ ‖g‖∞ lim
measE→0

∫
E

|∇Thun|p(x)ω(x)dxdt

+

∫
{|un|>h}

|∇un|p(x)ω(x)g(un)dxdt,

so g(un)|∇un|p(x)ω(x) is equi-integrable. Thus we have shown that

g(un)|∇un|p(x)(x)ω(x)→ g(u)|∇u|p(x)(x)ω(x) stongly in L1(Q).

Consequently, by using (3.6), we conclude that

Hn(x, t, un,∇un)→ H(x, t, u,∇u) strongly in L1(Q). (4.38)

4.5. Concluding the proof of Theorem 3.3.
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a) Proof that u satisfies (3.8). For any fixed m ≥ 0, we have∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇undxdt

=

∫
Q

a(x, t, un,∇un)
[
∇Tm+1(un)−∇Tm(un)

]
dxdt

=

∫
Q

a(x, t, Tm+1(un),∇Tm+1(un))∇Tm+1(un)

−
∫
Q

a(x, t, Tm(un),∇Tm(un))∇Tm(un)dxdt.

According to (4.36) and (4.37), one can pass to the limit as n → ∞ for
fixed m ≥ 0 to obtain

lim
n→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇undxdt

=

∫
Q

a(x, t, Tm+1(u),∇Tm+1(u))∇Tm+1(u)

−
∫
Q

a(x, t, Tm(u),∇Tm(u))∇Tm(u)dxdt

=

∫
{m≤|u|≤m+1}

a(x, t, u,∇u)∇udxdt. (4.39)

Taking the limit as m → ∞ in (4.39) and using the estimate (4.27), shows that u
satisfies (3.8).

b) Proof that u satisfies (3.9)

Let S ∈ W 2,∞(R) be such that S′ has a compact support. Let M > 0 such that
supp(S′)⊂ [−M,M ]. Pointwise multiplication of the approximate problem (Pn) by
S′(un), leads to

∂Bn
S(x, un)

∂t
− div

[
S′(un)a(x, t, un,∇un)

]
+ S′′(un)a(x, t, un,∇un)∇un

+Hn(x, t, un,∇un)S′(un) = fnS
′(un) in D′(Q). (4.40)

In what follows, we pass to the limit in (4.40) as n tends to ∞.

• Limit of
∂BnS (x,un)

∂t .
Since S is bounded and continuous, un → u a.e. in Q implies that Bn

S(x, un)
converge to BS(x, u) a.e. in Q and L∞ weakly

Then,
∂Bn

S(x, un)

∂t
→ ∂BS(x, u)

∂t
in D′(Q), as n→∞.

• Limit of −div
[
S′(un)a(x, t, un,∇un)

]
.

Since supp(S′)⊂ [−M,M ], we have, for n ≥M
S′(un)a(x, t, un,∇un) = S′(un)a(x, t, TM (un),∇TM (un)) a.e. in Q.

The pointwise convergence of un to u and (4.37) and the boundedness of S′ yied,
as n→∞,

S′(un)a(x, t, un,∇un) ⇀ S′(u)a(x, t, TM (u),∇TM (u)) in (Lp
′(.)(Q,ω∗))N (4.41)

as n→∞,
S′(u)a(x, t, TM (u),∇TM (u)) has been denoted by S′(u)a(x, t, u,∇u) in equation
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(3.9).
• Limit of S′′(un)a(x, t, un,∇un)∇un.
Consider the ”energy” term
S′′(un)a(x, t, un,∇un)∇un = S′′(un)a(x, t, TM (un),∇TM (un))∇TM (un) a.e. in Q.
The pointwise convergence of S′(un) to S′(u) and (4.37) as n→∞ and the bound-
edness of S′′ yield

S′′(un)a(x, t, un,∇un)∇un ⇀ S′′(u)a(x, t, TM (u),∇TM (u))∇TM (u) in L1(Q). (4.42)

Recall that S′′(u)a(x, t, TM (u),∇TM (u))∇TM ((u)) = S′′(u)a(x, t, u,∇u)∇u a.e.
in Q.
• Limit of S′(un)Hn(x, t, un,∇un). From supp(S′)⊂ [−M,M ] and (4.38),
we have

S′(un)Hn(x, t, un,∇un)→ S′(u)H(x, t, u,∇u) strongly in L1(Q) as n→∞. (4.43)

• Limit of S′(un)fn. Since un → u a.e. in Q,
we have S′(un)fn → S′(u)f strongly in L1(Q), as n→∞.
As a consequence of the above convergence result, we are in a position to pass to
the limit as n→∞ in equation (4.40) and to conclude that u satisfies (3.9).

c) Proof that u satisfies (3.10)

S is bounded and Bn
S(x, un) is bounded in L∞(Q). Secondly by (4.40), we have

∂BnS (x,un)
∂t is bounded in L1(Q) + V ∗.

As a consequence, an Aubin type Lemma (see, e.g, [18] implies that Bn
S(x, un) lies

in a compact set in C0([0, T ], L1(Ω)).
It follows that on the hand, Bn

S(x, un) |t=0= Bn
S(x, un0 ) converge to BS(x, u) |t=0

strongly in L1(Ω) implies that: BS(x, u) |t=0= BS(x, u0) in Ω.
As a conclusion, the proof of Theorem 3.3 is complete.

References

[1] L. Aharouch, E. Azroul and M. Rhoudaf, Strongly nonlinear variational degenerated parabolic

problems in weighted sobolev spaces. The Australian journal of Mathematical Analysis and
Applications, Vol. 5, Article 13, pp 1-25, 2008.

[2] Y. Akdim, J. Bennouna, M. Mekkour, Solvability of degenerated Parabolic equations without

sign condition and three unbounded nonlinearities, Electronic Journal of Differential Equa-
tions, Vol. 2011(2011), No. 03, pp. 1-26.

[3] Y. Akdim, J. Bennouna, M. Mekkour, H. Redwane, Existence of renormalized solu-

tions for parabolic equations without the sign condition and with unbounded nonlineari-
ties.Applicationes Mathematical 39(1), 1-22.

[4] Y. Akdim, J. Bennouna, M. Mekkour and M. Rhoudaf, Renormalized solution of nonlinear
degenerated parabolic problems with L1-data: existence and uniquness. Recent developments
is nonlinear analysis, proccedings of the conference in Mathematics and Mathematical physics

world scientific publishing C.O Ltd.

[5] M. Bendahmane, P. Wittbold, A. Zimmermann, Renormalized solutions for a nonlinear par-
abolic equation with variable exponents and L1-data J. Differential equations 249(2010)1483-

1515.
[6] L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat, Existence and regularity of renormalized solu-

tions of some elliptic problems involving derivatives of nonlinear terms Journal of differential

equations 106, pp. 215-237,1993.
[7] D. Blanchard and F. Murat, Renormalized solution of nonlinear parabolic problems with

L1-data: existence and uniqueness, proc, Roy, Soc. Edinburgh Sect. A 127(1997) 1137-1152.

[8] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of renormalized solutions
for a fairly general class of nonlinear parabolic Problems, J. Differential equation (177)(2001),

331-374.

[9] D. Blanchard, H. Redwane, Renormalized solutions of nonlinear parabolic evolution problems,
J. Math. Pure Appl., 77, 117-151 (1998).



62 Y. AKDIM , C. ALLALOU, N. EL GORCH EJMAA-2016/4(1)

[10] R.J. Diperna, P-L. Lions, On the Cauchy problem for the Boltzmann equations : Global

existence and weak stability, Ann. of Math. 130, pp. 285-366, 1989.

[11] J. M. Rakotoson, Resolution of the critical cases for the problems with L1-data asymptotic
analysis when right hand side is in L1(Ω). 6, pp. 285-293, 1993.

[12] P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values, Math. Bohem.

132 (2007), 125136.

[13] X. Fan, D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001),

424-446.
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