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SOLVABILITY OF DEGENERATED p(z)-PARABOLIC
EQUATIONS WITH THREE UNBOUNDED NONLINEARITIES.

Y. AKDIM , C. ALLALOU, N. EL GORCH

ABSTRACT. In this paper, we study the existence of renormalized solutions for
the nonlinear p(z)-parabolic problem with f € L'(Q) and b(x,ug) € L'(Q).
The main contribution of our work is to prove the existence of renormalized
solutions of the weighted variable exponent Sobolev spaces and we suppose
that H(z,t,u, Vu) is the nonlinear term satisfying some growth condition but
no sign condition or the coercivity condition.

1. INTRODUCTION

Let © be a bounded domain in RN(N > 1),T is a positive real number, and Q =
Q x (0,7). We are interested in existence of renormalized solutions to the following
nonlinear parabolic problem

w div(a(z,t,u, Vu)) + H(z,t,u,Vu) = fin Q@ = Q x (0,7)
(P) 4§ b(z,u) |t=0= b(z,u0) in
u=0 ondQx(0,7),

where f € L'(Q), b(x,u0) € L*(Q) . The operator —div(a {E t,u, Vu is a Leray-Lions
operator defined on L? (0, T; Wol’p(') (Q,w)) (see assumption 1 of section 3) which
is coercive b(z,u) is an unbounded function of u, H is a nonhnear lower order term. The
notion of renormalized solutions was introduced by R. J. Diperna and P. L. Lions [10] for
the study of the Boltzmann equation. It was then used by L. Boccardo and al [6] when
the right hand side is in W~ (€) and by J. M Rakoston [I1] when the right hand side
is in L'(Q).

It is our purpose to prove the existence of renormalized solution of weighted variable
exponent Sobolev spaces for the problem (P) setting without the sign condition and
without the coercivity condition, the critical growth condition on H is only with respect
to Vu and not with respect to u (see assumption H2). Where the right hand side is
assumed to satisfy: f belongs to L'(Q). Other work in this direction can be found in [
[, 1, 19, 20

For the convenience of the readers, we recall some definitions and basic properties of
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the weighted variable exponent Lebesgue spaces Lp(z)(Q,w) and the weighted variable
exponent Sobolev spaces WP (Q, w). Set

C1(Q) = {p € C(Q) : minp(z) > 1}.
zEQ
For any p € C1(Q), we define p* =max, gp(z), p~ =min, qp(z).

For any p € C(2), we introduce the weighted variable exponent Lebesgue space L@ (Q,w)
that consists of all measurable real-valued functions w such that

LP®(Q,w) = {u : Q — R, measurable, / Ju(z)|P™ w(z)de < oo}
Q
Then, LP®) (9, w) endowed with the Luxemburg norm
. ulx z
lirr gy =003 > 05 [ (A2 pOutayar < 1)
Q

becomes a normed space. When w(z) = 1, we have LP®(Q,w) = LP®(Q) and we use
the notation |u\Lp(m)(Q) instead of |u\Lp<m)(Q’w). The following Hélder type inequality is
useful for the next sections. The weighted variable exponent Sobolev space Wl’p(““)(ﬂ7 w)
is defined by

WHP(Q,w) = {u € LPD(Q); |Vu| € LP(Q,w)},

where the norm is

ullwrp@ (9w = [Ulrre @) + VU re) 0.0 (1.1)
or, equivalently
. \%
[l sy =it > 03 [ 1P 4oy T pogs < 1)
Q

for all u € W'P®)(Q, w).

It is significant that smooth functions are not dense in WP (Q) without additional as-
sumptions on the exponent p(z). This feature was observed by Zhikov [2I] in connection
with the Lavrentiev phenomenon. However, if the exponent p(x) is log-Hélder continuous,
i.e., there is a constant C' such that

= —loglz -yl (12
for every z,y with |z —y| < 1, then smooth functions are dense in variable exponent
Sobolev spaces and there is no confusion in defining the Sobolev space with zero boundary
values, WP (Q), as the completion of C§°(2) with respect to the norm lullw1.pe) (0
(see [12]).

Wol’p(z)(Q, w) is defined as the completion of C§°(Q) in WP (Q, w) with respect to the
norm ||ully1.p(x) (0,0)-

Throughout the paper, we assume that p € C+(Q) and w is a measurable positive and a.e.
finite function in Q.

This paper is organized as follows. In Section 2, we state some basic results for the
weighted variable exponent Lebesgue-Sobolev spaces which is given in [I6]. In Section 3,
we make precise all the assumption on b, a, H, f and b(z,uo) and give the definition of a
renormalized solution of the problem (P) and main results, which is proved in Section 4.

2. PRELIMINARIES.

In this Section, we state some elementary properties for the (weighted) variable expo-
nent Lebesgue-Sobolev spaces which will be used in the next sections. The basic properties
of the variable exponent Lebesgue-Sobolev spaces, that is when w(z) = 1 can be found
from [13] [15].
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Lemma 2.1. (See [13|[15].)(Generalised Holder inequality).

i) For any functions u € LP)(Q) and v € Lp/(')(Q), we have
| o uvdz] < (5= + =) lullpe) 1ol ) < 2llullpe 0]l )-

ii) For all p, g € C(Q) such that p(z) < q(z) a.e. in Q, we have
L1 < LPO) gnd the embedding is continuous.

Lemma 2.2. (See [16].) Denote p(u) = [, w(x)|u(x) P @ dz for all u € LP(Q,w).
Then,

[ul o) 0,0y < 1(=1;> 1) if and only if p(u) < 1(=1;> 1), (2.1)
, - +

if |“|Lp(w>(§z,w) > 1then |“|ip(w)(9’w) <p(u) < |u‘1£p<m)<97w>v (2.2)
. + -

if lulpp o) <1 then |u|ip(“)(ﬂ,w) < plu) < |“‘iv<%>m,w)' (2:3)

Remark 2.3. ([I7].) If we set
Hm:/WM@W”+M@WMMW“m-
Q

Then, following the same argumen, we have

. } < I(u) < max{]|u]

mln{Hu” I‘zvl,p(z)(n’w)

- - +
€Vl,p(.2) (91“")’ HUH 1‘:‘/1,;}(1) (Q,w)7 Hu”‘pivl,p(z) (Q,w)}'

Throughout the paper, we assume that w is a measurable positive and
a.e.finite function in 2 satisfying that
(W1) w € Lo and W TP € Lioe();
(W2) w™*® ¢ LY(Q) with s(z) € (%,oo) N [17(171)71,00).
The reasons that we assume (W1) and (W32) can be found in [16].

Remark 2.4. ([16].)

(i) If w is a positive measurable and finite function, then LP™ (Q,w) is a reflexive Banach
space.

(ii) Moreover, if (W1) holds, then WP (Q, w) is a reflexive Banach space.

For p,s € C+(Q), denote
ps(x) = ”S((””Cg)sﬁ) < p(x), where s(z) is given in (Wa).

Assume that we fix the variable exponent restrictions

* _ (z)s(z)N .
P:(2) = GaoN—pers@ LN > ps(),
pi(z) arbitrary  if N < ps(z)

for almost all z € 2. These definitions play a key role in our paper. We shall frequently
make use of the following (compact) imbedding theorem for the weighted variable exponent
Lebesgue-Sobolev space in the next sections.

Lemma 2.5. ([I6].) Let p,s € C+(Q) satisfy the log-Holder continuity condition ,
and let (W1) and (W2) be satisfied. If 1 € C4+(Q)) and 1 < r(z) < pi. Then, we obtain
the continuous imbedding

WP (Q,w) «— L"®(Q).
Moreover, we have the compact imbedding

whPE(Q,w) < L7 (Q),
provided that 1 < r(x) < p,) for all z € €.

From Lemma [2.5] we have Poincaré-type inequality immediately.
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Corollary 2.6. ([16].) Let p € C(Q) satisfy the log-Hélder continuity condition .
If (Wh) and (Wa2) hold, then the estimate

HUHLp(w>(Q) < CHVUHLP(w>(Q,w)
holds, for every u € C§°(Q) with a positive constant C independent of u.

Throughout this paper, let p € C(Q) satisfy the log-Holder continuity condition (1.2)
and X := Wol’p(z)(Q,w) be the weighted variable exponent Sobolev space that consists of
all real valued functions u from WP (Q, w) which vanish on the boundary 89, endowed
with the norm

[ullx = inf{\ > 0: / ‘V“(m)

Q A
which is equivalent to the norm (1.1) due to Corollary The following proposition
gives the characterization of the dual space (Wéc‘p@)(ﬂ, w))™, which is analogous to [[15],

Theorem 3.16]. We recall that the dual space of weighted Sobolev spaces VVOI’p(Qc)(Q7 w) is
1-p'(2)

p(z)
w

(z)dz < 1},

equivalent to W_l’p,(l)(ﬂ,w), where w* = w

Lemma 2.7. ([5].) Let g € LPY)(Q,w) and let g, € LP)(Q,w), with gnllLee) (@) < €

1 < r(x) < oo. If gn(x) = g(x) a.e. in Q, then gn — g in LP)(Q,w), where — denotes
weak convergence and w is a weight function on Q.

We will also use the standard notation for Bochner spaces, i.e., if ¢ > 1 and X is a Ba-
nach space then L?(0,T; X) denotes the space of strongly measurable function v : (0,7) —
X for which t — ||u(t)||x € L9(0,T) Morever, C([0; T]; X) denotes the space of continuous
function u : [0; T] — X endowed with the norm ||u|c(jo;r);x) = mazicpo;m ||l x,

L? (0,T; Wol’p(')(ﬂ,w)) ={u:(0,7) — Wol’p(')(ﬂ,w) measurable;

T NI 1/p~
([ 1O ,) " <o)
and we define the space
L>(0,T; X) = {u: (0,T) = X measurable; 3C > 0/|u(t)||x < C a.e.}
where the norm is defined by:
l[ull Lo (0,7 x) = Inf{C" > 0; [Ju(t)[|x < C ae.}.
We introduce the functional space see [5]
V={fel” O.T;W " (Qw)V/ e V@), (2.4)
which endowed with the norm:
1l = 1971l oo @
or, the equivalent norm :
A = 150 o i gy + 1V L2000 (010

is a separable and reflexive Banach space. The equivalence of the two norms is an easy

consequence of the continuous embedding LP) (Q) < LP (0, T; LP")(Q)) and the Poincaré
inequality. We state some further properties of V' in the following lemma.

Lemma 2.8. Let V be defined as in (2.4) and its dual space be denote by V*. Then,
1) We have the following continuous dense embeddings:

L7 (0,7 Wy PO (Qw)) = Vs L7 (0,T; Wy O (Q,w)).
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In particular, since D(Q) is dense in L (0, T; WeP(Q,w), it is dense in V
and for the corresponding dual spaces, we have
L& (0,73 (Wo P (2,w))") = Vs LOD (0,7 Wy PO (0, w))).
Note that, we have the following continuous dense embeddings
L7 (0,117 (Qw) = LPO(Qw) = L (0,13 "V(2,w)).

1) One can represent the elements of V* as follows: if T € V™, then there exists
F=(f1,. fn) € (L” Q)N such that T = divx F and

T
(T, &)v+v :/ / F - Védzdt
0o Jo
for any £ € V.. Moreover, we have
ITlv+ = max{|[fill Lr) (@uy> # =11}
Remark 2.9. The space V N L% (Q), is endowed with the norm definie by the formula:

[ollvaree @) = max{[|vllv, [v]lLe @)}, v eV NLT(Q),

is a Banach space. In fact, it is the dual space of the Banach space V + L*(Q) endowed
with the norm:

[vllyetrrq) = imnf{{lvillv= + l[vallzr (@)} v =1 + vz, v1 € V*, 03 € L(Q).
2.1. Some Technical Results.

Lemma 2.10. Assume (3.3) -(3.5) and let (un)n be a sequence in LP~ (0, T, I/Vol’p(')(ﬂ7 w))
such that u, — u weakly in L*  (0,T, Wol’p(‘)(Q,w)) and

/ (a(w,t,un, Vun) —a(z,t, un, Vu)) -V (un — u)dzdt — 0. (2.5)
Q

Then, un — u strongly in LP (0, T, Wol’p(')(Q,w)).

Proof.
Let Dy = [a(z,t,un, Vn) — a(z,t, un, V)]V (un — u), thanks to (3.4), we have D, is a
positive function, and by , D, = 0in L'(Q) as n — oo.
Extracting a subsequence, still denoted by u,, we can write u, — u a.e. in ) and since
D, — 0 a.e. in Q. There exists a subset B in () with measure zero such that for all

(t,z) € Q\B,
lu(z,t)] < o0, |Vu(z,t)] <oo, K(z,t) <oo, un—u, Dp—0.
Taking &, = Vu, and £ = Vu , we have
Dn(z,t) = [a(z,t,un, &) — a(@,t, un, §)] - (§n — §)
= a(z,t,Un, &n)én + a(z, t,un, §)€ — a(, t,un, &n)E — a(z, t,un, §)&n
> aw(@)[&a " + aw(z)¢

_ ﬂwl/p(w)(:c) (k(% t) + wl/p'(w)(x”un'p(@*l + wl/p'(w)(x”gnvﬂ(w)*l) 13
— BP0 () (k(a:,t) WP @ () PO 1 wl/p’@)(xmp(x)—l) €|

> aw (@) énl™™ = Coe[L + w7 (2)[€a" D7 4+ 0P (@) €],

where Cy,; depending on z, but does not depend on n. (Since un(z,t) — u(z,t) then,
(un)n is bounded), we obtain
1

_1
_ Ca:,t _ Cw’twpl(ﬂ:) _ Ox’twp(z) )
|€n[P() (3 |gn[P()=1 )7

Da(w,t) > [ ") (aw(2)
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by the standard argument (£,), is bounded almost everywhere in Q. Indeed, if |, — oo
in a measurable subset E € @) then,

1 1
(@) (@)
tim [ Duat)de > tim [P (aw(e) - St - Gt Gy o
E

n—oo /o n=ro00 TS TSGR
which is absurd since D, (z,t) — 0 in L*(Q)). Let £* an accumulation point of (£,)n, we
have |£*| < oo and by continuity of a(.,.,.,.), we obtain

a(m,t,u(m,t),f*) - a(x7t7u(:c,t),§)} : (En - g) =0,
thanks to (3.4), we have & = &, the uniqueness of the accumulation point implies
that Vun(z,t) — Vu(zx,t) a.e. in Q. Since the sequence a(z,t,u, Vu,) is bounded in
(Lp,(m)(Q,w*))N and a(z,t,u, Vu,) = a(z,t,u, Vu) a.e. in @, Lemma
a(x,t, un, Vun) = a(z,t,u, Vu) in (Lp/(z)(Q7w*))N.

Let us taking §» = a(z,t, un, Vun)Vu, and § = a(z,t,u, Vu)Vu, then g, — g in L*(Q),
according to the condition (3.5)), we have

0w ()| Vun [P < a(a, t, tn, Vi) Ve,

implies

Let z, = |[Vun[PPw, 2z = |Vu|P®w and y, = Iny =2 Then, by Fatou’s Lemma, we
obtain

/ 2ydzdt < liminf [ (yn +y — |2n — 2|)dzdt,
Q

n—o0 Q

ie., 0 <limsup,_ . [, |2n — 2|dzdt, hence

0< liminf/ |zn — zldz << limsup/ |zn, — z|dz <0,
e JQ n—oo JQ

this implies

Vu, = Vu  in (LP(Q,w)",
we deduce that

Un —u in LP (0,7, Wo*"(Q,w)),

which completes our proof.
Let X = L? (0,T; Wy "™ (Q,w)), the dual space of X is X* = L? (0, T; (Wo " (Q,w))").
Lemma 2.11. (See[I7].)
W= {u eEViu eV* + Ll(Q)} < ([0, T]; L*(Q))
and

W N L(Q) — C([0,T]; L*(2)).
Definition 2.12. A monotone map T : D(T) — X* is called mazimal monotone if its
graph

G(T) = {(u,T(u)) €X x X* for alluc D(T)},

s not a proper subset of any monotone set in X x X*.
Let us consider the operator % which induces a linear map L from the subset

D(L) = {veX:v' € X", v(0) 20} of Xinto X" by

<Lu,v>X = /0T<u'(t),v(t)>vdt ue D(L), veX.

Definition 2.13. A mapping S is called pseudo-monotone with u, — v and Lu, — Lu
and limy,— oo sUup(S(un), un — u) < 0, that we have

limy,— o0 SUP <S(un)7un — u> =0 and S(un) — S(u) as n — oo.



48 Y. AKDIM , C. ALLALOU, N. EL GORCH EJMAA-2016/4(1)

3. ASSUMPTION AND MAIN RESULTS

Throughout the paper, we assume that the following assumption hold true.
Assumption (H1)
Let © be a bounded open subset of RNV (N > 1), p € C(Q) and
b: QxR — Ris a Carathéodory function such that for every x € Q, b(z,.) is a strictly
increasing C* function with

b(z,0) = 0. (3.1)

Next, for any k > 0, there exist Ay > 0 and functions A, € L>(Q) and By € LP")(Q)

such that

ob(z, s)
Js

for almost every x € Q and every s such that |s| < k, we denote by

D, (0b(x, s) \ Os) the gradient of 9b(x, s) \ Os defined in the sense of distributions.

Assumption (H2)

We consider a Leray -Lions operator defined by the formula:

Au = —div a(z, t,u, Vu),

< Ap(z) and ‘Dz(%)‘ < Bi(2), (3.2)

A <

where a : Q% [0, 7] x RxRY — R is a Caratheodory function i.e., (measurable with respect
to z in Q for every (s,&) in R x RY and continuous with respect to (s,£) in R x RY, for
almost every z in §2) which satisfies the following conditions there exist k € L? /(')(Q) and
a >0, 8> 0 such that for almost every (z,t) € Q all (s,&) € R x RV,

Ja(, t,5,€)] < fu'/PO @) k(1) + 7O PO L VPO @), (3.3)
[a(@,t,5,€) = alz,t,5,m)] - (€ —1) >0 VE#n€RY, (3.4)
a(z,t,5,€) - € > awl¢™) (3.5)

Assumption (H3)
Let H:Qx[0,T] x R x RY — R is a Carathéodory function such that for a.e. (z,t) € Q
and for all s € R, £ € RY, the growth condition

|H (2,1, 5,)] < 5(x,1) + g(s)wlgl" (3.6)
is satisfied, where g : R — R* is a bounded continuous positive function that belongs to
L'(R), while v € L'(Q).

We recall that, for £ > 0 and s € R, the truncation function T%(.) defined by

S O Y
s) =
g ki if s>k

Definition 3.1. Let f € L'(Q) and b(.,uo) € L'(Q). A real-valued function u defined on
Q s renormalized solutions of problem (P) if:

Ti(u) € LP” (0, T; WaP (Q,w)) for all k > 0, b(z,u) € L=(0,T; L*(Q)), (3.7)
/ a(z,t,u, Vu)Vudzdt — 0 as m — oo, (3.8)
{(m<|ul<m+1}
OBs(z,u)

— div (S'(u)a(az, t, u, Vu)) + 8" (u)a(z,t,u, Vu)Vu
+H(z,t,u, Vu)S' (u) = £8'(u) in D'(Q), (3.9)

ot

for all S € W2 (R), which are piecewise C* and such that S’ has a compact support in
R, where Bs(z,z) = [ %S'(r)dr and

0
Bs(z,u) |¢=0o= Bs(z,ug) in . (3.10)
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Remark 3.2. Fquation (@) is formally obtained through pointwise multiplication of problem
(P) by S'(u). However, while a(x,t,u,Vu) and H(z,t,u, Vu) do not in general make
sense in (P), all the terms in have a meaning in D'(Q). Indeed, if M is such that
supp S C [-M, M), the following identifications are made in @)

e S(u) belongs to VN L>®(Q). Since S is a bounded function.
o S'(u) a(z,t,u, Vu) identifies with S'(u) a(z,t, T (u), VInm(uw)) a.e. in Q,

for any ¢ € D(Q), using Holder inequality
/ S'(w)a(z, t,u, Vu)Vpdrdt :/ S’ (w)a(z, t, Tar (w), VT (w))Vipdzdt
Q Q

1
7

< Car ||| o= (@ max { /Q 9T ()P w) 7 /Q VT @) T Tl 0
where M > 0 is that supp S’ C [-M, M|]. As D(Q) is dense in V, we deduce that
div(S' (w)a(z,t,u, Vu)) € V™.
o 5" (u) a(x,t,u, Vu)Vu identifies with S” (u) a(z,w, Tar (uw), VI (w)) VT (u) and
S (w)a(z, u, Tar(w), VT (u) VT (u) € L'(Q).
o S'(u)H(z,t,u, Vu) identifies with S’ (u)H (x,t, Tar(w), VT (w))
a.e. in Q. Since |Ta(u)| < M a.e. inQ and S'(u) € L™ (Q),

we see from and that S"(u)H (x,t, Tar(u), VT (u)) € LYH(Q).
o S'(u) f belongs to L*(Q).

The above considerations show that equation hold in D' (Q) and that
0Bs(z,u)

ot
Due to the properties of S and , %(t“) € V*+LY(Q), using Lemma which implies

that S(u) € C°([0,T); L*(RQ)). So that the initial condition makes sense since, due
to the properties of S (increasing) and , we have

eV +LY(Q).

(Bs(z,7) — Bs(x,r')‘ < Ak(x)’S(r) — 8(")| for allr,r' € R. (3.11)

Theorem 3.3. Let f € L'(Q), p(-) € C+(Q) and assume that uo is a measurable
function such that b(.,uo) € L*(Q). Assume that (H1) — (H3) hold true. Then there,
exists a renormalized solution u of problem (P) in the sense of Definition|3.1]

4. PROOF OF MAIN RESULTS.

4.1. Approximate problem. For n > 0, we define approximations of b, H, f and wuo.
First set

bu(z, 1) = bz, Tu(r)) + %r. (4.1)

b, is a Carathéodory function and satisfies (3.2). There exist A, > 0 and functions
A, € L>®(Q) and B, € LP*)(Q) such that

by, (z, s) Obr (z, s) .
n< ——= < A, | —=—=)| < Bn .e. , .
An < s < An(z) and ‘D( s )‘_B(az)aeszGR
Next, set
H(x7 t7 87 é)
H"l 7t7 I = .
R e (EXNN]

Note that |Ha(r,t,5,6) < [H(zt5,)
and  |Hn(z,t,5,6)] < nforall(s,&) € Rx RY
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and select fn, uon and b,. So that
fn € Lp,m(Q) and fn — f a.e.in Q, strongly in L'(Q) as n — oo, (4.2)
uon € D(), an(%uOn)”Ll(Q) < bn($7u0)||L1(Q)7
b (2, uon) — bz, uo) a.e. in Q and strongly in L' (£2).

Let us now consider the approximate problem

W — div(a(z,t,un, V) + Hp(x,t, un, Vun) = fn in D'(Q),
(Pn) bn(m,un) |t:0: bn(l’,uon) in Q,

U, =0 on N X (0,T) u,eL? (0,T; Wy (Q,w)).

Theorem 4.1. Let f, € L* (0, T; W2 O(Q,w")), p(-) € C+(Q) for fired n, the ap-
prozimate problem (Py) has at least one weak solution u, € L? (0, T; Wol’p(')(ﬂ,w)).

Proof.
We define the operator L, : L* (0, T; Wy ™™ (Q,w)) — L¥" ™ (0,T; W~ 17" 0)(Q,w*)) by
<Lnu,v> = [, Pl ygpds = [, Pne0) By geds Vuu € L (0,T; WO (Q,w)),
then,

T ou __1 1
’ Lnu, v ‘/ /A vdasdt’ = ’/ /An(w)—w p(=) pw r(=) dxdt
ot o Ja ot

1 T du
s( e L - P Y e

ou
)n allz / 1Sl oy Iy g (45)

/,>|| "”LOOH ot ”Ll’/_(OTW lp()(Qw*))H HLp (OTWlp(I)(Q w))
< Cilloll

LP™ (0,1, WP (Q,w))"
We define the operator G, : LP (0, T; Wol’p(‘)(Q,w)) — L (0, T, Wﬁl’p%')(Q,w*))
by, <Gnu,v> = / H,(z,t,u, Vu)vdedt Yu,v € LP (0,T; Wol’p(‘)(Q,w)).
Q
Thanks to the Hélder inequality, we have that for u,v € L? (0, T; Wol’p(')((L w))

T
/Hn(x,t,u,Vu)vdxdtg ‘/ /Hn(a:,t,u,Vu)Uda;dt‘
Q 0 Q

T
< '/ /Hn(m,t,u, Vu)w_ﬁvwﬁdxdt’

p'(z) _p (@ 6
S — , / / ‘H z,t, u, V'u,)‘ w  p@) dm) ||”UHLp(m)(Q’w)dt
1 _p(a)
<C( - T )/ (/w v dw) Hv”W&’““(Q,w)dt
< Collvll 1= (o 0w 7O 1)) (4.6)

with § = 1/p:’ l:f ([ Hn (2, t,u, Vu)|lpigy > 1
1pt dif || Ha(z,t,u, V)| pig) < 1.

Lemma 4.2. Let B, : LP (0, T; W " (Q,w)) — L (0, T, W17 O (Q,w*)).
The operator B, = A+ G, is
a) coercive
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b) pseudo-monotone
¢) bounded and demi continuous.

Proof. a) For the coercivity, we have for any u € LP (0, T; Wy?"(Q,w))

(Bavsi) = (Gt} + { A,
= (Band) — (G = (Aun)

then, <Bnu,u> — <Gnu,u> = / a(z,t,u, Vu)Vudzdt
Q
T
:/ /a(m,t,u, Vu)Vudzdt
0o Ja

T
2/ a(/ \VulP™w(z)dz)dt  (using lb
0 Q

8 4
Z ol Vully - o rawt 2Oy Z Bl L= o 2wi 20 (0

which is due to Poincaré inequality with
p- if HVUHLV(QT;W&,p(-)(Q’w)) >1

pT A IVl o g 2O gy S 1

5
hence, <Bnu, u> - <Gnu7u> > ﬁ||u||Lp7(07T;W3,p<->(97w))

then, <Bnu, u> > Bl u||5 — Callul|

Lr~ (0,T3W) ") (Q,0)) Lr~ (0,13Wy ) (2,w))

then, we have

<B”u’ u> 51
> ﬁHuH - . —(Cy — 4+
il ey e w2 )
<Bnu7u>
= Tl =00 as flull - g O g ) = FO

Lr~ (0,73W P (@)

then, B, is coercive.
b)It remains to show that B, is pseudo-monotone.

Let (ug)r a sequence in LP (0, T} Wol’p“(Q,w)) such that
ug —u in LP (0,T; Wol’p(')(Q,w))
Lpug = Lou in LP (0,73 W17 0 (Q, w*)) (4.7)
lim sup <Bnuk,uk — u> <0
k—oo
that, we have prove that
Bhur — Bhu  in 2 (0,T; Wol’p(‘)(Q,w)) and (Bpuk, ur) — (Bpu,u).

By the definition of the operator L, defined in definition [2.12] we obtain that wux is
bounded in Wo*") (€, w) and since W P (Q,w) < L )(Q),

then uy, — win LP (0, T; Wol’p(')(ﬂ,z.u))7 then the growth condition (a(z, t, ur, Vur))r
is bounded in (Lpl(')(Q, w*))N therefore, there exists a function ¢ € (Lp,(‘)(Q,w*))N such
that

a(x,t, ur, Vug) — ¢ as k — +o0. (4.8)
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Similarly, using condition 1| (Hn(ac,muk,Vuk)) is bounded in L'(Q), then there
k
exists a function ¥, € L'(Q) such that:

Hy(z,t,uk, Vug) — ¥, in L'(Q) as k — 4-00. (4.9)

lim <Bnuk,uk> = limiseo [<Gnuk,uk> + <Auk,uk>]

k—o0

= lim [/ a(m,t,uk,Vuk)VukdxdtJr/ H(m,t,uk,Vuk)ukdxdt]
Q Q

k—oo

= /@Vukdxdt+/¢nukdxdt (4.10)
Q Q

using (4.7) and (4.10)), we obtain

klim sup <Bnuk,uk> = lim sup{/ a(z, t, ur, Vur) Vurdzdt
) Q

k—oo

+ / H(z,t, uk,Vuk)ukdxdt}
Q

< /@Vudmdt—i—/wnudmdt (4.11)
Q Q
thanks to ([4.9), we have:
/Hn(:v,t,uk,Vuk)d:Edt%/wnd:cdt. (4.12)
Q Q
therefore,
lim sup/ a(x,t, uk, Vug)Vug S/ pVudadt (4.13)
k— o0 Q Q

on the other hand, using (3.4)), we have
/ [a(m,t, uk, Vug) — a(z, t, ug, Vu)] (Vup — Vu)dzdt > 0. (4.14)
Q
Then,

/a(a:,t,uk,Vuk)Vukdxdt > —/a(a:,t,uk,Vu)Vuda:dt
Q Q
—|—/ a(z,t,ur, Vur) Vudzdt
Q
—|—/ a(z,t, ug, Vu)Vurdrdt
Q

and by (4.8]), we get

lim inf/ a(z, t, uk, Vug) Vurdzdt > / pVudzdt,
Q Q

k—oo

this implies, thanks to (4.13)) that

lim a(:c,t,umVuk)Vukdxdt:/ pVudzdt. (4.15)

Now, by(l4.15]), we can obtain

klim a(x,t,uk, Vur) — a(z, t,ur, Vu))(Vur, — Vu)dzdt = 0.
—oo /g
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In view of the Lemma 2.10] we obtain

u, — u in L (0,T; WP (Q,w)),
Vu, — Vu ae.in Q.
Then,
a(z, t, uk, Vug) = a(z, t,u, Vu) in (Lp/(')(Q,w*))N,
Hy(z,t,u, Vuy) = Ho(z, t,u,Vu) in  LY(Q),

we deduce that

’—

Aup, — Au  in (L7 (Q,w™)V
and
Grur — Gou  in L'(Q),
which implies
Boug — Bpu  in LV (0, T; Wol’p(')(Q,w))
and
<Bnuk,uk> — <Bnu, u>

completing the proof of assertion(b).

c) Using Holder's inequality and the growth condition , we can show that the oper-
ator A is bounded, and by using , we conclude that B,, is bounded. For to show that
B,, is demicontinuous.

Let uy — u in LP (0, T; W, ") (Q,w)) and prove that:

<Bnuk,1/)> — (Bpu,db)  forallp € LP (0,T; WO (Q,w)).

Since a(z, t, uk, Vur) = a(z, t,u, Vu) as k — oo a.e. in Q. Then, by the growth condition
(3.3) and Lemma

CL(I}, t7 Uk, vuk) - CL(l}, t7 u, Vu) n (Lp,()(Q7 w*))N
and for all ¢ € L? (0,T; Wol’p(')(Q,w)), (Aug, o) = (Au, @) as k — oo
similarly, Grur — Gpu as k — oo a.e. in @, then by the (3.6) and Lemma Gpur —
Gpuin LY O(Q,w") and for all ¢ € LP (0, T; Wy (Q,w)),
<Gnuk, ¢> — <Gnu, ¢> as k — oo which implies B,, is demi continuous.

In view of Theorem there exists at least one weak solution u, € L? (0; T Wol’p(‘) (Q,w))
of the problem (P,).( See [14].)

4.2. A Priori Estimates.

Proposition 4.3. Let u, a solution of the approzimate problem (P,). Then, there exists
a constant C'( which does not depend on the n and k) such that

1 T% (wn) || , SkC k>0

Lr~ (0,T;Wa P (Qw

Proof.
Let ¢ € LP” (0, T; WoP(Q,w)) N L=(Q), with ¢ > 0. Choosing v = exp(G(un))¢p as a
(

test function in (Py), where
Gts) = [ (@,
0 o
(the function g appears in (3.6])), we have

/QWe){p(G(un))wdwdt—&—/Qa(m,t,un,Vun)V(eXp(G(un))ga)dmdt

—l—/ Hn(:v,t,un,Vun)exp(G(un))apdmdt:/ fnexp(G(un))pdzdt.
Q Q
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In view of (3.6), we obtain

/ Oon (2 tn) (G () ot + / (@, ) Vi 2 exp(Gun)pdadt
o ot o e
+/ a(m,t,un,Vun)exp(G(un))VgadxdtS/'y(x,t)exp(G(un))apdmdt
Q Q

+/ fn exp(G(un))pdzdt +/ 9(n) |V [P w(z) exp(G(un) ) pdzdt.
Q Q
By using (3.5)), we obtain

/Wexp(G(un))wdxdt—i—/ a(z, t, un, Vuy) exp(G(un))Vedzdt
Q Q

< / ~v(z, t) exp(G(un))pdzdt +/ frnexp(G(un))pdzdt (4.16)
Q Q
for all € LP (0, T; Wy " (Q,w)) N L=(Q), with ¢ > 0.
On the other hand, taking v = exp(—G(ux,))p as a test function in (P,),
we deduce as in (4.16]) that

/Wpr(—G(un))wdaEdt—l—/a(x,t,un,Vun)eXp(—G(un))V@d:cdt
Q Q

+/ v(z,t) exp(fG(un))godxdtz/ frnexp(—G(un))pdzdt (4.17)
Q Q

for all ¢ € LP (0, T; Wy " (Q,w)) N L=(Q), with ¢ > 0.
Letting ¢ = Tk (un)tx(0,) for every 7 € [0,T], in (4.16), we have

/QB,?,G(:r,un(T))d:rJr/ a(, t, un, Vun) exp(G(un))VTk (un) " dedt
S/ v(z, t) exp(G(un)) Tk (un) " dxdt + o Fr exp(G(un)) Tk (un)t dzdt
+/(ZBE,G(:L’,uOn)dx, (4.18)
where,

" " Obn(x, s
By g(z,T) :/ %Tk(s)*'exp(G(s))ds.
0 s
Due to the definition of By ¢ and |G(un)| < exp(%), we have
n gy
0< / B}l (@, uon)da < kexp (”“ﬂ) 15 o]l 11 0y (4.19)
Q a
Using (4.19), By, (%, un) > 0, we obtain
/a(w,t,un,VTk(un)+)exp(G(un))VTk(un)erxdt
gl
< kexp (F ) 1 allzr @) + Il (@) + o (@, tonl 1oy |
o
Thanks to (3.5), we have
+p(x) Hg”Ll(R)
a | |IVTk(un) PP w(@) exp(Gun))dadt < kexp (T) [anHLl(Q)

vl + ||bn($7U0nHL1(Q)]' (4.20)
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Let us observe that if we take: ¢ = p(un) = [;'" g(s)x{s>01ds in (4.16)
and use (3.5, we obtain

T
/Q [B;L(x, un)] . dx + a/Q |Vun|p(z)w(:r)g(un)x{un>0} exp(G(un))dzdt
< lgll L m)
< ([ atoras) exp (FPED) 1 falliniey + o)
where
By (er) = [ 28 o) explc)is,
0 s

which implies, using By (z,r) > 0, we obtain
a/ [Vun [P w(z)g(un) exp(G(un))dzdt
{un>0}

HgHLl(]R)
< llglloe exp () [Ill1 (@) + Il @) + ba (@, uon 210

then, / 9(un) |Vt [P w(z) exp(G(un))dzdt < Cs.
{un>0}

Similarly, taking ¢ = ff 9(8)X{s<0yds as a test function in li
we conclude that

/ 9(n) | Vun|P ™ w(z) exp(G(un))dxdt < Cy.
{un <0}

Consequently,
/ 9(Un) [V | w (@) exp(G(un) dadt < Cs. (4.21)
Q
Above, C4i,....,Cs are constants independent of n, we deduce that
/ IV T () TP w(a)dadt < k Co. (4.22)
Q

Similarly to (4.22), we take ¢ = Tk (un)” x(0,7) in (4.17) to deduce that

/ VT (un) ™ [P®w(z)dzdt < k Cr. (4.23)
Q
Combining (4.22), (4.23) and Remark we conclude that
T
. +
[ min {77, g 1T 0
0

WO (@ Wa ) (@

1T )l om0 ey ) <k i (4.24)
(0,7;W, (Q,w))

| Jt < p(VTk () < KCs.

Where Cs, C7, Cs are constants independent of n. Thus, Tk (u») is bounded
in L? (0, T; Wol’p(')(ﬂ,w)) independently of n for any & > 0. Then,
we deduce from (4.18), (4.19) and (4.24) that

/ng(l‘,un(T))dl‘S kC. (4.25)
Q
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4.3. Almost everywhere convergence of the gradients. Now, we turn to proving the
almost everywhere convergence of u, and b,(z, u,). Consider a non decreasing function

s ifls| <k
€ C*(R) such that: 5) = -2
g€ C®) (5 {k L
Multiplying the approximate equation by gy, (u,), we get
OBy (x, un)

at - div(a(x7 ta Un, vu”)glg(u’ﬂ)) + (I(J], ta Un, vu”ﬂ)gg(un)vun

+Hn(-1‘7 L, Un, Vun)g;c (un) = fng;c(un)7 (4'26)
where
n 8 8bn ) /
By (z, 2) 2/0 %gk(s)d&

As a consequence of , we deduce that gi(un) is bounded in
L (0,T; Wol’p(')(Qw)) and %j’u") is bounded in L'(Q) + V*. Due to the properties
of g and , we conclude that % is bounded in L'(Q) 4+ V*, which implies that
gk (un) is compact in L'(Q).

Due to the choice of gi, we conclude that for each k, the sequence Ty (u,) converges
almost everywhere in @, which implies that u, converges almost everywhere to some
measurable function v in . Thus by using the same argument as in [7], [8], [9], we can
show the following lemma.

Lemma 4.4. Let un be a solution of the approzimate problem (Pp) then,

Un — u ae in Q.

bn(z,un) —  blz,u) ae in Q.
We can deduce from that
Ti(up) = Ti(u) in L (0,75 Wy (Q,w))

which implies, by using (3.3), that for all k > 0 there exists pi € (Lpl(')(Q,w*))N, such
that

’ N
a(x,t, Tk(un), VIk(un)) = @r  in (Lp (‘)(Q,w*)) .

Remark 4.5. b(.,u) it belongs to L°°(0,T; L' (Q)).

Proof.
Let u, be a solution of the approximate problem (P,) passing to liminf in (4.25) as
n — 00, we obtain

%/ By ,c(z,u(t))dx < C, for a.e. 7in [0,7].
Q

Due to the definition of Bk, (,s) and the fact that +Bk,c(z,s) converge pointwise to
Iy sgn(s)% exp(G(s))ds > |b(z,u)| as k — oo, it follows that b(.,u) belongs to
L*(0,T; L' (Q)).

Lemma 4.6. Let u, be a solution of the approzimate problem (Pp). Then,

lim limsup / a(z,t, un, Vun)Vuydedt = 0. (4.27)
{m<|un|<m+1}

m—=00 no0

Proof.
Set ¢ = Ti(un — Trm(un))™ = am(un) in (4.16), this function is admissible since ¢ €
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P (0,T; Wol’p(‘)(Q,w)) and ¢ > 0. Then, we have

/ Mexp(G(un))am(un)dwdt
+/ a(z,t, un, Vuy) exp(G(un)) Vundadt
{m<un<m41}

< / [y(z, t)| exp(G (un)) om (un)dadt +/ | fr| exp(G (un))om (un)dadt.
Q Q
This gives, by setting
Briater) = [ 20 exp(Gls))an (s)ds,
’ 0 0s
and by Young’s Inequality,
/ B.o(z,un)(T)dx + / a(z,t, un, Vuy) exp(G(un)) Vundadt
Q {m<un<m+1}

1
L A LR VA R L e ey
a {lun|>m}

Since By'¢(x,un)(T) > 0 and use (3.5), we obtain

e / V) P exp(G(un ) Vundadt
{m<un<m+1}

Sexp(

Hg”Ll(]R)

<exp (
(03

W[ bl faldedt + (e uonlosgo | (4.28)
{lun|>m}
. T L .

Taking ¢ = pm(un) = fo 9(8)X{s>m}ds as a test function in ll we obtain

T
[/ Bzm(x,un)dx}o +/ a(x,t, Un, Vi) exp(G(un))g(tn) Vi X {u, >m}drdt
Q Q

o lgllzr (m
< (| stohxmmmds) e (L) s + s

where B, (z,7) = [ bnlz.5) 5 (s) exp(G(s))ds which implies,

=Jo "o
since By, ,,(x,7) > 0, by (3.5) and Young’s Inequality

a/ [Vn P w (@) g(un ) exp(Gun ) )dadt <
{unp>m}

o gl L1 (m
([ ats)ds) exp (FFLD) [Ifullaiey + sy + Ibn(owonllire) - (429)

Using (4.29) and the strong convergence of f,, in L*(Q) and b, (x,uon) in L*(Q), v €
L'(Q), g € L'(R), by Lebesgue’s theorem, passing to limit in (4.28)), we conclude that

lim limsup / a(z,t, un, Vun)Vuydedt = 0. (4.30)
{m<up<m+1}

m—=00 n_o0

On the other hand, taking ¢ = 71 (un — Tm(un))” as a test function
in (4.17) and reasoning as in the proof (4.30)), we deduce that

a(z,t, un, Vun)Vurdzdt = 0. (4.31)

lim limsup/
M0 nooo  J{—(m41)<up<—m}

By using (4.30) and (4.31]), we have
lim limsup / a(z, t, un, Vun)Vupdedt = 0. (4.32)
{m<|un|<m+1}

m—00 n_o00

To this end, we prove the strong convergence of truncation of T (u,) that we will use the
following function of one real variable s, which is define as where m > k,
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i if lsl<m
hm(s) =<0 if ls|>m+1

m+1+|s| if m<ls|<m+1
Let 1; € D(Q) be a sequence which converges strongly to wuo in L' ().
Set w), = (Th(u))p +e " Ti(¢pi) where (Tk(u)), is the mollification of Tk (u) with respect
to time. Note that wy, is a smooth function having the following properties:

awi i i i
atH = /J“(Tk(u) - wu)v ’LU,_L(O) = Tk('(/}l)7 |wu| S k, (433)
wl, = Te(u) in LP (0, T;WyP ) (Q,w))  as p — oc. (4.34)

The very definition of the sequence wL makes it possible to establish the following lemma.

Lemma 4.7. (See[9, 2].) For k > 0, we have

/ 0l ). (G 1)) (T (1) — Yo ()t > (i, m, o, )
{(Ty(un)—wi,>0p  OF

Proposition 4.8. The subsequence of uy solution of problem (Py) satisfies for any k >0
following assertion:

lim [a(Tk(un), VT (un)) — a(Ti(un), VT (u))] : [vn (un) — VT (u)] dadt = 0.

n— oo
Q

Proof.
For m > k, let ¢ = (Thk(un) — w},) " him(un) € L (0,7} Wy PO(Q,w)) N L=(Q) and ¢ > 0
. If we take this function in (4.16)), we obtain

/ M exp(G (un)) (T (un) — wi)hm (un)dzdt
(Th(un)—wi, >0y O

+ / a(@, t,un, V)V (T (tn) — wh) hn (un)dadt
(T3 (un)—w}, >0}

— / exp(G(un))a(@, t, tun, Vun) Vun (T (un) — w),) " dzdt
{m<un<m+1}

< [+ DG ) Tln) = 0] ()t (4.35)
Q
Observe that,

‘ / exp(G(un))a(z, t, un, Vn) Vun (Tk(un) — w;)erwdt
{m<u,<m+1}

< 2kexp (Mﬂ) / a(z,t, un, Vun) Vu,dzdt.
@ {m<un<m+1}

Tanks to (4.27) the third and fourth integrals on the right hand side tend to zero as n
and m tend to infinity and by Lebesgue’s theorem, we deduce that the right hand side

N\t
converges to zero as n, m and g tend to infinity . Since (Tk(un) — wL) B (un) —
N+ _
(Tk(u) - wL) hm(uw) in L*°(Q) as n — oo and strongly in L? (0,T} Wol’p(')(Q,w)) and

(T (un) —w},) T hm (un) — 0 in L®(Q) and strongly in L” (0, T} Wol‘p(')(Q,w)) as 1 — 00,
it follows that the first and second integrals on the right-hand side of converge to
zeros as n, m, j — oo, using [3] Lemma and Lemma, the proof of Proposition
is complete. Thanks to the Lemma 2.10] we have

Ty (un) — Ty (u) strongly in LP (0,T; Wol’p(')(Qw)), Yk (4.36)
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and Vu,, — Vu a.e. in ), which implies that

59

a(@, t, T(un), VTi(un)) = alz, t, Ti(w), VTi(w)) in (LFOQo")N. (437

4.4. Equi-Integrability of the non Linearity Sequence.

Proposition 4.9. Let u, be a solution of problem (Py). Then H,(x,t, u,, Vu,) —

H(x,t,u,Vu) strongly in L*(Q).

Proof. By using Vitali’s theorem. Since H,(z,t, uy,, Vu,) = H(x,t,u, Vu) a.e.
3t}

in @, considering now, ¢ = pp(u,) = fou" 9(8)X{s>n}ds as a test function in
we obtain

T
[/ Bﬁ(m,un)dx] +/ a(x, t, Un, Vin)Vng(Un) X {u, >h} €XP(G(un))dzdt
Q 0 Q
o llgll o m)
< ([ senxisnds) e (LD i)+ @)

where B (z,7) = [ th(s) exp(G(s))ds,

which implies, in view of B} (x,r) > 0 and (3.5)
a/ [ Vtun [P w(z)g(un) exp(G(un ) )dzdt
{un>h}

o gl 1 )
<( / g(s)ds) exp (T [l fullir @) + Il @) + lbn (@, won 120

and since g € L'(R), we deduce that

lim sup/ [Vt [P w () g (up ) dadt = 0.
{un>h}

h—o0 peN

Similarly, taking ¢ = pp(u,) = fuon 9(8)X{s<—n}ds as a test function in 1]
we conclude that: limy_,o SUp,,ey f{un<_h} |V, [P®w(x)g(u, )dadt = 0.

Consequently, limp_, o SUp,,cy f{\un|>h} |V, [P®w(z)g(uy, )dzdt = 0.
Which implies, for h large enough and for a subset F of Q,

lim / [V | w(@)g(un)dedt < ||gllee  lim / |V Thn [P w(z) dadt
E E

measE—0 measE—0
+/ |Vun P w () g(un ) dadt,
{lun|>h}
50 g(tn )|V |P®w(x) is equi-integrable. Thus we have shown that
9(un) |V [ (@)w(@) — g(w)| V™) (2)w(x) stongly in L' (Q).

Consequently, by using (3.6[), we conclude that

H,(x,t, Uy, Vu,) — H(z,t,u, Vu) strongly in L'(Q). (4.38)

4.5. Concluding the proof of Theorem
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a) Proof that v satisfies (3.8]). For any fixed m > 0, we have

/ a(z, t,up, Vg, ) Vu,dedt
{m<|un [<m+1}
= / a(z, t, Uy, V) [VTm_H(un) — VTm(un)} dxdt
Q
— [t T (), VEor1(0) VT )
Q

— / a(z, t, T (un), Vi (un)) VT (uy,)dzdt.
Q

According to (4.36) and (4.37)), one can pass to the limit as n — oo for
fixed m > 0 to obtain

lim a(x,t, uy, Vi, )Vuydedt

00 Jim< |un |<m+1}

=Aamanwmmvnwmmvmﬂm>

- / a(x,t, T (u), Vi (w) VT, (u)dxdt
Q

= / a(z,t,u, Vu)Vudzdt. (4.39)
{m<|u|<m+1}

Taking the limit as m — oo in (4.39) and using the estimate (4.27)), shows that u
satisfies (3.8]).
b) Proof that u satisfies (3.9))
Let S € W2>(R) be such that S” has a compact support. Let M > 0 such that
supp(S’)C [-M, M]. Pointwise multiplication of the approximate problem (P,,) by
S (un), leads to
OB% n
% — div [S’(un)a(ac, t, U, Vun)} + 5" (up)a(z, t, un, Vu,)Vuy,
+ Hp (@, t,up, Vug)S (un) = fuS' (uy,) in D'(Q). (4.40)
In what follows, we pass to the limit in (4.40]) as n tends to co.
e Limit of 285@:un)
Since S is bounded and continuous, u, — u a.e. in @ implies that B%(z,u,,)
converge to Bg(z,u) a.e. in @ and L™ weakly
O0B%(z, un) . 0Bs(x,u)
ot ot
e Limit of —div [S’(un)a(x,t,un, Vun)}
Since supp(S’)C [-M, M|, we have, for n > M
S (un)a(@, t, un, V) = S (up)a(z, t, Tar(un), VI (un)) ae. in Q.

The pointwise convergence of u, to u and (4.37) and the boundedness of S’ yied,
as n — 0o,

S (un)a(, t, un, Vun) — S’ (w)a(z, t, Tar (w), VT (w)) in (LP O(Q,w*)N (4.41)

as n — 0o,
S’ (w)a(z,t, Tpr(u), VTp(uw)) has been denoted by S’'(u)a(z,t,u, Vu) in equation

Then, n D'(Q), as n — oo.



EJMAA-2016/4(1) SOLVABILITY OF DEGENERATED p(z)-PARABOLIC 61

E9).

e Limit of S”(uy)a(z,t, upn, Vuy)Vuy,.

Consider the "energy” term

S (up)a(x, t,tun, Vup)Vu, = 8" (un)a(z, t, Tar(un), VT (un))VTar(uy) ae. in Q.
The pointwise convergence of S’ (uy,) to S’(u) and as n — oo and the bound-
edness of S” yield

S (un)a(@, t, Un, Vn) Vi, — 8" (w)a(x, t, Tar(u), VT () VT (u) in L'(Q).  (4.42)
Recall that S”(w)a(x,t, Tar(u), VT (w)) VT ((w)) = S (u)a(z,t,u, Vu)Vu a.e.
in Q.
e Limit of S'(up)Hy(z,t, Uy, Vuy,). From supp(S')C [—M, M] and (£.38),
we have

S () Hp (2, t, tn, Vn ) = S’ (w)H(x, t,u, Vu) strongly in L' (Q) as n — co.  (4.43)

e Limit of S"(uy,)fn. Since u, — u a.e. in Q,

we have S’ (uy,)fn, — S'(u)f strongly in L'(Q), as n — oo.

As a consequence of the above convergence result, we are in a position to pass to
the limit as n — oo in equation and to conclude that u satisfies .

c) Proof that u satisfies (3.10)
S is bounded and BY(z, u,) is bounded in L>(Q). Secondly by (£.40), we have
% is bounded in L*(Q) + V*.
As a consequence, an Aubin type Lemma (see, e.g, [I8] implies that B%(x, u,) lies
in a compact set in C°([0,77], L' (12)).
It follows that on the hand, B%(z,uy,) |t=0= B&(x,uy) converge to Bg(z,u) |i=o
strongly in L(€2) implies that: Bs(x,u) |(—o= Bs(x,ug) in .
As a conclusion, the proof of Theorem is complete.
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