Electronic Journal of Mathematical Analysis and Applications,
Vol. 2(2) July 2014, pp. 132-143.

ISSN: 2090-729(online)
http://fcag-egypt.com/Journals/EJMAA /

EXISTENCE OF MULTIPLE SOLUTIONS FOR A HOLLING II
TYPE FUNCTIONAL RESPONSE SYSTEM

LIANG DING, JINLONG WEI, BIN ZHANG

ABSTRACT. Applying the Mawhin continuation theorem, the homotopy invari-
ance of topological degree and some construction skills, we obtain the existence
of multiple positive periodic solutions for our new Holling II type functional
response system. Moreover, an interesting result is discovered: when the male
prey species population density is a constant, the existence of multiple positive
periodic solutions is independent of «(t) in some special domain §;, (i € A, in
Section 2). At last, we take an example illustrate our interesting results.

1. INTRODUCTION

In recent years, the existence of periodic solutions for predatory-prey system has
been widely investigated by many researchers. For example, in [1], Wu considers a
prey-predator model with sex-structure:

@(t) = B(t)w(t) — k(1) (x(t) +y(t))x(t) — & (t)x(t)=(t),
y(t) =)z (t) — di(t)y(t) — k(t) (x(t) + y(t))y(t) — &L@OyH)=(t),  (1.1)
£(t) = 2(8) (= d(t) = 12()z(t) + &)y(t) + &()x(t)),

where x(t) and y(¢) represent female and male prey species population densities
respectively, z(t) stands for predator species population density. All the parameters
in system (1.1), are positive continuous w-periodic functions, with w > 0. Then by
virtue of coincidence degree theory, the sufficient conditions, which are depended
on & (t), are gained for guaranteeing the existence of at least one positive periodic
solution.

Besides, Zhang and Hou [2] discuss the following Holling IT type functional re-
sponse system with harvesting terms:

{«wzamaw—Wﬁm—mgﬂﬁm»4mm

A(t) = 2(8)(—=d(t) + ) — ha(®),

where s(t) stands for prey species population density, z(t) is predator species pop-
ulation density, and h;(t) (i = 1, 2) is a harvesting term. Using coincidence degree
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theory, the existence of four positive periodic solutions was obtained. For more
details in this direction, one can consult to [3-7] and the references cited up there.

In this paper, we consider the following Holling II type response function model
with sex-structure and new multiple harvesting terms:

L) a(t) c(t)z(t)
@(t) = z(t)[*5* — br(t)a(t) — m(t)z(t)+a(t);c(t)+(l—a(t))y(t)] — ha,

y(t) = y(t) [_b2(t)y(t) - m(t)z(t)Jra(Ctl)S()tZ)(i)Sl,a(t))y(t)] + @LL‘ —hy=0, (1.2
o FBa)a (D)4 (o)) (E)F ()
(1) = 2()[=d(t) + Sz m raDem+ (I-at)y®)] — 13

where h; = hl(t,x,i),hg = ha(t,y, %),hg, = hs(t,z), and all the parameters in
(1.2) are positive continuous w-periodic functions.

Predator eats both male and female prey species, and at different times and/or
at different locations, the male and female prey species may be eaten differently. So
we investigate the new Holling IT type functional response system (1.2) involving a
ratio parameter «(t) with a(¢) € [0, 1], and now the food of predator z(¢) contains
two parts: «(t)x(t) and (1 — a(t))y(t).

Note that when x is very big, then h increases and vice versa. So the harvesting
term h should be z-dependent and it motivates us to substitute h(t,z) for h(t),
which has been studied by many scholars in the past few years. Moreover, we
discover that when sex-ratio % is large enough, one harvests female prey species
more and vice versa. This stipulates us to study the gender ratio of prey species
and replace h(t,x) by h(t,z, 7).

In model (1.2), we assume that the males have the same birth rate as females,
and both of them are 3. By using the Mawhin continuation theorem ([8]) and
the homotopy invariance of topological degree, we discuss the existence of multi-
ple positive periodic solutions for a improved Holling II type functional response
system. In this paper, the definitions of N(u, A\) and the operator G(u) are quite
different from the above mentioned papers, and an interesting result is revealed as
well: when x is a constant, no matter what «(t) takes on, (1.2) always has at least

four positive periodic solutions in Q; (i € A), with A ={1,2,3,4}.
2. MAIN RESULTS

Firstly, let us review some notions and make some preparations.

Let X and Z be Banach spaces, that N : X x[0,1] — Z be a continuous mapping,
that L: DomL C X — Z be a linear mapping, which is called to be a Fredholm
mapping of index zero if dim KerL = codimImZL < oo and ImL is closed in Z.

If L is a Fredholm mapping of index zero, then there exists continuous projectors
P: X — X and Q : Z — Z such that ImP = KerL and KerQQ = ImL =
Im(I — @), and X = KerL@ KerP, Z = ImL @ ImQ. Therefore, LlDomLﬂKerP :

(I — P)X — ImL is invertible and its inverse is denoted by Kp.

Let Q C X be bounded and open, then N is called L-compact on Q x [0,1], if
QN(Q2 x [0,1] is bounded and Kp(I — Q)N : Q x [0,1] — X is compact.

ForIm(@ is isomorphic to KerL, there exists an isomorphism J : Im@Q — KerL.

Besides, we need Mawhin’s continuous theorem below.

Lemma 2.1. ([8, pso]) Let L be a Fredholm mapping of index zero, that N be

L-compact on 2x [0,1]. Assume
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(a) for each A\ € (0,1),z € 9QNDom L, Lz # AN(z, \);
(b) for each x € 90 NKerL, QN (z,0) # 0;
(¢) deg(JQN(z,0),2NKerL,0) # 0.

Then Lz = Nz has at least one solution in Q N DomL.

For the sake of convenience, we introduce notations as follows:

L . M L : z M €
a” = min a(t), ™ := max a(t), hy := min hi(t,x—), hy" := max hi(t,z, —),
t€]0,0] *) te]0,0] () te]0,0] i ) t€]0,] i )
aM aM)2 ol M al oM
s - —4bbnf Hi:T—mi\/(T—m)Q—‘lb{wh{w
' 20T ’ ' 2 !

Ss:=max{Ini", ua(t)},  Sq:=min{lni", us(t)},

4 eS4fL — dMeSs _ héme + \/(dM€S3 4 hé\/[mM _ eS4fL)2 _ 4deMhéWES3
U = oM M .

Throughout this paper, we need the following assumptions:

L M
A DS s o bR, Ay S S M > 0y fm M A s,
m

Lemma 2.2. |- < H- < HT <It.

Proof. In fact, from above assumptions, we have:

- AP A (al)? o\ _
I” = abFhf b (S [ — 4kl <H, (2.1)
and
M M2
< | S ] et = 2.2
9 4 171 1

From (2.1), (2.2) and I~ < {*, H~ < H™", one verifies the conclusion.

Theorem 2.1. Let A; and As hold. Then, (1.2) has at least four positive w-
periodic solutions.

Proof. For gy(t) = 0, y(t) is a constant. By making the change of variables
z(t) = e @ y(t) = e and z(t) = e*3®), (1.2) can be reformulated as:

. _ al®) u c(t)eus®
U1 (t) = 2 by (t)e 1) — m(t)e"3® fa(t)e l® +(1—a(t))e2®
—hy (t, eul(t)7 el (t)fug(t))eful (t)’ (23)

. a(t)e1® 4 (1—a(t))e2® f(t u —u
(1) = ~d(t) + S e 4 ey — ha(t e ®)ems @,

where ug(t) is a constant. Let
X=2Z={u=(u,u3)" € C(R,R?) :u(t+w)=u(t), t € R}

and define
lull = max |ui(t)| + max |us(t)], ue X or Z.
te[0,w] te[0,w]

) B

Equipped with the above norm || - ||, then X and Z are Banach spaces. Let the
mappings be that

N(u,\):Xx[0,1]—-Z, L:DomL C X —Z, P:DomLNX — KerL,Q:Z— Z/ImL,
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a(t u c(t)e¥3®) —u
(2) - bl (t)e H® - A'rn(t)e“S(t)<|»oz(7§)(e)“1(t)4»(1fo¢(t))e“2(t) - h16 1(8)
N(u,\) = ,

f®a®e 1M +a—a(t))e 2™ f(t) —ug(t

—d(t) + T (0)e3® Fa)e 1D (I—a(f)e2® hye~us(®)

du(t 1 [“ 1 [“
Lu=q= 20 Pu:—/ w(t)dt, € X, Qz:—/ A(t)dt, z € Z.
dt w Jo w Jo

Then KerL = R?,ImL = {z € Z : [’ 2(t)dt = 0} is closed in Z,dimKerL = 2 =
codimImZ, and P @ are continuous prOJeCtOI“S such that ImP = KerL and KerQ =
ImL = Im(I — Q). Hence, L is a Fredholm mapping of index zero. Furthermore,
the generalized inverse (to L) K, : InL — KerP N Dom L is given by

K,(z) = / ds——// t)dtds.

Thus
I 1 (¢
QN (u, \) = (;/0 Fi(s,\)ds, ;/0 Fs(s,\)ds) "
and
B [P R(s ds—lf [ Fy (s, \)dsdt+(% — LY [ Fi(s, N)ds
Kp(I Q)N(ua ) ( fz Fg 1 fz fg F3 7 dsdt—l—(g 5) fzw Fg(S,)\)dS )
where

Fi(s,A) = @ —by(s)em®) —hy (s, eui(s), 6“1(5)7“2(5))67“1(5)

—\ C(S)GMB(S)
m(s)evs(s) + a(s)em1 () + (1 — a(s))eu2()’
Js)a(£)e @ + (1 - a(s)e" ) 1 (s) (0 gs(e)
F = — _ usz(s uz(s .
3($a )\) d(S) + m(s)eus(s) + 06(8)6“1(3) + (1 _ a(s))eu2(8) h3 (57 e )6

Evidently, QN and K,(I—Q)N are continuous and it is easy to derive the compact-
ness of K,(I —Q)N (£ ) for any open bounded set 2 C X by using the Arzela-Ascoli
theorem. Moreover, QN () is bounded. Therefore, N is L-compact on Q for any
open bounded set €.

In order to use Lemma 2.1, we must find at least four appropriate open bounded
subsets in X. Applying the operator equation Lu = AN (u, \), X € (0, 1), one gains

w(t) = A [a(;) —bi(t)enr® — hy (¢, e ®) ema()—u2(t))e—ua(t)

Ac(t)e™3®
T m(t)eus®Ofa(t)er1 O 4 (1—a(t))ev2® |2 (2.4)

g — f®a@®)e 1@ +1—a(t))e"2™M f(t)
US(t) - >\|: (t)eug(t)7d(t)+a(t)eul(t)+(1ia(t))eu2(t)

— hs (t, eus(t))efu‘%(t) .

Assume that v = u(t) € X is an w-periodic solution of (2.4) for some A € (0,1).
Then for i = 1,3, there exist &;, 7; € [0, w] such that u;(§;) = maxe(o,o) ui(t), ui(n;) =



136 LIANG DING, JINLONG WEI, BIN ZHANG EJMAA-2014/2(2)

mingepo,.,) ui(t). Obviously, u;(&;) = 0,1;(n;) = 0. From this and (2.4), we have
a(gl) _ bl(gl)eul(fl) _ hl (51 eul(fl) eul(él)) —uy (&)

12 (1)
c(€ )6“3(£1) .
- m(§1)5“3(§1)+0‘(51)2“1<51)+(17a(§1))e“2(§1) =0, (2.5)
Fl€3)a(€3)e™1(E3) £ (1—a(&s))e*2(83) £ (& s
e et st — d(€) — ha(G,e)em =0,

and

a(;h) _ bl(nl)eul(nl) _ hl (771 eU w1 (n1) eul(m))e_ul(nl)

’ eu2(n1)

c(ny)e*3 () o
m(m)eua(nn+a(n1)eu1(m>+317a(m))eu2(n1) =0, (2'6)

f(ns)o(ng)e1(13) 4 (1—a(n3))e”23) f(ns) uz) p—uz _
m(n:)jeli(qzé)ia(n?,)ew(n?)zzl_ea(m))euzd(ng) - d(’?S) —h3 (773’ € 3)6 v =0.

From (2.5)1, it leads to

CLL M
bM ui(é1) _ —hM —u1(&1)
mL

2
a(é1) w@) (&) wen € e
< 3 — by (&r)e" '™ *W*hl(ﬁhe st ’euz(fl))e Hst
al&) urten) _ clr)ers®) e, € e
< 9 bl(fl)e 1 W (51, ) eu2(€1))e 1
< 0.
Therefore, b e2v1(&1) — (% - %)e“l(&) +hM > 0, which implies that
ul(fl) <InH™ or ul(fl) >InHT. (27)
Thanks to (2.6)1, it yields
a eu1(m)
(;71) — by (my)e" (1) — by (771,6“1(771), D) e~w(m) >,
that is
u (1)
2us () _ A0 s ) wim) €
51(771)6 i 2 et +h1(7717€ Hn 7€u2(”1) 0.
Moreover,
L2 a™ L
be2mim) 7e“1<’71> +hf<0. (2.8)
By condition Ay,
a ol M
et 2y/BY R > 2y /bERE.
So 2% _ 4bEhl > 0, and from (2.8), one gets
Ini~ < ul(m) <Init. (29)
Due to (2.7), (2.9) and Lemma 2.1, then for any ¢ € [0,w], one has
Inl~ <u;(t) <InH~ or ImH" <uy(t) <Inl'. (2.10)

Note that us is constant and

ui (&) = tg}g};} up(t), Sz = max{Inl™, us(t)} > max{u; (t),ua(t)}.
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A direct computation from (2.5)s gives

FMa(Eg)em€) 4 (1 — a(Es))er=() fM

L
d S d(gg) < mLeu3(£3)
a(és)fMes + (1 — a(&)) fMe
< L
m 6u3(§3)
fMe;s;g
- mbeus(€s)’
It means that
fM633
Ug(fg) < In W (211)

From (2.6)2 and by Sy = min{lnl™, us(¢)} < min{u, (¢),us2(t)}, it follows that

fM633 fMeS3

<
a(ng)eul(’”)+(1—Ol(773))€"2("3) eS4

h?l;efuz(ns) <hs (7737 6u3(7]3))67u3(773) <

Then

hLeSa

On account of (2.5)3, we have

f(fS)a(&i)eul(gg) + (1 - 04(53))61&(63)]0(53) _ uz(§3)) ,—u3(€3)
m(§3)6u3(§3) + a(&))eul(gg) + (1 _ 04(53))61‘2(53) - d(£3) + h3 (537 € )6 )

54 L

thus < dM 4 h)e=us(&) | Tt hints that

mMaMe2us(&s) 4 (e53gM 4 pMmM — 9 flyeus(&s) 4 pMeSs 5 0,
In view of As, one gains v~ > 0,u" > 0 and
uz(&3) <Ilnu™  or wuz(€3) >Inut. (2.13)
Analogously, by (2.6)2, we get
uz(nz) <Inu~™ or wuz(n3) >Inut. (2.14)
From (2.11) — (2.14), one concludes

LS
hze>*
fMeSQ,

fMeSg,

In <uz(t) <lnu~ or Inut <wugz(t) < IHW'

(2.15)
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Indeed, by Ay, then €51 fL — €S2 — p2mM > (0, and

es“fL—dMeSB —héme— \/(dMeSB +h§/[mM—eS4fL)2—4deMh§/leS3
2mM M

(4deMhéweS3) [2771]V[cil‘/1(es‘1 fL—aMess — héme

-1
+\/(dMeS3 + hMmM — eSa fL)2 — 4deMh§V[eSS)}
2h3 9

eS4fL_dMeSj3 —héme—i—\/(dMeSS —l—hé”mM—eS4fL)2—4deMh§4653

-1
= (2h}e5) {eS4fL —dMeS: — pMmM \/(654fL —dMeSs — hé”mM)ﬂ

-1
> (2n%eS) {es“fL —dMeSs — pMmM 4 \/(eSSfL + dMeSs + hé‘/[mM)Q}

_ hfeSs
53 fL :
Thus In 2 fM 33 < ug(t) < Inwu~. Furthermore,
L eSiflqMeSs MM /(dM eSs p pTmM —eSs fL)2 —4dMmM 2 ¢Ss
B 2mM M

= |5l —aMeSs —pimM + \/(6S4fL — M eSs _ hé\/me)z] (2mMaM) !

< [ eSs M _ gMeSs Mo \/(653]”\4 L dMeSs 4 hé‘/me)Q] (2m" ")~

_ eszI\/f _ dMeSS —héme +eszM + dM€S3 + hé\/meil (QdeL)_l
éS;;fM

mbdl’

and Inu™ < usz(t) < In i LdL . Clearly, Inl*,In H*, u*, S5, S, are independent of
A. Now, let u = (uy,uz,u3) ",

LS4
H={ueX:Inlm—Cy<us1(t) <lnH™ 4+ 2C3, In fMes <wuz(t) <lnu™},
M S5
D={uecX:Inl" —Cy <ui1(t) <InH 420y, nut <wuz(t) <In—— "1 1,

hL€S4
W={ueX:mH"—Cy <up(t) <Inlt + Cs, lnf <ug(t) <Ilnu”},

M S3
U={ueX: mH" - Cy <uy(t) <Inlt +Cs, Inut < uz(t) < lnf

LdL}

where ¢y = Il ¢, — 1“H+ZIHH_,03 = 7111#721“]#. Fori,je A, Q; C X
is bounded and open, and ; NQ; = 0 (¢ # j). For this reason, Q; satisfies the
requirement (a) in Lemma 2.1.
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Now we check that (b) in Lemma 2.1 holds, i.e., when u € 9Q; N KerL = 9; N
R% QN (u,0) # (0,0)", (i € A). If not, then when u € 9€; N KerL = 9Q; NR? is
a constant vector u = (uy,u3)’ with u € 9Q; (i € A) meets:

fo a(t) by (t)e wi(t) _ b, (t, eul(t)’ eul(t)_uQ(t))e_ul(t))dt =0,

wa —d(t) + f)a(t)e"t D+ f(t)(1—a(t))e 2™ —hg(t, eu3(t))6u3(t))dt0_

m(t)e 3 ® fa(t)e*1 () f(1—a(t))ew2(t)
Then there exist ¢; € [0,w] (j = 1, 3) such that
{ (t1) — by (tl) up (t1) _ hy (tl eu1(tl)7 6“101))6,“1@1) —0,

2(t1)
f(f Ja(ts)e"t*8) 4 (t3) (1—a(ts))e 2(*s) A\ s
m(t3)3e“3(t?3)+a(t3)eu1(fds).l,.(l_aj(t?,))euz(ts) — d(ts) — hs(ts,e"s)e s = 0.

(2.16)

Akin to obtain (2.10), (2.15), it is clear that the solution of (2.16) does not satisfy
u € 9Q; NR?, (i € I). Hence, condition (b) in Lemma 2.1 holds.

Finally, let us show (c¢) in Lemma 2.1 is valid. Since KerL = Im@), we can take
J = I. To this end, we define the homotopy mapping ¢ : Dom L x [0,1] — X by

(,25(114, U3,,u) - [LQN(U,O) + (1 - M)G(u)a we [07 1]3
where G(u) is
- (o FCE )
fo [ W&W o h§/18848_u3(t)]dt
For u € 9Q; NKerL = 9Q; NR? and p € [0, 1], then they fulfill
G, uz, 1) = pQN (u,0) + (1 = ) G(u) # (0,0) "

Otherwise, there are u and constant vector u = (uy,us)' such that ¢(uy,us,p) =
(0,0)T. Thanks to the mean value theorem, there exist 74, %s € [0,w], so that

? eua(ty)

M|:a 24) _ b1(¥4)eu1(f4) - (%4,6“1(24) 6'“1(t4)>e—u1(t4):|

H1L= ) |22 = fen®) - et —o
(2.17)

f(Es)a(te)e 10+ f(T) (1—a(ls))e"2"0) T (E))e—us(®
M|:m(t6)68u3(t2)+a(t6)e“1(taﬁ>+(1afs(tﬁ))euz(ta) —h (t63u3(t6))e a(ts)

T 12¢53) 3 (6)
We make the following Claims.
Claim 1. Inl~ <wu;(f4) <InH™ or InH" <ui(ty) <Init. (2.18)
From (2.17)1, we obtain
_ b{we’“@) _ h{”e‘“l@)
uy (ta)

a(ts) o Ty, et ©
! 7b161(4)7ph1(t4a€1(4)’m

= (W e - bl(we“(“))

2
(

IN

e ) _ (1 = p)plemm ()

IN
o
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It means that

ok _ M _
— —pMemt) _ —__ _ pMemmlt) <,
2 ml
So uy(ts) <InH™ or ui(ty) > In H'. In like manner, from (2.17);, one achieves
I _ w1 (ta) _ _
0 = a(24)_bM ) — iy (T, € ), Zuz(m)e*"l(t” — (1= p)hfe )

+,u(b{w — b1 (f4))€u1(f4)

% _
< CL(24) bM uy(ta) _ ]’LL —uq () +,U(bM _ b1(t4)) w1 (tq)
a(ly _ B _ _
< (2 ) — (1= p)bMem ) — by (1,)er 1) — plemmlta)
a(ly B _ _
S (2 ) bl (t4)€u1(t4) _ h%eful(m)
aM L t L .
< 7 ble ur(ts) _ hl e~ ( 4)7

which suggests
oM
bL 2u; (ts) _ 5 eu (ta) + hL <0.

Thus Inl~ < uy(ty) < Inl*, and according to [~ < H~ < H' < I, the desired
result follows.

. hL Sy 7 B N _ fM€S3
Claim 2. In TS <wuz(te) <lmu~™ or Inu’ <us(ts) <In

mbdl”
Employing S5 = max{Ilnl", us(t)}, Sy = min{lnl~,ua(t)}, and (2.17)2, we fulfill
the conclusion easily so we omit the details.

From Claim 1 and Claim 2, when p € [0, 1] and ¢(uy,us, u) = 0, then u€0; N
KerL(09;nR?), so when u € 9Q;NKerL = 0Q;NR? and p € [0, 1], ¢(u1,us, 1) # 0.
By the homotopy invariance of topological degree and note the system below

a(}) _ b{\/leul(ﬂ) _ h%e—ul(ﬁ) =0,
_ LeS _ T
_d(t4) + m hM Sap—us(le) — 0,
one gains
eg(JQN

(

eg(o(
(o(
(

o,

(u,0),Q; NKer L, (0,0)7)

1),Q:NKerL,(0,0)7)
u,0),Q; NKer L, (0,0)7)

) (0,0)7)

= sign[ — b{‘/leul@) + h{“e‘“l@)] X sign[

\
Q.

u’

= deg(o

= deg(JG(u), % NKer L,
_fLeS4

(mM + 2353)61&3(?6)

For sign[ — bMeui(ta) hfe_"l@)], from a(fy) — bMe1 () — ple—w1(t) =, then

hM Sag US(ZG)]'

—pMeua(ta) 4 pLe—mta) = q(7,)) — 2pM e (Fa),
Employing

put(E) _py @) £ V(a(ts))? — 40}t
2bM ’
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one ascertains
sign| — bMeuata) 4 hlLe*’“(t“)] = sign|a(fy)) — Qb{We“l(t“)] =+1.

—fleSa

(mM 12658 )ews(t6) + héwe”“(tﬁ)], according to

For sign [

7 fL€S4

—d(ts) + (T 3 2ol hM eSieus(fo) —
it yields
(mM +f2LeeSS:)eu3(t6> = —d(ts) — hy'eF1emva o),
Thus
sign[(mM ;é:;:ew(tﬁ) + h§4654e_u3(¥5)] — sign[ _ d(g(’)} - 1
Therefore,

deg(JQN (u,0),Q; NKer L, (0,0)")
_fLeS4

= si _ pM ui(ts) L —uq(ts) .
sign| — by'e + hye ] x 51gn[(mM YR

+ hé‘/[es“e_““zﬁ)]

= +1x(-1)
= +1#£0. (2.19)

The argument appeals above for (2.19), adapted to G(u) now yields that the topo-
logical degree deg(JQN (z,0),;NKerL, (0,0) ") should be independent of ;. Con-
sequently, for i = 2,3, 4,

deg(JQN (u,0), Q2 NKer L, (0,0)") = £1.

So far, we have confirmed that Q; (i € A) satisfies all the assumptions in Lemma
2.1. So, (2.3) has at least four different w-periodic solutions. For this reason, (1.2)
has at least four different positive w-periodic solutions. This completes the proof.

Remark 2.1. (i) The definition for G(u) is quite different from the previous papers,
especially in G(u)2. And in G(u)1, we omit a complex term and make some special
terms.

(ii) In the definition of the operator N(u,\), the first equation involves A, but
the second equation is independent of .

(iii) When defining Q;(i € A), we use a priori bounds for u;(t), so that we
can supersede the particular G(u) for QN (u,0) to compute deg(JQN (u,0),8; N
KerL, (0,0)T).
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3. AN EXAMPLE

Consider the following Holling IT type functional response system with a ratio pa-
rameter «(t) with «(t) € [0,1], and new harvesting terms:

2+(§os t Z(t)

) ==(t) [§(30 +2008t) ~ orsmuEm Tt O T a0

2
—<5+cost>x<t>] S VO
) L2 0 T geo (3.1)

. _ (61+sint)a(t)z(t)+(1—a(t))y(t)(11+sint) 9 int
Z(t)_Z(t){(2+sint)z(t)+a(t>x(t)+(1—a(t))y(t)—3*2"“} 2 -

Now, a(t) = 30+2cost, by (t) = 5+cost, c(t) = 2E5L m(t) = 2+sint, by (¢, z, 2=

. v2 < . a1
Tt sint+ ,ﬁilt Ld(t) = 3t f(4) = 61+sint, hy(t,z) =2+ 71;2”12(”.
142 v@® " x3—=z(t)

aL c]\/f MM
7_ﬁ:14—1=13>2\/ﬁ.

This proves A;. Next, we check that A, is valid and by virtue of f = 60,bf =
4,h3 < 3,aM =32, dM =2, i =13

4
e o O i 16+ /196 -4 xax B 4
B 2b% B 8 2
aJM aM 2 K
o o O apERE 16— (/196 -4 x4 x B 1
2L 8 2’
one deduces S3 = max{In{*,In2} =InZ, Sy =min{lni~,In2} =Ini and

1 7
¢St = edM — hfmM > 260 - 2 x2 -3 x2=17,

2/ mMdMpileSs <2 x 4/3x2x3x g <17 < Sl —e93gM — pim™M,

Hence A, is legitimate. By Theorem 2.1, (3.1) possesses at least four positive

w-periodic solutions.

Remark 3.1. In the example, from the expression of the harvesting term hq (¢, x, %),
it is easy to find that when prey species population density x(t) is very large, hq
increases. In addition, in the first equation, we also discover that when the sex-ratio

t) . . .
% is large enough, h; increases as well and vice versa.
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