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SOME RESULTS ON L−ORDER, L−HYPER ORDER AND

L∗−ORDER, L∗−HYPER ORDER OF ENTIRE FUNCTIONS

DEPENDING ON THE GROWTH OF CENTRAL INDEX

DILIP CHANDRA PRAMANIK, MANAB BISWAS AND KAPIL ROY

Abstract. In this paper we discuss L−order(L−lower order), L−hyper order(L−hyper
lower order) and L∗−order(L∗−lower order), L∗−hyper order (L∗−hyper lower
order) of entire functions with respect to central index and use these to esti-
mate the growth of composite entire functions.

1. Introduction, Definitions and Notations

Let

f(z) =

∞∑
n=0

anz
n

be an entire function in the complex plane C. Let M(r, f) = max
|z|=r

|f(z)| denotes the

maximum modulus of f on |z| = r and µ(r, f) = max
n≥0

|an| rn denotes the maximum

term of f on |z| = r. The central index ν(r, f) is the greatest exponent m such
that |am| rm = µ(r, f). We note that ν(r, f) is real, non-decreasing function of r.

For 0 ≤ r < R,

µ(r, f) ≤ M(r, f) ≤ R

R− r
µ(r, f) {cf. [8]}

and ∣∣aν(r,f)∣∣ rν(r,f) = µ(r, f).

We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory ( see [2, 3, 9, 10]).

The order ρf , lower order λf and hyper order ρf , hyper lower order λf of an
entire function f are defined as follows:

ρf = lim sup
r→∞

log[2] M(r, f)

log r
, λf = lim inf

r→∞

log[2] M(r, f)

log r
(1)
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and

ρf = lim sup
r→∞

log[3] M(r, f)

log r
, λf = lim inf

r→∞

log[3] M(r, f)

log r
(2)

where log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, ... and log[0] x = x.

Somasundaram and Thamizharasi [7] introduced the notions of L−order and
L−lower order for entire functions, where L ≡ L (r) is a positive continuous function
increasing slowly i.e., L (ar) ∼ L (r) as r → ∞ for every positive constant a, on the
basis of maximum modulus M(r, f) as follows:

ρLf = lim sup
r→∞

log[2] M(r, f)

log [rL (r)]
and λL

f = lim inf
r→∞

log[2] M(r, f)

log [rL (r)]
. (3)

Similarly, one can define the L−hyper order and L−hyper lower order of an
entire function f by

ρLf = lim sup
r→∞

log[3] M(r, f)

log [rL (r)]
and λ

L

f = lim inf
r→∞

log[3] M(r, f)

log [rL (r)]
. (4)

The more generalised concept of L−order (L−lower order) defined by Somasun-
daram and Thamizharasi [7] are L∗−order (L∗−lower order). Their definitions are
as follows:

ρL
∗

f = lim sup
r→∞

log[2] M(r, f)

log
[
reL(r)

] and λL∗

f = lim inf
r→∞

log[2] M(r, f)

log
[
reL(r)

] . (5)

Similarly, one can define the L∗−hyper order and L∗−hyper lower order of an
entire function f by

ρL
∗

f = lim sup
r→∞

log[3] M(r, f)

log
[
reL(r)

] and λ
L∗

f = lim inf
r→∞

log[3] M(r, f)

log
[
reL(r)

] . (6)

In this paper using the notion of central index, we intend to establish some
results relating to the growth properties of composite entire functions on the basis
of L−order (L−lower order), L−hyper order (L−hyper lower order) and L∗−order
(L∗−lower order), L∗−hyper order (L∗−hyper lower order), where L ≡ L (r) is a
slowly changing function.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Lemma 1 ([1] and [4, Theorems 1.9 and 1.10, or 11, Satz 4.3 and 4.4]) Let

f(z) =

∞∑
n=0

anz
n

be an entire function, µ(r, f) be the maximum term, i.e., µ(r, f) = max
n≥0

|an| rn and

ν(r, f) be the central index of f . Then
(i) For a0 ̸= 0,

logµ(r, f) = log |a0|+
r∫

0

ν(t, f)

t
dt,
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(ii) For r < R,

M(r, f) < µ(r, f)

{
ν(R, f) +

R

R− r

}
.

Lemma 2 [1, 4, 5, 6] If f(z) be an entire function of order ρf and ν(r, f) be
the central index of f(z), then

lim sup
r→∞

log ν(r, f)

log r
= ρf .

Analogously, one can easily show that for lower order λf

lim inf
r→∞

log ν(r, f)

log r
= λf .

Lemma 3 Let f(z) be an entire function with L−order ρLf and L−lower order

λL
f . If ν(r, f) be the central index of f , then

ρLf = lim sup
r→∞

log ν(r, f)

log [rL (r)]
and λL

f = lim inf
r→∞

log ν(r, f)

log [rL (r)]
,

where L ≡ L (r) is a slowly changing function.

Proof. Set

f(z) =
∞∑

n=0

anz
n.

Without loss of generality, we can assume that |a0| ̸= 0. By (i) of Lemma 1 we
have

logµ(2r, f) = log |a0|+
2r∫
0

ν(t, f)

t
dt ≥ ν(r, f) log 2.

Using the Cauchy’s Inequality, it is easy to see that µ(2r, f) ≤ M(2r, f). Hence

ν(r, f) log 2 ≤ logM(2r, f) + C,

where C > 0 is a suitable constant. By this and (3), we get

lim sup
r→∞

log ν(r, f)

log [rL (r)]
≤ lim sup

r→∞

log[2] M(2r, f)

log [2rL (2r)]

= lim sup
r→∞

log[2] M(r, f)

log [rL (r)]
= ρLf . (7)

On the other hand, by (ii) of Lemma 1, we have

M (r, f) < µ(r, f) {ν(2r, f) + 2} =
∣∣aν(r,f)∣∣ rν(r,f) {ν(2r, f) + 2} .

Since {|an|} is a bounded sequence, we have

logM(r, f) ≤ ν(r, f) log r + log ν(2r, f) + C1

⇒ log[2] M(r, f) ≤ log ν(r, f) + log[2] ν(2r, f) + log[2] r + C2

⇒ log[2] M(r, f) ≤ log ν(2r, f)

{
1 +

log[2] ν(2r, f)

log ν(2r, f)

}
+ log[2] r + C3,
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where Cj > 0 with j ∈ {1, 2, 3} are suitable constants. By this and (3), we get

ρLf = lim sup
r→∞

log[2] M(r, f)

log [rL (r)]

≤ lim sup
r→∞

log ν(2r, f)

log [2rL (2r)]

= lim sup
r→∞

log ν(r, f)

log [rL (r)]
. (8)

From (7) and (8), it follows that

ρLf = lim sup
r→∞

log ν(r, f)

log [rL (r)]
.

Similarly, one can show that

λL
f = lim inf

r→∞

log ν(r, f)

log [rL (r)]
.

�

Lemma 4 Let f(z) be an entire function with L−hyper order ρLf and L−hyper

lower order λ
L

f . If ν(r, f) be the central index of f , then

ρLf = lim sup
r→∞

log[2] ν(r, f)

log [rL (r)]
and λ

L

f = lim inf
r→∞

log[2] ν(r, f)

log [rL (r)]
,

where L ≡ L (r) is a slowly changing function.

Proof. Set

f(z) =

∞∑
n=0

anz
n.

Without loss of generality, we can assume that |a0| ̸= 0. By (i) of Lemma 1, we
have

logµ(2r, f) = log |a0|+
2r∫
0

ν(t, f)

t
dt ≥ ν(r, f) log 2.

Using the Cauchy’s Inequality, it is easy to see that µ(2r, f) ≤ M(2r, f). Hence

ν(r, f) log 2 ≤ logM(2r, f) + C,

where C > 0 is a suitable constant. By the above inequality and (4), we get

lim sup
r→∞

log[2] ν(r, f)

log [rL (r)]
≤ lim sup

r→∞

log[3] M(2r, f)

log [2rL (2r)]

= lim sup
r→∞

log[3] M(r, f)

log [rL (r)]
= ρLf . (9)

On the other hand, by (ii) of Lemma 1 we have

M (r, f) < µ(r, f) {ν(2r, f) + 2} =
∣∣aν(r,f)∣∣ rν(r,f) {ν(2r, f) + 2} .
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Since {|an|} is a bounded sequence, we have

logM (r, f) ≤ ν(r, f) log r + log ν(2r, f) + C1

⇒ log[3] M(r, f) ≤ log[2] ν(r, f) + log[3] ν(2r, f) + log[3] r + C2

⇒ log[3] M (r, f) ≤ log[2] ν(2r, f)

[
1 +

log[3] ν(2r, f)

log[2] ν(2r, f)

]
+ log3] r + C3,

where Cj > 0 with j ∈ {1, 2, 3} are suitable constants. By this and (4), we get

ρLf = lim sup
r→∞

log[3] M(r, f)

log [rL (r)]

≤ lim sup
r→∞

log[2] ν(2r, f)

log [2rL (2r)]

= lim sup
r→∞

log[2] ν(r, f)

log [rL (r)]
. (10)

From (9) and (10), it follows that

ρLf = lim sup
r→∞

log[2] ν(r, f)

log [rL (r)]
.

Similarly, we can verify that

λ
L

f = lim inf
r→∞

log[2] ν(r, f)

log [rL (r)]
.

�

Proceeding similarly as in Lemma 3, one can easily prove the following lemma:
Lemma 5 Let f(z) be an entire function with L∗− order ρL

∗

f and L∗−lower

order λL∗

f . If ν(r, f) be the central index of f , then

ρL
∗

f = lim sup
r→∞

log ν(r, f)

log
[
reL(r)

] and λL∗

f = lim inf
r→∞

log ν(r, f)

log
[
reL(r)

] ,
where L ≡ L (r) is a slowly changing function.

Proceeding similarly as in Lemma 4, one can easily prove the following lemma:
Lemma 6 Let f(z) be an entire function with L∗−hyper order ρL

∗

f and L∗−hyper

lower order λ
L∗

f . If ν(r, f) be the central index of f , then

ρL
∗

f = lim sup
r→∞

log[2] ν(r, f)

log
[
reL(r)

] and λ
L∗

f = lim inf
r→∞

log[2] ν(r, f)

log
[
reL(r)

] ,
where L ≡ L (r) is a slowly changing function.

3. Statement and Proof of main Theorems

In this section we present the main results of the paper.
Theorem 1 Let f and g be two entire functions. Also let 0 < λL

fog ≤ ρLfog < ∞
and 0 < λL

g ≤ ρLg < ∞. Then

λL
fog

ρLg
≤ lim inf

r→∞

log ν(r, fog)

log ν(r, g)
≤ min

{
λL
fog

λL
g

,
ρLfog
ρLg

}
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≤ max

{
λL
fog

λL
g

,
ρLfog
ρLg

}
≤ lim sup

r→∞

log ν(r, fog)

log ν(r, g)
≤

ρLfog
λL
g

.

Proof. Using Lemma 3 for the entire function g, for arbitrary positive ε and for all
sufficiently large values of r we have

log ν(r, g) ≤ (ρLg + ε) log [rL (r)] (11)

and
log ν(r, g) ≥ (λL

g − ε) log [rL (r)] . (12)

Also for a sequence of values of r tending to infinity, we get

log ν(r, g) ≤ (λL
g + ε) log [rL (r)] (13)

and
log ν(r, g) ≥ (ρLg − ε) log [rL (r)] . (14)

Again using Lemma 3 for the composite entire function fog, for arbitrary positive
ε and for all sufficiently large values of r we have

log ν(r, fog) ≤ (ρLfog + ε) log [rL (r)] (15)

and
log ν(r, fog) ≥ (λL

fog − ε) log [rL (r)] . (16)

Also for a sequence of values of r tending to infinity, we get

log ν(r, fog) ≤ (λL
fog + ε) log [rL (r)] (17)

and
log ν(r, fog) ≥ (ρLfog − ε) log [rL (r)] . (18)

Now from (11) and (16) it follows for all sufficiently large values of r that

log ν(r, fog)

log ν(r, g)
≥

λL
fog − ε

ρLg + ε
.

As ε > 0 is arbitrary, we obtain

lim inf
r→∞

log ν(r, fog)

log ν(r, g)
≥

λL
fog

ρLg
. (19)

Again combining (12) and (17), we get for a sequence of values of r tending to
infinity

log ν(r, fog)

log ν(r, g)
≤

λL
fog + ε

λL
g − ε

.

Since ε > 0 is arbitrary, it follows that

lim inf
r→∞

log ν(r, fog)

log ν(r, g)
≤

λL
fog

λL
g

. (20)

Similarly from (14) and (15) it follows for a sequence of values of r tending to
infinity

log ν(r, fog)

log ν(r, g)
≤

ρLfog + ε

ρLg − ε
.

As ε > 0 is arbitrary, we obtain

lim inf
r→∞

log ν(r, fog)

log ν(r, g)
≤

ρLfog
ρLg

. (21)
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Now combining (19), (20) and (21) we get

λL
fog

ρLg
≤ lim inf

r→∞

log ν(r, fog)

log ν(r, g)
≤ min

{
λL
fog

λL
g

,
ρLfog
ρLg

}
. (22)

Now from (13) and (16), for a sequence of values of r tending to infinity we obtain

log ν(r, fog)

log ν(r, g)
≥

λL
fog − ε

λL
g + ε

.

Letting ε → 0, we get

lim sup
r→∞

log ν(r, fog)

log ν(r, g)
≥

λL
fog

λL
g

. (23)

Again from (12) and (15) it follows that for all sufficiently large values of r

log ν(r, fog)

log ν(r, g)
≤

ρLfog + ε

λL
g − ε

.

As ε > 0 is arbitrary, we obtain

lim sup
r→∞

log ν(r, fog)

log ν(r, g)
≤

ρLfog
λL
g

. (24)

Similarly combining (11) and (18) we get for a sequence of values of r tending
to infinity

log ν(r, fog)

log ν(r, g)
≥

ρLfog − ε

ρLg + ε
.

Since ε > 0 is arbitrary, it follows

lim sup
r→∞

log ν(r, fog)

log ν(r, g)
≥

ρLfog
ρLg

. (25)

Therefore combining (23), (24) and (25) we get that

max

{
λL
fog

λL
g

,
ρLfog
ρLg

}
≤ lim sup

r→∞

log ν(r, fog)

log ν(r, g)
≤

ρLfog
λL
g

. (26)

Thus the theorem follows from (22) and (26). �

Remark 1 If we take 0 < λL
f ≤ ρLf < ∞ instead of 0 < λL

g ≤ ρLg < ∞ and the
other conditions remain the same then also Theorem 1 holds with g replaced by f
in the denominator as we see in the next theorem.

Theorem 2 Let f and g be two entire functions. Also let 0 < λL
fog ≤ ρLfog < ∞

and 0 < λL
f ≤ ρLf < ∞. Then

λL
fog

ρLf
≤ lim inf

r→∞

log ν(r, fog)

log ν(r, f)
≤ min

{
λL
fog

λL
f

,
ρLfog
ρLf

}

≤ max

{
λL
fog

λL
f

,
ρLfog
ρLf

}
≤ lim sup

r→∞

log ν(r, fog)

log ν(r, f)
≤

ρLfog
λL
f

.

Proof. Proof is similar to Theorem 1 and so omitted. �
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Extending the notion we can prove the following theorem using L−hyper order(L−hyper
lower order).

Theorem 3 Let f and g be two entire functions. Also let 0 < λ
L

fog ≤ ρLfog < ∞
and 0 < λ

L

g ≤ ρLg < ∞. Then

λ
L

fog

ρLg
≤ lim inf

r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤ min

{
λ
L

fog

λ
L
g
,
ρfog

ρLg

}

≤ max

{
λ
L

fog

λ
L
g
,
ρfog

ρLg

}
≤ lim sup

r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρLfog

λ
L
g
.

Proof. Using Lemma 4 for the entire function g we have for arbitrary positive ε
and for all sufficiently large values of r

log[2] ν(r, g) ≤ (ρLg + ε) log [rL (r)] (27)

and

log[2] ν(r, g) ≥ (λ
L
g − ε) log [rL (r)] . (28)

Also for a sequence of values of r tending to infinity, we get

log[2] ν(r, g) ≤ (λ
L
g + ε) log [rL (r)] (29)

and

log[2] ν(r, g) ≥ (ρLg − ε) log [rL (r)] . (30)

Again using Lemma 4 for the composite entire function fog we have for arbitrary
positive ε and for all sufficiently large values of r

log[2] ν(r, fog) ≤ (ρLfog + ε) log [rL (r)] (31)

and

log[2] ν(r, fog) ≥ (λ
L

fog − ε) log [rL (r)] . (32)

Again for a sequence of values of r tending to infinity, we get

log[2] ν(r, fog) ≤ (λ
L

fog + ε) log [rL (r)] (33)

and

log[2] ν(r, fog) ≥ (ρLfog − ε) log [rL (r)] . (34)

Now from (27) and (32) it follows that for all sufficiently large values of r

log[2] ν(r, fog)

log[2] ν(r, g)
≥

λ
L

fog − ε

ρLg + ε
.

As ε > 0 is arbitrary, we obtain

lim inf
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≥

λ
L

fog

ρLg
. (35)

Again combining (28) and (33), we get for a sequence of values of r tending to
infinity

log[2] ν(r, fog)

log[2] ν(r, g)
≤

λ
L

fog + ε

λ
L

g − ε
.
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Since ε > 0 is arbitrary, it follows

lim inf
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤

λ
L

fog

λ
L

g

. (36)

Similarly from (30) and (31) it follows that for a sequence of values of r tending
to infinity

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρLfog + ε

ρLg − ε
.

As ε > 0 is arbitrary, we obtain

lim inf
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρLfog

ρLg
. (37)

Now combining (35), (36) and (37) we get

λ
L

fog

ρLg
≤ lim inf

r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤ min

{
λ
L

fog

λ
L

g

,
ρLfog

ρLg

}
. (38)

Now from (29) and (32) we obtain for a sequence of values of r tending to infinity

log[2] ν(r, fog)

log[2] ν(r, g)
≥

λ
L

fog − ε

λ
L

g + ε
.

Choosing ε → 0 we get

lim sup
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≥

λ
L

fog

λ
L

g

. (39)

Again from (28) and (31), it follows for all sufficiently large values of r

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρLfog + ε

λ
L

g − ε
.

As ε > 0 is arbitrary, we obtain

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρLfog

λ
L

g

. (40)

Similarly combining (27) and (34) we get for a sequence of values of r tending
to infinity

log[2] ν(r, fog)

log[2] ν(r, g)
≥

ρLfog − ε

ρLg + ε
.

Since ε > 0 is arbitrary, it follows

lim sup
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≥

ρLfog

ρLg
. (41)

Therefore combining (39), (40) and (41) we get

max

{
λ
L

fog

λ
L
g
,
ρfog

ρLg

}
≤ lim sup

r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρLfog

λ
L

g

. (42)

Thus the theorem follows from (38) and (42). �
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Remark 2 If we take 0 < λ
L

f ≤ ρLf < ∞ instead of 0 < λ
L

g ≤ ρLg < ∞ and the
other conditions remain the same then also Theorem 3 holds with g replaced by f
in the denominator as we see in the next theorem.

Theorem 4 Let f and g be two entire functions. Also let 0 < λ
L

fog ≤ ρLfog < ∞
and 0 < λ

L

f ≤ ρLf < ∞. Then

λ
L

fog

ρLf
≤ lim inf

r→∞

log[2] ν(r, fog)

log[2] ν(r, f)
≤ min

{
λ
L

fog

λ
L

f

,
ρLfog

ρLf

}

≤ max

{
λ
L

fog

λ
L

f

,
ρLfog

ρLf

}
≤ lim sup

r→∞

log[2] ν(r, fog)

log[2] ν(r, f)
≤

ρLfog

λ
L

f

.

Proof. Proof is similar to Theorem 3 and so omitted. �
In the line of Theorem 1, one can prove the following theorem:
Theorem 5 Let f and g be two entire functions. Also let 0 < λL∗

fog ≤ ρL
∗

fog < ∞
and 0 < λL∗

g ≤ ρL
∗

g < ∞. Then

λL∗

fog

ρL∗
g

≤ lim inf
r→∞

log ν(r, fog)

log ν(r, g)
≤ min

{
λL∗

fog

λL∗
g

,
ρL

∗

fog

ρL∗
g

}

≤ max

{
λL∗

fog

λL∗
g

,
ρL

∗

fog

ρL∗
g

}
≤ lim sup

r→∞

log ν(r, fog)

log ν(r, g)
≤

ρL
∗

fog

λL∗
g

.

Remark 3 If we take 0 < λL∗

f ≤ ρL
∗

f < ∞ instead of 0 < λL∗

g ≤ ρL
∗

g < ∞ and
the other conditions remain the same then also Theorem 5 holds with g replaced
by f in the denominator as we see in the next theorem.

Theorem 6 Let f and g be two entire functions. Also let 0 < λL∗

fog ≤ ρL
∗

fog < ∞
and 0 < λL∗

f ≤ ρL
∗

f < ∞. Then

λL∗

fog

ρL
∗

f

≤ lim inf
r→∞

log ν(r, fog)

log ν(r, f)
≤ min

{
λL∗

fog

λL∗
f

,
ρL

∗

fog

ρL
∗

f

}

≤ max

{
λL∗

fog

λL∗
f

,
ρL

∗

fog

ρL
∗

f

}
≤ lim sup

r→∞

log ν(r, fog)

log ν(r, f)
≤

ρL
∗

fog

λL∗
f

.

In the line of Theorem 3, one can prove the following theorem:

Theorem 7 Let f and g be two entire functions. Also let 0 < λ
L∗

fog ≤ ρL
∗

fog < ∞
and 0 < λ

L∗

g ≤ ρL
∗

g < ∞. Then

λ
L∗

fog

ρL
∗

g

≤ lim inf
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤ min

λ
L∗

fog

λ
L∗

g

,
ρL

∗

fog

ρL
∗

g


≤ max

λ
L∗

fog

λ
L∗

g

,
ρL

∗

fog

ρL
∗

g

 ≤ lim sup
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρL
∗

fog

λ
L∗

g

.

Remark 4 If we take 0 < λ
L∗

f ≤ ρL
∗

f < ∞ instead of 0 < λ
L∗

g ≤ ρL
∗

g < ∞ and
the other conditions remain the same then also Theorem 7 holds with g replaced
by f in the denominator as we see in the next theorem.
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Theorem 8 Let f and g be two entire functions. Also let 0 < λ
L∗

fog ≤ ρL
∗

fog < ∞
and 0 < λ

L∗

f ≤ ρL
∗

f < ∞. Then

λ
L∗

fog

ρL
∗

f

≤ lim inf
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤ min

λ
L∗

fog

λ
L∗

f

,
ρL

∗

fog

ρL
∗

f


≤ max

λ
L∗

fog

λ
L∗

f

,
ρL

∗

fog

ρL
∗

f

 ≤ lim sup
r→∞

log[2] ν(r, fog)

log[2] ν(r, g)
≤

ρL
∗

fog

λ
L∗

f

.
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