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SOME RESULTS ON L-ORDER, L-HYPER ORDER AND
L*—ORDER, L*-HYPER ORDER OF ENTIRE FUNCTIONS
DEPENDING ON THE GROWTH OF CENTRAL INDEX

DILIP CHANDRA PRAMANIK, MANAB BISWAS AND KAPIL ROY

ABSTRACT. In this paper we discuss L—order(L—lower order), L—hyper order(L—hyper
lower order) and L* —order(L* —lower order), L* —hyper order (L* —hyper lower

order) of entire functions with respect to central index and use these to esti-

mate the growth of composite entire functions.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

Let -
f(z)= Z anz"
n=0

be an entire function in the complex plane C. Let M(r, f) = max |f(z)| denotes the

|2l

maximum modulus of f on |z| = r and u(r, f) = max |an| ™ denotes the maximum
nz

term of f on |z| = r. The central index v(r, f) is the greatest exponent m such
that |am,|r™ = wu(r, f). We note that v(r, f) is real, non-decreasing function of r.
For 0 <r <R,

ulr £) < M 1) < oo 1) {ef. I8

and
’au(r,f)| TV(T’f) = ,u(r, f)
We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory ( see [2, 3, 9, 10]).
The order py , lower order Ay and hyper order py, hyper lower order As of an
entire function f are defined as follows:

. log!? M(r, f) . . logH M(r, f)
pr = limsup —=——, Ay =liminf =>—+"= (1)
r—00 logr r—00 logr
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and

logB! A1 . loa3! A1
py = limsup Lo BT (r.f) , Ay = liminf L B (r, f)
r—00 logr r—00 logr

(2)

where log[k] x = log (log[k_l] x) for k=1,2,3,... and log[o] T =2z

Somasundaram and Thamizharasi [7] introduced the notions of L—order and
L—lower order for entire functions, where L = L (r) is a positive continuous function
increasing slowly i.e., L (ar) ~ L (r) as r — oo for every positive constant a, on the
basis of maximum modulus M (r, f) as follows:

log!? M loe!2! M
pf = limsup log” M(r. /) g A% = liminf log ~ M(r, f)

r—oo  log[rL(r)] reo log [rL (r)] 3)

Similarly, one can define the L—hyper order and L—hyper lower order of an
entire function f by

loe! M1 . log®! M1
ﬁ]Lc = lim sup 08 (r, /) and )\JIZ — liminf 28 _22\0J) (r. f)

rsoo log[rL (r)] R Tog L ()] (4)

The more generalised concept of L—order (L—lower order) defined by Somasun-
daram and Thamizharasi [7] are L*—order (L*—lower order). Their definitions are
as follows:

. log™ M(r, f) . log™ M(r, f)
L* 1. 5 L* _ i )
Py = hixls;p log [TGL(T)] and Ay hrrggolf og [reL(")] .

()

Similarly, one can define the L*—hyper order and L*—hyper lower order of an
entire function f by

) loe3! A1 e log3! M1
ﬁjf? = lim sup e BT (r ) and )\JIZ — liminf =822\ J1) (r f)
r—oo log [rel(r)] roo  log [rel()]

(6)

In this paper using the notion of central index, we intend to establish some
results relating to the growth properties of composite entire functions on the basis
of L—order (L—lower order), L—hyper order (L—hyper lower order) and L*—order
(L*—lower order), L*—hyper order (L*—hyper lower order), where L = L (r) is a
slowly changing function.

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.
Lemma 1 ([1] and [4, Theorems 1.9 and 1.10, or 11, Satz 4.3 and 4.4]) Let

f(z)= Z anz"

n=0
be an entire function, u(r, f) be the maximum term, i.e., u(r, f) = max |an| r™ and
nz

v(r, f) be the central index of f. Then
(1) For ag # 0,

”

log yu(r, f) = log lao| + /

0
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(ii) For r < R,

R
MG f) <t {uir )+ 5
—r
Lemma 2 [1, 4, 5, 6] If f(2) be an entire function of order py and v(r, f) be
the central index of f(z), then

Jim sup 12822 F)

ol T logr T

Analogously, one can easily show that for lower order Ay

lim inf 128277
r—00 log r

=/

Lemma 3 Let f(z) be an entire function with L—order pJ% and L—lower order
)\J’%. If v(r, f) be the central index of f, then

. log (r, f) . logu(r, f)
L= S0 and A = liminf ———" %
P = P log rL ()] ™ T VRS Tog rL (r)]

where L = L (r) is a slowly changing function.

Proof. Set
flz) = Z anz".
n=0

Without loss of generality, we can assume that |ag| # 0. By (i) of Lemma 1 we

have
2r

log p1(2r, f) = log |ao| +/
0
Using the Cauchy’s Inequality, it is easy to see that u(2r, f) < M(2r, f). Hence

v(r, f)log2 < log M(2r, f) + C,

v(t, f)
t

dt > v(r, f)log2.

where C' > 0 is a suitable constant. By this and (3), we get

lim su logv(r, f) < limsu —IOg[Q] M(2r /)
Tﬁoop log[rL(r)] — Tﬁoop log [2rL (2r))
log® M
= limsup log ™ M{(r. /) = p?. (7)

r—oo  log[rL (r)]
On the other hand, by (i7) of Lemma 1, we have

M (r, f) < p(r, /) {v(@r, ) + 2} = |ay g | 700 {w(2r, f) + 2}
Since {|a,|} is a bounded sequence, we have
logM(r,f) < w(r, f)logr+logv(2r, f)+ Cy
= log@ M(r,f) < logu(r,f) +1log? v(2r, ) +log® r + C,
log!? v(2r, f)

:log[Q]M(T,f) < 10gy(2r,f){1+ logv(2r, f)

} + log[z] r+ Cs,
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where C; > 0 with j € {1,2,3} are suitable constants. By this and (3), we get
log!? M
p? = limsup log~ M(r f)

rooo  log[rL(r)

)
logv(2r, f)
= Pl prL )]
)

= limsu log v (r, f
e Tog [rL (r)]’

From (7) and (8), it follows that
log v(r, f)
= limsup —————=
Pr = P fog L (]
Similarly, one can show that
logv(r, f)
A = liminf —= 22
f lrrggol log [rL ()]
O

Lemma 4 Let f(z) be an entire function with L—hyper order ﬁ]Lc and L—hyper
lower order X?. If v(r, f) be the central index of f, then
Lu(r, f) log® v(r, f)
= lim sup —————=- and )\ = liminf —=——>—=
7} ~maup- og [rL( N TS g rL ()]

where L = L (r) is a slowly changing function.

Proof. Set
o0
e
n=0

Without loss of generality, we can assume that |ag| # 0. By (i) of Lemma 1, we

have
2r

v(t
togu(2r, 1) = toglaol + [ “5at > u(r g2
0
Using the Cauchy’s Inequality, it is easy to see that u(2r, f) < M(2r, f). Hence

v(r, f)log2 <log M(2r, f) + C,
where C' > 0 is a suitable constant. By the above inequality and (4), we get
lim su 71()?;[2] v(r. f) lim su —log[g] M2, f)
o P TogrL ()] = AP Tog[2rL (21)]

log® M(r, f)
= 1. _— L =7 .
T egrL ()]

On the other hand, by (i) of Lemma 1 we have

M (r, f) < p(r, f){v(2r, ) + 2} = |avip | 7O {v(2r, f) + 2}

A
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Since {|a,|} is a bounded sequence, we have
logM (r, f) < wv(r,f)logr+logv(2r, f)+ C4
= logB M(r, ) < log®u(r, f) +log® v(2r, f) +log® r + Cy
logl! v(2r, f)
log?! v(2r, f)
where C; > 0 with j € {1,2,3} are suitable constants. By this and (4), we get

= log[?’] M (r, f) log[g] v(2r, f) + 10g3} r+ Cs,

IN

1+

ﬁ? = limsup

logm v(2r, f)

A
B.
]
o
e}

log™ v(r, f) (10)

= limsup
From (9) and (10), it follows that

_ . logm v(r, f)
L )
=1 —_—

Pr= TP Tog [rL ()]
Similarly, we can verify that

—L . . log[g] V(’I', f)

A =1 f——=— -’27

Fo A log [rL (r)]
O

Proceeding similarly as in Lemma 3, one can easily prove the following lemma:
Lemma 5 Let f(z) be an entire function with L*— order pJLe* and L*—lower

order )\]Lc*. If v(r, f) be the central index of f, then
L

* log v(r, f) Ly logu(r f)
= limsup ———== and A\{ = liminf ——————
P r_>oop log [TeL(T)] f r—oo log [reL(T)]
where L = L (r) is a slowly changing function.
Proceeding similarly as in Lemma 4, one can easily prove the following lemma:
Lemma 6 Let f(2) be an entire function with L*—hyper order ﬁJLc* and L*—hyper

lower order XJLC*. If v(r, f) be the central index of f, then

. log!?
ﬁfi = lim sup e _YinhJ) v(r, f)

s 2]
and )\? = lim inf M
r—00 IOg [TGL(T)] ’

r—00 log [reL(T)} ’

where L = L (r) is a slowly changing function.

3. STATEMENT AND PROOF OF MAIN THEOREMS

In this section we present the main results of the paper.
Theorem 1 Let f and g be two entire functions. Alsolet 0 < A

and0<)\gL gpg < 00. Then

/\L )\L L
2S99 < Jiminf logv(r, fog) v(r, fog) < min { fog Pfog

py — rooe logu(r,g) AL pk

L

L
fog S Pfog <
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AL L L
< max{ fog 'Ofog} < lim sup log v(r, fog) < pfog.

Ay opy rooc logu(rg) T A7

Proof. Using Lemma 3 for the entire function g, for arbitrary positive € and for all
sufficiently large values of r we have

log v(r,9) < (py +¢)log [rL (r)] (11)
and
logv(r,g) > ()\5 —¢)log[rL (r)]. (12)
Also for a sequence of values of r tending to infinity, we get
logv(r, g) < ()\5 +e)log[rL (r)] (13)
and
log v(r,9) > (py —€)log [rL (r)]. (14)

Again using Lemma 3 for the composite entire function fog, for arbitrary positive
¢ and for all sufficiently large values of r we have

log v (r, fog) < (peg +€)log [rL ()] (15)
and
logv(r, fog) > (/\%Og —¢)log[rL (r)]. (16)
Also for a sequence of values of r tending to infinity, we get
logv(r, fog) < ()\J%Og +¢)log[rL (r)) (17)
and
logv(r, fog) = (pf,q — €)log [rL (r)]. (18)

Now from (11) and (16) it follows for all sufficiently large values of r that

IOgI/(T, ng) > )‘]I;og —€
logv(r,g) — pi+e

As € > 0 is arbitrary, we obtain

lim inf log v(r, fog) > Aﬁog ) (19)
r—oo logu(r,g) Py
Again combining (12) and (17), we get for a sequence of values of r tending to
infinity
10g I/(’I", ng) < )‘f;og +eé
logv(r,g) = Me—e

Since € > 0 is arbitrary, it follows that

)\L
lim inf log v(r, fog) < fog
roe logu(rg) AR

(20)

Similarly from (14) and (15) it follows for a sequence of values of r tending to
infinity

log v(r, fog) < pj:“og +e
logv(r,g) = pk—e’
As € > 0 is arbitrary, we obtain

1 L(,
lim inf 12872 00)  Pfog.
r—oo  logv(r, g) Iz
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Now combining (19), (20) and (21) we get

)\L 1 )\L L
% < lim inf g vir, Jog) v(r, fog) < min{ fog Pfog . (22)

pg — ree logr(r.g) Ay opg

Now from (13) and (16), for a sequence of values of r tending to infinity we obtain

IOgl/(T, ng) > )‘f“og —€
logv(r,g) = Ae+e

Letting € — 0, we get
L
gV(Ta ng) > >\fog

li . 23
TP logv(r,g) — Mk (23)
Again from (12) and (15) it follows that for all sufficiently large values of r
logv/(r, fog) _ Pfog +¢
logv(r,g) = Af—
As € > 0 is arbitrary, we obtain
. log Z/(’I", fo.g) p%w]
1 < 4=, 24
s Togu(r,g) Ay @)

Similarly combining (11) and (18) we get for a sequence of values of r tending
to infinity
log v(r, fog) _ Pfog
logv(r,g) — ph4+e’

Since € > 0 is arbitrary, it follows

L
logv(r, fog) _ Pfog

li . 25
TP Togu(rg) T Py (25)
Therefore combining (23), (24) and (25) we get that
AL L ! L
max fzg, szg < limsup ogv(r, fog) < szg. (26)
A pE [ S g ung) S AL
Thus the theorem follows from (22) and (26). O

Remark 1 If we take 0 < )\L < pf < oo instead of 0 < )\L < p < oo and the
other conditions remain the same then also Theorem 1 holds Wlth g replaced by f
in the denominator as we see in the next theorem.

Theorem 2 Let f and g be two entire functions. Also let 0 < A%

and 0 < )\JQ < pf < 00. Then

)\ )\L L
foo < lim inf BT I00) 1y § Don P
o =R g

L
fog = < Pfog < 00

Proof. Proof is similar to Theorem 1 and so omitted. ([l
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Extending the notion we can prove the following theorem using L—hyper order(L—hyper
lower order).

Theorem 3 Let f and g be two entire functions. Also let 0 < X?og < ﬁfog < 00
and 0 < XQL < ﬁé < 00. Then

~L ~L
A 2] Niog P
fog < lim inf log I/(T’, fOQ) S min { fog pfog }

pg r—00 log[Q] Z/(T, g) XLg ’ ﬁg

—L

A O P O 1 7LO

< max Jng,Png < lim sup g H(T . Jog) §€ng.
Ag Py roo log® w(r, g) Ng

Proof. Using Lemma 4 for the entire function g we have for arbitrary positive €
and for all sufficiently large values of r

log® v(r, g) < (p} + &) log [rL (r)] (27)
and
log® v(r,g) = (X"g — &) log [ L ()] (28)
Also for a sequence of values of r tending to infinity, we get
log? v(r,) < (X"g + ) log [rL (r)] (29)
and
log™ v(r,9) > (py — ) log [rL (r)]. (30)

Again using Lemma 4 for the composite entire function fog we have for arbitrary
positive € and for all sufficiently large values of r

log® u(r, fog) < (e +€)log [rL (r)] (31)
and
log? u(r, fog) > (Xfy — &) log [rL ()] (32)
Again for a sequence of values of r tending to infinity, we get
log u(r, fog) < (Njoy +€)log [r L (r)] (33)
and
log® u(r, fog) = (Pf,g — ) log [FL (r)]. (34)

Now from (27) and (32) it follows that for all sufficiently large values of r

—L
log®? v(r, fog) S Moy ~
log®v(r,g) ~ Py te

As € > 0 is arbitrary, we obtain

~L
1 Aro
lim inf og B (r fOQ) > ng.
r=oe logv(r, g) Pg
Again combining (28) and (33), we get for a sequence of values of r tending to
infinity

(35)

—L
log®? v(r, fog) < Mog e

g v(rg) X
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Since € > 0 is arbitrary, it follows

~L
1 f A fo
Og (7" Og) ng . (36)

g

lim inf > <
=< logPu(rg)

Similarly from (30) and (31) it follows that for a sequence of values of r tending
to infinity

log® v(r, fog) _ Pfog +¢
log@ v(r,g) ~ ﬁé —€
As € > 0 is arbitrary, we obtain

1 —L
lim inf 8! []( . f09) < pjzg.
r=oo Jog® u(r, g) Py
Now combining (35), (36) and (37) we get

~L
A PV
fog<1m1fw mm{ fog pfog}. (38)

pg r—00 lOg[Q] (7“ g) —L pé

g
Now from (29) and (32) we obtain for a sequence of values of r tending to infinity

—L
10g V( ng) )\fog*8
g u(rg) X te

Choosing ¢ — 0 we get

—L
lOg (7’ ng) )‘fog

llin_>sotip e v(rg) - Xj : (39)
Again from (28) and (31), it follows for all sufficiently large values of r
log™ v(r, fog) _ Phy + ¢
log? v(r,g) ~ X; _e
As € > 0 is arbitrary, we obtain
log v (r, fog) pjzg. (40)

log®v(r,g) ~ X

Similarly combining (27) and (34) we get for a sequence of values of r tending
to infinity

g

log®” v (r, fog) Pfog
log?v(r,g) — Py te
Since € > 0 is arbitrary, it follows

2] —L
lim su v(r, fog) > pjog. (41)
P og? L
e TogPulrg) 7L
Therefore combining (39), (40) and (41) we get
~L
A o p o 1 [2] 7LO
max ng, Png < lim sup o8 [21]/(7‘, fog) < ijg. (42)
Ag Py r—oo  log v(r, g) X,

Thus the theorem follows from (38) and (42). O
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Remark 2 Ifwetake0<)\ <p <oo1nsteadof0<)\ <p < oo and the
other conditions remain the same then also Theorem 3 holds W1th g replaced by f
in the denominator as we see in the next theorem. .

Theorem 4 Let f and g be two entire functions. Alsolet 0 < Ay, < ﬁ%og < o0

and 0 <X]I? Sﬁ% < 0o0. Then
—L ~L
A Nroa PE
%ghminfM min{ fos pf"g}

pE = o 1og®u(r, f) X Pf

—L
/\ —L 1 —L
< max jog Prog < lim sup g 3 v(r, fog) < pqu
r—00 log[] ( f) )‘f

Proof. Proof is similar to Theorem 3 and so omitted. O

In the line of Theorem 1, one can prove the following theorem:
Theorem 5 Let f and g be two entire functions. Also let 0 < )\fog < p%g < 00

and()</\5 Spg < 00. Then

AL L* )\L* L
fog <11H1 flOgV(vaO.g) §m1n{ fog pfog}

pg- ~ rose logr(r,g) A ey

Aé* ’ Pé* r—00 logu(ng) h )‘5* .

ALT LT 1 L*
< max{ fog 'Ofog} < limsup ogv(r, fog) < Pfog
Remark 3 If we take 0 < )\]Lc* < p? < oo instead of 0 < /\5* < pé* < o0 and
the other conditions remain the same then also Theorem 5 holds with g replaced
by f in the denominator as we see in the next theorem.
Theorem 6 Let f and g be two entire functions. Also let 0 < )xfog < pJLc;g < 00

and0<)\§ §pf < 00. Then

)\L 1 )\L* L*
foq < liminf logu(r, fog) < min )zjf, P,z;;q
Pf r—oc logu(r, f) AF Py

AL LT L*
< max fL(;g’ P]z)*g < lim sup log v(r, fog) < prof]
A Py r—oo logu(r, f) )‘f
In the line of Theorem 3, one can prove the following theorem:
Theorem 7 Let f and g be two entire functions. Also let 0 < XJLcog < ﬁJLc;g < 00
and 0 < Xﬁ < ﬁgL* < 00. Then

7L*

—_L* *
1 Nog PY
fLo*g < lim inf w < min jLO*g ) p,fLO*g
Py = logl? u(r, g) g Pg
e ogt log® v(r, fog) _ p%,
< max J;—;g, ng < limsup g 2] g < —fLO*g :
pg r—oo  log¥ v(r, g) A

g g9

—L* * —L* *
Remark 4 If we take 0 < )\f < ﬁf < oo instead of 0 < /\g < ﬁé < 00 and
the other conditions remain the same then also Theorem 7 holds with g replaced
by f in the denominator as we see in the next theorem.
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Theorem 8 Let f and g be two entire functions. Also let 0 < Xﬁog < ﬁ%g < o0
and 0 < X? < ﬁf* < 00. Then

v —L* «
log!?! B\ =L
~1°9 < Jim inf W < min { 2fos Plos
P =0 Jog 1/(7“, g) )‘f pf
—L* « i
Xfog PF log!?! L
< max ,fLo*g, [ifLof < limsup ) [Q]V(Ta fog) < /ifLof
)‘f pf r—00 log y(r7 g> )‘f
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