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DISJOINT LI-YORKE CHAOS IN FRÉCHET SPACES

M. KOSTIĆ

Abstract. The main aim of this paper is to consider various notions of (dense)
disjoint Li-Yorke chaos for general sequences of multivalued linear operators in
Fréchet spaces. We also consider continuous analogues of introduced notions
and provide certain applications to the abstract partial differential equations.

1. Introduction and Preliminaries

Assume that X is a Fréchet space. As it is well known, a linear operator T
on X is called hypercyclic iff there exists an element x ∈ D∞(T ) ≡

∩
n∈ND(Tn)

whose orbit {Tnx : n ∈ N0} is dense in X; T is called topologically transitive, resp.
topologically mixing, iff for every pair of open non-empty subsets U, V of X, there
exists n0 ∈ N such that Tn0(U) ∩ V ̸= ∅, resp. there exists n0 ∈ N such that, for
every n ∈ N with n ≥ n0, T

n(U) ∩ V ̸= ∅.We accept the following notion of chaos:
a linear operator T on X is called chaotic iff it is topologically transitive and the
set of periodic points of T, defined by {x ∈ D∞(T ) : (∃n ∈ N)Tnx = x}, is dense in
X. For further information concerning topological dynamics of linear operators in
Banach and Fréchet spaces, we refer the reader to the monographs [3] by F. Bayart,
E. Matheron, [19] by K.-G. Grosse-Erdmann, A. Peris, and a forthcoming one [22]
by the author.

The notion of a Li-Yorke irregular vector in Hilbert space has been defined for the
first time by B. Beauzamy in [4]. After that, Li-Yorke linear dynamics in Hilbert,
Banach and Frechet function spaces has been analyzed by a great number of other
authors including G. T. Prǎjiturǎ [35], T. Bermúdez et al [5], N. C. Bernardes Jr
et al [8], X. Wu [38] and Z. Yin et al [39] (see also [23], [28]). It is well known
that any linear hypercyclic operator needs to be Li-Yorke chaotic as well as that
the converse statement does not hold in general. On the other hand, the notion of
distributional chaos was introduced by B. Schweizer and J. Smı́tal in [36] (1994).
In linear dynamics, distributional chaos was firstly considered in the analyses of
quantum harmonic oscillator, by J. Duan et al [16] (1999) and P. Oprocha [34]
(2006); the first systematic studies of linear distributional chaos is those ones carried
out by N. C. Bernardes Jr. et al [7] (2013) and J. A. Conejero et al [14] (2016).
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Further information about Li-Yorke chaos and distributional chaos in metric and
Fréchet spaces can be obtained by consulting [22] and references cited therein.

Disjointness in linear dynamics was introduced independently by L. Bernal–
González [6] (2007) and J. Bès, A. Peris [9] (2007). From then on, a great number
of various notions of disjointness for linear operators has been introduced and ana-
lyzed; for the notion of disjoint mixing operators and disjoint supercyclic operators
one may refer e.g. to the article [10] by J. Bès et al and the doctoral dissertation

[32] of Ö. Martin, respectively. Regarding disjoint dynamics of abstract partial
differential equations, the first step has been made by the author in [21, Subsection
3.1.1], where disjointness for strongly continuous semigroups induced by semiflows
has been examined. These results have been recently reconsidered in a joint re-
search study [13] with C.-C. Chen, S. Pilipović and D. Velinov for C-distribution
semigroups and C-distribution cosine functions in Fréchet spaces, as well as in a
joint research study with V. E. Fedorov [17] for abstract degenerate fractional dif-
ferential equations in Fréchet spaces. The notion of disjoint (reiterative, (mn-))
distributionally chaotic operators and some applications to abstract PDEs have
been investigated in [24]-[26] and [28]. To the best knowledge of the author, this is
the first paper, in both linear and non-linear setting, which considers the notion of
disjoint Li-Yorke chaos. The genesis of paper is motivated by our recent results on
the existence of special types of dense Li-Yorke irregular manifolds obtained in a
joint research study with A. Bonilla [12], and later expanded by the author in [30].

The organization and main ideas of paper are given as follows. First of all,
we recollect some necessary preliminaries about lower and upper mn-densities of
subsets in N; after that, in Subsection 1.1, we remind ourselves of the basic facts
and definitions from the theory of multivalued linear operators in Fréchet spaces.
Various notions of disjoint Li-Yorke chaos were introduced and analyzed in Sec-
tion 2: In Definition 2.1, we introduce the notion of (d, X̃,mn, s, i)-Li-Yorke chaos,

where 1 ≤ s, i ≤ 2; in Definition 2.2, we introduce the notion of (d, X̃, s, i)-Li-Yorke
chaos, where 1 ≤ s ≤ 2 and 3 ≤ i ≤ 4, and finally, in Definition 2.4, we introduce
the notion of (d, X̃,mn, s, i)-Li-Yorke chaos, where 3 ≤ s ≤ 4 and 1 ≤ i ≤ 2. Here,
(mn) denotes an increasing sequence of positive reals satisfying lim infn→∞

mn

n > 0.
Disjoint Li-Yorke chaos under our consideration generalizes the notions of disjoint
hypercyclicity and disjoint distributional chaoticity for multivalued linear operators,
and it cannot be reduced to the Li-Yorke chaos of single components, as illustrated
in Example 2.6. In Proposition 2.8, we clarify the fundamental inclusions for var-
ious types of disjoint Li-Yorke chaos. Following a simple observation from [12], in
Proposition 2.9, we connect a certain type of disjointness condition of Li-Yorke type
with reiterative distributional chaos of type 0. Disjoint Li-Yorke irregular vectors
and manifolds have been investigated in Subsection 2.1.

Speaking-matter-of-factly, the starting point for genesis of this paper is the fol-
lowing theorem, which can be deduced obeying the method developed in the proof
of [7, Theorem 15] and our previous considerations of dense (disjoint, reiterative)
mn-distributional chaos contained in the papers [12] and [25]-[26]; from the sake of
completeness, we will outline the main details of proof in Section 3:

Theorem 1.1. Suppose that X is separable, m ∈ N, ((Tj,k)k∈N)1≤j≤N is a sequence
in L(X,Y ), X0 is a dense linear subspace of X, (mn) ∈ R as well as:

(i) limk→∞ Tj,kx = 0, x ∈ X0, j ∈ NN ;
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(ii) there exist a vector y ∈ X and an increasing sequence (nk) tending to
infinity such that limk→∞ pYm(Tj,nk

y) = +∞, j ∈ NN [limk→∞ ∥Tj,nk
y∥Y =

+∞, j ∈ NN , provided that Y is a Banach space].

Then there exists a dense submanifold W of X consisting of those vectors x which
are (d,mn)-distributionally near to zero of type 1 for ((Tj,k)k∈N)1≤j≤N and for
which there exists a strictly increasing subsequence (lk) of (nk) such that the se-
quence (pm(Tj,lkx))k∈N tends to +∞ for all j ∈ NN [(∥Tj,lkx∥Y )k∈N tends to +∞
for all j ∈ NN , provided that Y is a Banach space]. In particular, ((Tj,k)k∈N)1≤j≤N

is densely (d,W,mn, 1, 1)-Li-Yorke chaotic.

In a separate part of the third section, Subsection 3.1, we analyze certain corollar-
ies of Theorem 1.1 and applications to unilateral backward weighted shift operators
and weigted forward shift operators, which need not be continuous in our investi-
gation (see also Example 2.7). The Li-Yorke chaos for translation semigroups in
weighted function spaces have been considered for the first time by X. Wu in [38],
who proved that a strongly continuous translation semigroup (T (t))t≥0 is Li-Yorke
chaotic on Lp

ρ([0,∞)) iff lim inft→+∞ ρ(t) = 0, provided in advance that the function
ρ is bounded from above; in this case, being Li-Yorke chaotic and hypercyclic for
(T (t))t≥0 is the same thing. This is no longer case if the function ρ is not bounded
from above, when there exists a strongly continuous translation semigroup that is
Li-Yorke chaotic, even completely distributionally chaotic, but not hypercyclic ([1]).
It is worth noting that X. Wu has analyzed in [38] several various notions similar
to Li-Yorke chaos, like sensitivity, infinite sensitivity, spatio-temporal chaos, dense
δ-chaos and generic (δ-)chaos; see [8] for discrete analogues. The consideration of
these notions for disjointness requires further analyses and it is without scope of this
paper; at this place, we want only to mention in passing that the assertion of [38,
Lemma 2.1] holds not only for a translation C0-semigroup on a weighted function
space but also for any strongly continuous operator family (T (t))t≥0 ⊆ L(X,Y ),
where X and Y are possibly different Fréchet spaces. The analysis from [38] has
been continued by the author in [23], especially for translation semigroups and
semigroups induced by semiflows in weighted function spaces.

Disjoint Li-Yorke chaotic properties of abstract PDEs in Fréchet spaces have
been analyzed in Section 4, where we initiate the studies of (disjoint) Li-Yorke
chaos for abstract differential equations of second order and (disjoint) Li-Yorke
chaos for abstract differential equations of fractional order in time variable; albeit
formulated for disjoint (f, 1, 1)-Li-Yorke chaos, a great number of examples are given
for disjoint (f, 1, 1)-distributional chaos which is a much stronger notion, whose
discrete counterpart has been recently analyzed in [26] (here, f : [0,∞) → [1,∞)

is an increasing mapping satisfying lim inft→+∞
f(t)
t > 0). This is a foundational

study of disjoint Li-Yorke chaos and we would like to say that we have found
this theme very difficult to be thoroughly explored in theoretical sense, primarily
from the facts that the methods from [5], [8], [23] and [35] cannot be so easily
reexamined for disjointness. For the sake of brevity, we propose only one open
problem in Subsection 2.1 (Problem 1).

We use the standard terminology throughout the paper. We assume that X and
Y are two non-trivial Fréchet spaces over the same field of scalars K ∈ {R,C} as
well as that the topologies of X and Y are induced by the fundamental systems
(pn)n∈N and (pYn )n∈N of increasing seminorms, respectively (separability of X or
Y is not assumed a priori in future). Then the translation invariant metric d :
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X ×X → [0,∞), defined by

d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ X, (1.1)

enjoys the following properties: d(x+ u, y + v) ≤ d(x, y) + d(u, v), x, y, u, v ∈ X;

d(cx, cy) ≤ (|c| + 1)d(x, y), c ∈ K, x, y ∈ X, and d(αx, βx) ≥ |α−β|
1+|α−β|d(0, x),

x ∈ X, α, β ∈ K. Define the translation invariant metric dY : Y × Y → [0,∞) by
replacing pn(·) with pYn (·) in (1.1). We endow the Fréchet space Y k with the metric

dY k(x⃗, y⃗) := max
1≤j≤k

dY (xj , yj), x⃗ = (x1, · · ·, xk) ∈ Y k, y⃗ = (y1, · · ·, yk) ∈ Y k,

where k ∈ N.
Suppose that C ∈ L(X) is an injective operator. Put pCn (x) := pn(C

−1x), n ∈ N,
x ∈ R(C). Then pCn (·) is a seminorm on R(C) and the calibration (pCn )n∈N induces
a Fréchet locally convex topology on R(C); we shall denote this space simply by
[R(C)]. Notice that [R(C)] is a Fréchet (Banach) space provided that X is.

Given s ∈ R in advance, set ⌊s⌋ := sup{l ∈ Z : s ≥ l} and ⌈s⌉ := inf{l ∈ Z : s ≤
l}. Denote by Eα,β(z) the Mittag-Leffler function Eα,β(z) :=

∑∞
n=0 z

n/Γ(αn+ β),
z ∈ C. Set, for short, Eα(z) := Eα,1(z), z ∈ C and Σϑ := {reiθ : |θ| < ϑ}
(ϑ ∈ (0, π]). We refer the reader to [21] for the notions of fractionally integrated C-
semigroups and C-cosine functions, C-distribution semigroups and C-distribution
cosine functions, α-times C-regularized resolvent families and their integral gen-
erators (α > 0, C ∈ L(X) injective). Throughout the paper, we assume that
N ∈ N \ {1}; set NN := {1, 2, · · ·, N}.

In this paper, we will consider the spaces Lp
ρ1
(Ω) and C0,ρ(Ω), where Ω is an open

non-empty subset of Rn. Here, ρ1 : Ω → (0,∞) is a locally integrable function, the
norm of an element f ∈ Lp

ρ1
(Ω) is given by ||f ||p := (

∫
Ω
|f(x)|pρ1(x) dx)1/p and dx

denotes Lebesgue’s measure on Rn. Recall that, for a given upper semicontinuous
function ρ : Ω → (0,∞), the space C0,ρ(Ω) consists of all continuous functions
f : Ω → C satisfying that, for every ϵ > 0, {x ∈ Ω : |f(x)|ρ(x) ≥ ϵ} is a compact
subset of Ω; equipped with the norm ||f || := supx∈Ω |f(x)|ρ(x), C0,ρ(Ω) becomes a
Banach space.

We will use the following notions of lower and upper densities for a subset A ⊆ N :

Definition 1.2. ([27]) Let (mn) be an increasing sequence in [1,∞). Then:

(i) The lower (mn)-density of A, denoted by dmn
(A), is defined through

dmn
(A) := lim inf

n→∞

|A ∩ [1,mn]|
n

;

(ii) The lower l; (mn)-Banach density of A, denoted by Bdl;mn
(A), is defined

through

Bdl;mn
(A) := lim inf

s→+∞
lim inf
n→∞

|A ∩ [n+ 1, n+ms]|
s

.

Denote by R the class consisting of all increasing sequences (mn) of positive reals
satisfying lim infn→∞

mn

n > 0, i.e., there exists a finite constant L > 0 such that
n ≤ Lmn, n ∈ N. Unless stated otherwise, we will always assume that (mn) ∈ R
henceforth. The assumption mn ∈ N for all n ∈ N can be made.



252 M. KOSTIĆ EJMAA-2020/8(1)

1.1. Multivalued linear operators. A multivalued map (multimap) A : X →
P (Y ) is said to be a multivalued linear operator (MLO) iff the following two con-
ditions hold:

(i) D(A) := {x ∈ X : Ax ̸= ∅} is a linear subspace of X;
(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ K, x ∈ D(A).

If x, y ∈ D(A) and λ, η ∈ K with |λ| + |η| ≠ 0, then it is well-known that
λAx + ηAy = A(λx + ηy); furthermore, if A is an MLO, then A0 is a linear
manifold in Y and Ax = f +A0 for any x ∈ D(A) and f ∈ Ax. Set R(A) := {Ax :
x ∈ D(A)}. The set A−10 = {x ∈ D(A) : 0 ∈ Ax} is called the kernel of A and it
is denoted henceforth by N(A) or Kern(A). The inverse A−1 of an MLO is defined
by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. Let us recall that A is
called purely multivalued iff A0 ̸= {0}.

Suppose that A : X → P (Y ) and B : Y → P (Z) are two MLOs, where Z is a
Fréchet space over the same field of scalars as X and Y . The product of A and B
is defined by D(BA) := {x ∈ D(A) : D(B) ∩ Ax ̸= ∅} and BAx := B(D(B) ∩ Ax).
Then BA : X → P (Z) is an MLO and (BA)−1 = A−1B−1. The multiplications
of MLOs with scalars and sums of MLOs are taken in the usual way. The integer
powers of an MLO A : X → P (X) are defined inductively by: A0 =: I;

D(An) :=
{
x ∈ D(An−1) : D(A) ∩ An−1x ̸= ∅

}
,

and
Anx :=

(
AAn−1

)
x =

∪
y∈D(A)∩An−1x

Ay, x ∈ D(An).

Set D∞(A) :=
∩

n∈ND(An).
Suppose that A is an MLO in X. Then a point λ ∈ C is said to be an eigenvalue

of A iff there exists a vector x ∈ X \{0} such that λx ∈ Ax; we call x an eigenvector
of operator A corresponding to the eigenvalue λ. The point spectrum of A, σp(A)
for short, is defined as the set consisting of all eigenvalues of A.

We need the following definition from [28]:

Definition 1.3. We say that the sequence (Aj)j∈N of MLOs is X̃-Li-Yorke chaotic

iff there exists an uncountable set S ⊆
∩

j∈ND(Aj)
∩
X̃ such that for every pair

(x, y) ∈ S × S of distinct points and for every integer j ∈ N there exist elements
xj ∈ Ajx and yj ∈ Ajy so that

lim inf
j→∞

dY
(
xj , yj

)
= 0 and lim sup

j→∞
dY
(
xj , yj

)
> 0.

In this case, S is called a X̃-Li-Yorke scrambled set for (Aj)j∈N and each such

pair (x, y) is called a X̃-Li-Yorke pair for (Aj)j∈N. We say that (Aj)j∈N is densely

X̃-Li-Yorke chaotic iff S can be chosen to be dense in X̃.

We refer the reader to [28], [8] and [23] for the notion and properties of Li-Yorke
(semi-)irregular vectors. Any notion introduced above is accepted also for an MLO
operator A : X → P (X) by using the sequence (Aj ≡ Aj)j∈N for definition. Finally,

if X̃ = X, then we remove the prefix “X̃-” from the terms and notions.
We will also use the following definition from [26]:

Definition 1.4. Let (mn) ∈ R. Suppose that, for every j ∈ NN and k ∈ N, Aj,k :

D(Aj,k) ⊆ X → Y is an MLO and x ∈
∩N

j=1

∩∞
k=1D(Aj,k), x ̸= 0. Then we say that

x is (reiteratively) (d,mn)-distributionally near to 0 of type 1 for ((Aj,k)k∈N)1≤j≤N
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iff there exists A ⊆ N such that (Bdl;mn
(Ac) = 0) dmn

(Ac) = 0 as well as for each
j ∈ NN and k ∈ N there exists xj,k ∈ Aj,kx such that limk∈A,k→∞ xj,k = 0, j ∈ NN .

Definition of (d, X̃, i)-distributional chaoticity of tuple ((Aj,k)k∈N)1≤j≤N , where
i ∈ N12, is too large to be repeated here. For further information on the subject,
we refer the reader to [25].

2. Disjoint Li-Yorke chaos, disjoint Li-Yorke irregular vectors and
manifolds

Let ϵ > 0, and let (xj,k)k∈N and (yj,k)k∈N be sequences in X (1 ≤ j ≤ N).
Consider the following conditions:

(∃m ∈ N)(∀k ∈ N)(∃lk ∈ N) s.t. lk < lk+1, k ∈ N,

and lim
k→∞

pYm
(
xj,lk − yj,lk

)
= +∞, k ∈ N, j ∈ NN ,

provided that Y is a Fréchet space, or

(∀k ∈ N)(∃lk ∈ N) s.t. lk < lk+1, k ∈ N,
and lim

k→∞

∥∥xj,lk − yj,lk
∥∥
Y
= +∞, j ∈ NN , provided that Y is a Banach space;

(2.1)

(∃m ∈ N)(∀k ∈ N)(∀j ∈ NN )(∃ljk ∈ N) s.t. ljk < ljk+1, k ∈ N, j ∈ NN ,

and lim
k→∞

pYm
(
xj,ljk

− yj,ljk

)
= +∞, k ∈ N, j ∈ NN ,

provided that Y is a Fréchet space, or

(∀k ∈ N)(∀j ∈ NN )(∃ljk ∈ N) s.t. ljk < ljk+1, k ∈ N, j ∈ NN ,

and lim
k→∞

∥∥xj,ljk − yj,ljk

∥∥
Y
= +∞, j ∈ NN , provided that Y is a Banach space;

(2.2)

dmn

( ∪
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ϵ
})

= 0; (2.3)

Bdl;mn

( ∪
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
≥ ϵ
})

= 0; (2.4)

(∀k ∈ N)(∃nk ∈ N) s.t. nk < nk+1, k ∈ N and lim
k→∞

dY
(
xj,nk

, yj,nk

)
= 0, j ∈ NN ;

(2.5)

(∀k ∈ N)(∀j ∈ NN )(∃njk ∈ N) s.t. njk < njk+1, k ∈ N
and lim

k→∞
dY
(
xj,nj

k
, yj,nj

k

)
= 0, j ∈ NN . (2.6)

Now we are ready to propose the following definitions:

Definition 2.1. Let i ∈ N2 and (mn) ∈ R. Suppose that, for every j ∈ NN and

k ∈ N, Aj,k : D(Aj,k) ⊆ X → Y is an MLO and X̃ is a linear subspace of X.

Then we say that the sequence ((Aj,k)k∈N)1≤j≤N is disjoint (X̃,mn, 1, i)-Li-Yorke
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chaotic, (d, X̃,mn, 1, i)-Li-Yorke chaotic in short, resp. disjoint (X̃,mn, 2, i)-Li-

Yorke chaotic, (d, X̃,mn, 2, i)-Li-Yorke chaotic in short, iff there exists an uncount-

able set S ⊆
∩N

j=1

∩∞
k=1D(Aj,k) ∩ X̃ such that for each ϵ > 0 and for each pair

x, y ∈ S of distinct points we have that for each j ∈ NN and k ∈ N there exist
elements xj,k ∈ Aj,kx and yj,k ∈ Aj,ky such that (2.1) and (2.i+2) hold, resp. (2.2)
and (2.i+2) hold.

Suppose that s ∈ N2. Then we say that the sequence ((Aj,k)k∈N)1≤j≤N is

densely (d, X̃,mn, s, i)-Li-Yorke chaotic iff S can be chosen to be dense in X̃. A

finite sequence (Aj)1≤j≤N of MLOs on X is said to be (densely) (d, X̃,mn, s, i)-
distributionally chaotic iff the sequence ((Aj,k ≡ Ak

j )k∈N)1≤j≤N is. The set S is
said to be (d, σX̃ ,mn, s, i)-Li-Yorke scrambled set ((d, σ,mn, s, i)-Li-Yorke scram-

bled set in the case that X̃ = X) of ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ); in the case

that X̃ = X, then we also say that the sequence ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ) is
disjoint (mn, s, i)-Li-Yorke chaotic, (d,mn, s, i)-Li-Yorke chaotic in short.

Definition 2.2. Let i ∈ {3, 4}. Suppose that, for every j ∈ NN and k ∈ N, Aj,k :

D(Aj,k) ⊆ X → Y is an MLO and X̃ is a linear subspace of X. Then we say that

the sequence ((Aj,k)k∈N)1≤j≤N is disjoint (X̃, 1, i)-Li-Yorke chaotic, (d, X̃, 1, i)-Li-

Yorke chaotic in short, resp. disjoint (X̃, 2, i)-Li-Yorke chaotic, (d, X̃, 2, i)-Li-Yorke

chaotic in short, iff there exists an uncountable set S ⊆
∩N

j=1

∩∞
k=1D(Aj,k) ∩ X̃

such that for each ϵ > 0 and for each pair x, y ∈ S of distinct points we have that
for each j ∈ NN and k ∈ N there exist elements xj,k ∈ Aj,kx and yj,k ∈ Aj,ky such
that (2.1) and (2.i+2) hold, resp. (2.2) and (2.i+2) hold.

Let s ∈ N2. Then we say that the sequence ((Aj,k)k∈N)1≤j≤N is densely (d, X̃, s, i)-

Li-Yorke chaotic iff S can be chosen to be dense in X̃. A finite sequence (Aj)1≤j≤N

of MLOs on X is said to be (densely) (d, X̃, s, i)-distributionally chaotic iff the
sequence ((Aj,k ≡ Ak

j )k∈N)1≤j≤N is. The set S is said to be (d, σX̃ , s, i)-Li-

Yorke scrambled set ((d, σ, s, i)-Li-Yorke scrambled set in the case that X̃ = X) of

((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ); in the case that X̃ = X, then we also say that the
sequence ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ) is disjoint (s, i)-Li-Yorke chaotic, (d, s, i)-
Li-Yorke chaotic in short.

Remark 2.3. Assume that ((Aj,k)k∈N)1≤j≤N is d-hypercyclic and x is a correspond-
ing d-hypercyclic vector for ((Aj,k)k∈N)1≤j≤N ; see [29, Definition 2.2] for the notion
of dF-hypercyclicity, here F is a collection of all non-empty subsets of N. Then it
can be simply verified that ((Aj,k)k∈N)1≤j≤N is (d, X̃, 1, 3)-Li-Yorke chaotic with

X̃ = span{x}.

Consider, in place of conditions (2.1)-(2.2), the following ones with σ > 0:

dmn

( ∪
j∈NN

{
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0; (2.7)

(
∀j ∈ NN

)
dmn

({
k ∈ N : dY

(
xj,k, yj,k

)
< σ

})
= 0. (2.8)

Albeit not such important in our further investigations in comparision with Def-
inition 2.1 and Definition 2.2, we will also introduce the following
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Definition 2.4. Suppose that, for every j ∈ NN and k ∈ N, Aj,k : D(Aj,k) ⊆
X → Y is an MLO and X̃ is a linear subspace of X. Then we say that the se-
quence ((Aj,k)k∈N)1≤j≤N is disjoint (X̃,mn, 3, 1)-Li-Yorke chaotic, (d, X̃,mn, 3, 1)-

Li-Yorke chaotic in short [disjoint (X̃,mn, 3, 2)-Li-Yorke chaotic, (d, X̃,mn, 3, 2)-Li-

Yorke chaotic in short], resp. disjoint (X̃,mn, 4, 1)-Li-Yorke chaotic, (d, X̃,mn, 4, 1)-

Li-Yorke chaotic in short [disjoint (X̃,mn, 4, 2)-Li-Yorke chaotic, (d, X̃,mn, 4, 2)-Li-

Yorke chaotic in short] iff there exist an uncountable set S ⊆
∩N

j=1

∩∞
k=1D(Aj,k)∩X̃

and σ > 0 such that for each ϵ > 0 and for each pair x, y ∈ S of distinct points
we have that for each j ∈ NN and k ∈ N there exist elements xj,k ∈ Aj,kx and
yj,k ∈ Aj,ky such that (2.7) and (2.5) [(2.7) and (2.6)] hold, resp. (2.8) and (2.5)
[(2.8) and (2.6)] hold.

Let s ∈ {3, 4} and i ∈ N2. Then we say that the sequence ((Aj,k)k∈N)1≤j≤N is

densely (d, X̃,mn, s, i)-Li-Yorke chaotic iff S can be chosen to be dense in X̃. A

finite sequence (Aj)1≤j≤N of MLOs on X is said to be (densely) (d, X̃,mn, s, i)-
distributionally chaotic iff the sequence ((Aj,k ≡ Ak

j )k∈N)1≤j≤N is. The set S is said
to be (d, σX̃ ,mn, s, i)-Li-Yorke scrambled set ((d, σ,mn, s, i)-Li-Yorke scrambled set

in the case that X̃ = X) of ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ); in the case that X̃ =
X, then we also say that the sequence ((Aj,k)k∈N)1≤j≤N ((Aj)1≤j≤N ) is disjoint
(mn, s, i)-Li-Yorke chaotic, (d,mn, s, i)-Li-Yorke chaotic in short.

As in our previous investigations of disjoint mn-distributional chaos, we need to
know the minimal linear subspace X̃ for which the corresponding tuple of MLOs
is (d, X̃,mn, s, i)-Li-Yorke chaotic or (d, X̃, s, i)-Li-Yorke chaotic, with the mean-

ing clear. Since the X̃-Li-Yorke chaos and disjoint X̃-Li-Yorke chaos are rotation
invariant, we essentially need to consider only such tuples of MLOs whose compo-
nents are pairwise different and which are not rotations of some other components
in the tuple. It is also clear that the notion from Definition 2.1 and Definition 2.2
can be introduced for general binary relations between a topological space X and a
Fréchet space Y , as well as that the notion from Definition 2.4 can be introduced for
general binary relations between a topological space X and a pseudo-metric space
Y. For the sake of brevity, we will not consider disjoint (MLO) Li-Yorke extensions
in this paper (see [22] for similar problematic).

An idea of G. T. Prǎjiturǎ given on [35, p. 690] can be used for construction of

disjoint Li-Yorke chaotic MLOs. We will explain this idea only for (d, X̃,mn, 1, i)-
Li-Yorke chaos:

Example 2.5. Suppose that Aj , Bj , Cj are given MLOs in X, as well as the

tuple (Aj)1≤j≤N is (d, X̃,mn, 1, i)-Li-Yorke chaotic for some (mn) ∈ R. For each

integer j ∈ NN , we define the multivalued map Tj ≡
(Aj Bj

0 Cj

)
by D(Tj) := {(x, y) ∈

X × X : x ∈ D(Aj), y ∈ D(Bj) ∩ D(Cj)} and Tj(x, y) := {(z, ω) ∈ X × X : ω ∈
Cjy, ∃z1 ∈ Ajx, ∃z2 ∈ Bjy, z = z1 + z2}. Then it can be easily seen that for each
integer j ∈ NN , Tj is an MLO in X×X. Furthermore, it can be simply checked that
the supposition zj,k ∈ Ak

j z for some k ∈ N and j ∈ NN implies (zj,k, 0) ∈ T k
j (z, 0).

Observed this, it readily follows that the tuple (Tj)1≤j≤N is (d, X̃,mn, 1, i)-Li-Yorke
chaotic in X ×X, as well.

If the sequence ((Aj,k)k∈N)1≤j≤N is (densely) X̃-Li-Yorke chaotic in the sense
of any notion introduced in the above three definitions, then for each j ∈ NN we
have that the sequence (Aj,k)k∈N is (densely) X̃-Li-Yorke chaotic (in particular, if
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X̃ = Y = X and ((Aj,k)k∈N)1≤j≤N is densely Li-Yorke chaotic in the sense of any
notion introduced above, then [28, Proposition 4] yields that for each j ∈ NN one
has σp(A∗

j )∩{λ ∈ K : |λ| ≥ 1} = ∅). The converse statement does not hold even for
orbits of linear continuous operators on Hilbert spaces, as the next example shows:

Example 2.6. In [39, Theorem 3.7], Z. Yin, S. He and Y. Huang have shown
that, for any two positive real numbers a and b such that a < b, there exists
an invertible operator T acting on a Hilbert space X such that [a, b] = {λ >
0 : λT is distributionally chaotic} and for any distinct values λ1, λ2 ∈ [a, b], the
operators λ1T and λ2T have no common Li-Yorke irregular vectors (see e.g. [39,
Definition 3] for the notion). Let λ1 < λ2 and λ1, λ2 ∈ [a, b]. It can be easily checked
that the operators λ1T and λ2T cannot be (d,X, 2, 4)-Li-Yorke chaotic because any
non-zero vector z ∈ S−S, where S denotes the corresponding scrambled set, needs
to be a common Li-Yorke irregular vector for both operators λ1T and λ2T, as can
be easily seen. This implies that λ1T and λ2T cannot be disjoint Li-Yorke chaotic in
the sense of any notion introduced in Definition 2.1 and Definition 2.2. Furthermore,
these operators cannot be disjoint Li-Yorke chaotic in the sense of notion introduced
in Definition 2.4 because, if we suppose the contrary, then for each non-zero vector
z ∈ S − S there exist two strictly increasing sequences (nk) and (lk) of positive
integers such that limk→∞ ∥(λjT )nkz∥ = 0 and lim supk→∞ ∥(λjT )lkz∥ > 0 (j =
1, 2). By the proofs of [39, Theorem 3.3, Theorem 3.7], this would imply that there
exists a constant c(λ1, λ2), independent of z, such that ∥(λ1T )nz∥ ≤ c(λ1, λ2)∥z∥
for all n ∈ N and therefore ∥z∥ ≥ σ/c(λ1, λ2). This is a contradiction because the
set S − S cannot be bounded away from zero.

Concerning Example 2.6, it should be noted that we have recently proved that
the operators λ1T and λ2T are disjoint distributionally chaotic of type
i ∈ {4, 5, 6, 8, 9, 10, 11, 12}; see [25] for notion and more details. We will not analyze
Li-Yorke analogues for these types of disjoint distributional chaos here.

We continue by providing one more illustrative example:

Example 2.7. (see also [25, Example 3.24]) Consider a weighted forward shift
Fω ∈ L(l2), defined by Fω(x1, x2, · · ·) 7→ (0, ω1x1, ω2x2, · · ·), where the sequence of
weights ω = (ωk)k∈N consists of sufficiently large blocks of 2’s and blocks of (1/2)’s.
Set σ := (1/ωk)k∈N. Then for each non-zero vector ⟨xn⟩n∈N ∈ l2 there exists n0 ∈ N
such that xn0 ̸= 0 and, for every integer k ∈ N, we have∥∥∥F k

ω ⟨xn⟩n∈N + F k
σ ⟨xn⟩n∈N

∥∥∥ ≥ 2|xn0 |.

This, in turn, implies that the operators Fω and Fσ cannot be disjoint Li-Yorke
chaotic in the sense of any notion introduced in Definition 2.1, as well as that
Fω and Fσ cannot be (d, X̃, 1, 3)-Li-Yorke chaotic [(d, X̃, 2, 3)-Li-Yorke chaotic,

(d, X̃, 3, 1)-Li-Yorke chaotic, (d, X̃, 4, 1)-Li-Yorke chaotic]. Now we will analyze

the question when Fω and Fσ can be (d, X̃, 1, 4)-Li-Yorke chaotic or (d, X̃, 2, 4)-Li-
Yorke chaotic. Assume that e1 is a Li-Yorke irregular vector for Fω. Then e1 is a
Li-Yorke irregular vector for Fσ and it trivially follows that the operators Fω and Fσ

are (d, span{e1}, 2, 4)-Li-Yorke chaotic with S = span{e1} being the corresponding
disjoint scrambled set. Similarly, if e1 is an mn-distributionally irregular vector for
Fω, then e1 is likewise an mn-distributionally irregular vector for Fσ, and the op-
erators Fω and Fσ are (d, span{e1},mn, 4, 2)-Li-Yorke chaotic with S = span{e1}
being the corresponding disjoint scrambled set (see [26] for the notion).
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Observe that for each subset A ⊆ N we have that the assumption dmn
(A) = 0 for

some (mn) ∈ R implies Bdl;mn
(A) = 0 (if we suppose the contrary, the set A needs

to be syndetic [27] and therefore dmn
(A) > 0, which contradicts our assumption).

Therefore, the validity of (2.3) implies that of (2.4) and we can trivially verify that
the following proposition holds good:

Proposition 2.8. Suppose that, for every j ∈ NN and k ∈ N, Aj,k : D(Aj,k) ⊆
X → Y is an MLO, (mn) ∈ R and X̃ is a linear subspace of X. Then we have:

(i) The sequence ((Aj,k)k∈N)1≤j≤N is (d, X̃,mn, 2, i)-Li-Yorke chaotic if it is

(d, X̃,mn, 1, i)-Li-Yorke chaotic (i = 1, 2).

(ii) The sequence ((Aj,k)k∈N)1≤j≤N is (d, X̃,mn, s, 2)-Li-Yorke chaotic if it is

(d, X̃,mn, s, 1)-Li-Yorke chaotic (s = 1, 2); if the sequence ((Aj,k)k∈N)1≤j≤N

is (d, X̃,mn, s, 2)-Li-Yorke chaotic, then it is (d, X̃, s, 3)-Li-Yorke chaotic
(s = 1, 2).

(iii) The sequence ((Aj,k)k∈N)1≤j≤N is (d, X̃, s, 4)-Li-Yorke chaotic if it is

(d, X̃,mn, s, 3)-Li-Yorke chaotic (s = 3, 4).

(iv) The sequence ((Aj,k)k∈N)1≤j≤N is (d, X̃,mn, 4, i)-Li-Yorke chaotic if it is

(d, X̃,mn, 3, i)-Li-Yorke chaotic (i = 1, 2).

(v) The sequence ((Aj,k)k∈N)1≤j≤N is (d, X̃,mn, s, 2)-Li-Yorke chaotic if it is

(d, X̃,mn, s, 1)-Li-Yorke chaotic (s = 3, 4).

(vi) The sequence ((Aj,k)k∈N)1≤j≤N is (d, X̃, n, s, i)-Li-Yorke chaotic if it is

(d, X̃,mn, s, i)-Li-Yorke chaotic (s ∈ N4, i = 1, 2).

For orbits of linear continuous operators in Banach spaces, it is worth noting
that the following equivalence relations hold:

Proposition 2.9. Suppose that X is a Banach space and Tj ∈ L(X) for all j ∈ NN .
Then the following statements are mutually equivalent:

(i) There exist two strictly increasing sequences (lk) and (sk) of positive inte-

gers and vector x ∈ X such that limk→∞ T sk
j x = 0 and limk→∞ ∥T lk

j x∥ =

+∞ (j ∈ NN ).
(ii) For every σ > 0, ϵ > 0 and (mn) ∈ R, we have that

Bdl;mn

( ∪
j∈NN

{
k ∈ N : ∥T k

j x∥ < σ
})

= 0, and

Bdl;mn

( ∪
j∈NN

{
k ∈ N : ∥T k

j x∥ ≥ ϵ
})

= 0.

(2.9)

(iii) For every σ > 0, ϵ > 0 we have that (2.9) holds with mn ≡ n.

Proof. The only non-trivial is to show that (i) implies (ii); see also the proof of [30,
Proposition 2.16(i)]. So, let σ > 0, ϵ > 0 and (mn) ∈ R be fixed. By definition of
Bdl;mn

(·), it suffices to prove that for each fixed number s > 0 one has:

lim inf
n→∞

∣∣∣∪j∈NN

{
k ∈ N : ∥T k

j x∥ < σ
}
∩ [n+ 1, n+ms]

∣∣∣
s

= 0 (2.10)



258 M. KOSTIĆ EJMAA-2020/8(1)

and

lim inf
n→∞

∣∣∣∪j∈NN

{
k ∈ N : ∥T k

j x∥ ≥ ϵ
}
∩ [n+ 1, n+ms]

∣∣∣
s

= 0. (2.11)

It is clear that there exist two strictly increasing sequences of positive integers

(l′k) and (j′k) with unbounded differences such that ∥T l′k
j x∥ < σ(2 + ∥T1∥ + · · · +

∥TN∥)−k2−ms−1/2 and ∥T j′k
j x∥ > 2σ(2 + ∥T1∥+ · · ·+ ∥TN∥)k2+ms+1 for all k ∈ N

and j ∈ NN . An elementary line of reasoning shows that the sets
∪

j∈NN
{k ∈ N :

∥T k
j x∥ > σ} ∩ [l′k, l

′
k + ⌈ms⌉] and

∪
j∈NN

{k ∈ N : ∥T k
j x∥ < σ} ∩ [j′k − ⌈ms⌉, j′k] are

empty, finishing the proofs of (2.10)-(2.11). �

2.1. Disjoint Li-Yorke irregular vectors and manifolds. For any type of dis-
joint Li-Yorke chaos introduced above, we can define corresponding notion of dis-
joint semi-Li-Yorke irregular vectors and disjoint Li-Yorke irregular vectors. Con-
sider the following conditions:

the same as (2.1) with the term xj,lk − yj,lk replaced therein with xj,lk ; (2.12)

the same as (2.1) with the terms xj,lk − yj,lk and lim
k→∞

pYm
(
xj,lk − yj,lk

)
= +∞

replaced therein with xj,lk and lim
k→∞

pYm
(
xj,lk

)
> 0, respectively; (2.13)

the same as (2.2) with the term xj,ljk
− yj,ljk

replaced therein with xj,ljk
; (2.14)

the same as (2.2) with the terms xj,ljk
− yj,ljk

and lim
k→∞

pYm
(
xj,ljk

− yj,ljk

)
= +∞

replaced therein with xj,ljk
and lim

k→∞
pYm
(
xj,ljk

)
> 0, respectively; (2.15)

the same as (2.5) with the term lim
k→∞

dY
(
xj,nk

, yj,nk

)
= 0

replaced therein with lim
k→∞

dY
(
xj,nk

, 0
)
= 0; (2.16)

the same as (2.6) with the term lim
k→∞

dY
(
xj,nk

, yj,nk

)
= 0

replaced therein with lim
k→∞

dY
(
xj,nk

, 0
)
= 0. (2.17)

Now we are ready to introduce the following notion:

Definition 2.10. Let i ∈ N2 and (mn) ∈ R. Suppose that, for every j ∈ NN and

k ∈ N, Aj,k : D(Aj,k) ⊆ X → Y is an MLO, X̃ is a linear subspace of X, and

x ∈
∩

j∈NN

∩
k∈ND(Aj,k) ∩ X̃. Then we say that:

(i) x is (d, X̃,mn, 1, 1)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff x is
(d,mn)-distributionally near to zero of type 1 for ((Aj,k)k∈N)1≤j≤N and
(2.12) holds with elements xj,lk ∈ Aj,lkx;

(ii) x is (d, X̃,mn, 1, 1)-Li-Yorke semi-irregular vector for ((Aj,k)k∈N)1≤j≤N iff
x is (d,mn)-distributionally near to zero of type 1 for ((Aj,k)k∈N)1≤j≤N

and (2.13) holds with elements xj,lk ∈ Aj,lkx;
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(iii) x is (d, X̃,mn, 1, 2)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff x is

(d, X̃,mn, 1, 1)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff x is reiter-
atively (d,mn)-distributionally near to zero of type 1 for ((Aj,k)k∈N)1≤j≤N

and (2.12) holds with elements xj,lk ∈ Aj,lkx;

(iv) x is (d, X̃,mn, 1, 2)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff x is
reiteratively (d,mn)-distributionally near to zero of type 1 for
((Aj,k)k∈N)1≤j≤N and (2.13) holds with elements xj,lk ∈ Aj,lkx;

(v) x is (d, X̃,mn, 2, 1)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff x is
(d,mn)-distributionally near to zero of type 1 for ((Aj,k)k∈N)1≤j≤N and
(2.14) holds with elements xj,ljk

∈ Aj,ljk
x;

(vi) x is (d, X̃,mn, 2, 1)-Li-Yorke semi-irregular vector for ((Aj,k)k∈N)1≤j≤N iff
x is (d,mn)-distributionally near to zero of type 1 for ((Aj,k)k∈N)1≤j≤N

and (2.15) holds with elements xj,ljk
∈ Aj,ljk

x;

(vii) x is (d, X̃,mn, 2, 2)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff x is

(d, X̃,mn, 1, 1)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff x is reiter-
atively (d,mn)-distributionally near to zero of type 1 for ((Aj,k)k∈N)1≤j≤N

and (2.14) holds with elements xj,ljk
∈ Aj,ljk

x;

(viii) x is (d, X̃,mn, 2, 2)-Li-Yorke semi-irregular vector for ((Aj,k)k∈N)1≤j≤N

iff x is reiteratively (d,mn)-distributionally near to zero of type 1 for
((Aj,k)k∈N)1≤j≤N and (2.15) holds with elements xj,ljk

∈ Aj,ljk
x.

Definition 2.11. Let i ∈ {3, 4}. Suppose that, for every j ∈ NN and k ∈ N,
Aj,k : D(Aj,k) ⊆ X → Y is an MLO, X̃ is a linear subspace of X, and x ∈∩

j∈NN

∩
k∈ND(Aj,k) ∩ X̃. Then we say that:

(i) x is (d, X̃, 1, 3)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.16) and
(2.12) hold with elements xj,lk ∈ Aj,lkx;

(ii) x is (d, X̃, 1, 3)-Li-Yorke semi-irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.16)
and (2.13) hold with elements xj,lk ∈ Aj,lkx;

(iii) x is (d, X̃, 1, 4)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.17) and
(2.12) hold with elements xj,lk ∈ Aj,lkx;

(iv) x is (d, X̃, 1, 4)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.17) and
(2.13) hold with elements xj,lk ∈ Aj,lkx;

(v) x is (d, X̃, 2, 3)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.16) and
(2.14) hold with elements xj,ljk

∈ Aj,ljk
x;

(vi) x is (d, X̃, 2, 3)-Li-Yorke semi-irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.16)
and (2.15) hold with elements xj,ljk

∈ Aj,ljk
x;

(vii) x is (d, X̃, 2, 4)-Li-Yorke irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.17) and
(2.14) hold with elements xj,ljk

∈ Aj,ljk
x;

(viii) x is (d, X̃, 2, 4)-Li-Yorke semi-irregular vector for ((Aj,k)k∈N)1≤j≤N iff (2.17)
and (2.15) hold with elements xj,ljk

∈ Aj,ljk
x.

Let {0} ̸= X ′ ⊆ X̃ be a linear manifold.

d1. Suppose i, j ∈ N2 and (mn) ∈ R. Then we say that X ′ is a (d, X̃,mn, i, j)-
Li-Yorke (semi-)irregular manifold for ((Aj,k)k∈N)1≤j≤N ((d,mn, i, j)-Li-

Yorke (semi-)irregular manifold in the case that X̃ = X) iff any element x ∈
(X ′∩

∩N
j=1

∩∞
k=1D(Aj,k))\{0} is a (d, X̃,mn, i, j)-Li-Yorke (semi-)irregular
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vector for ((Aj,k)k∈N)1≤j≤N ; the notion of a ((d,mn, i, j)-, (d, X̃,mn, i, j)-
)Li-Yorke (semi-)irregular manifold for (Aj)1≤j≤N is defined similarly.

d2. Suppose i ∈ N2 and j ∈ {3, 4}. Then we say that X ′ is a (d, X̃, i, j)-
Li-Yorke (semi-)irregular manifold for ((Aj,k)k∈N)1≤j≤N ((d, i, j)-Li-Yorke

(semi-)irregular manifold in the case that X̃ = X) iff any element x ∈
(X ′ ∩

∩N
j=1

∩∞
k=1D(Aj,k)) \ {0} is a (d, X̃, i, j)-Li-Yorke (semi-)irregular

vector for ((Aj,k)k∈N)1≤j≤N ; the notion of a ((d, i, j)-, (d, X̃, i, j)-)Li-Yorke
(semi-)irregular manifold for (Aj)1≤j≤N is defined similarly.

We have the following:

d3. Suppose that i, j ∈ N2, (mn) ∈ R and 0 ̸= x ∈ X̃ ∩
∩N

j=1

∩∞
k=1D(Aj,k)

is a (d, X̃,mn, i, j)-Li-Yorke (semi-)irregular vector for ((Aj,k)k∈N)1≤j≤N .

Then X ′ ≡ span{x} is a (d, X̃,mn, i, j)-Li-Yorke (semi-)irregular manifold
for ((Aj,k)k∈N)1≤j≤N ;

d4. Suppose i ∈ N2, j ∈ {3, 4} and 0 ̸= x ∈ X̃ ∩
∩N

j=1

∩∞
k=1D(Aj,k) is

a (d, X̃, i, j)-Li-Yorke (semi-)irregular vector for ((Aj,k)k∈N)1≤j≤N . Then

X ′ ≡ span{x} is a (d, X̃, i, j)-Li-Yorke (semi-)irregular manifold for
((Aj,k)k∈N)1≤j≤N .

IfX ′ is dense in X̃, then the notions of dense ((d,mn, i, j)-, (d, X̃,mn, i, j)-)Li-Yorke

(semi-)irregular manifolds, (d, i, j)-, (d, X̃, i, j)-)Li-Yorke (semi-)irregular manifolds,
etc., are defined analogically.

It can be simply verified by a great number of concrete and very plain examples
that the notions of (d, X̃,mn, i, j)-Li-Yorke chaos and (d, X̃,mn, i1, j1)-Li-Yorke
chaos differ if (mn) ∈ R, i, i1, j, j1 ∈ N2 and (i, j) ̸= (i1, j1), as well as that

the notions of (d, X̃, i, j)-Li-Yorke chaos and (d, X̃, i1, j1)-Li-Yorke chaos differ if
i, i1 ∈ N2, j, j1 ∈ {3, 4} and (i, j) ̸= (i1, j1). The counterexamples exist even
for general sequences of linear continuous operators on finite-dimensional spaces,
for which it is also clear that they can have (d, X̃,mn, i, j)-Li-Yorke semi-irregular

vectors but not any (d, X̃,mn, i, j)-Li-Yorke irregular vector (take, for example,
X := Y := Kn, Tj := 0 for even j′s and Tj := 2I for odd j′s). In connection with
this, we would like to propose the following

Problem 1.

(i) Let (mn) ∈ R and i, j ∈ N2. Does there exist a tuple (Tj)1≤j≤N of lin-
ear continuous operators on an infinite-dimensional space X admitting a
(d, X̃,mn, i, j)-Li-Yorke semi-irregular vector and its neighborhood which

does not contain any (d, X̃,mn, i, j)-Li-Yorke irregular vector for (Tj)1≤j≤N?
(ii) Let i ∈ N2 and j ∈ {3, 4}. Does there exist a tuple (Tj)1≤j≤N of lin-

ear continuous operators on an infinite-dimensional space X admitting a
(d, X̃, i, j)-Li-Yorke semi-irregular vector and its neighborhood which does

not contain any (d, X̃, i, j)-Li-Yorke irregular vector for (Tj)1≤j≤N?

Let us recall that for a continuous linear operator T ∈ L(X) any neighborhood

of a X̃-Li-Yorke semi-irregular vector for T contains a X̃-irregular vector for T,
provided that {T jx : j ∈ N0} ⊆ X̃ (see [8, Lemma 7, Theorem 8] and [23, Definition
2.2] for the notion, as well as [23, Lemma 3.5, Remark 3.6, Theorem 3.7] for a
continuous analogue). Unfortunately, the proof of [8, Lemma 7] cannot be recovered



EJMAA-2020/8(1) DISJOINT LI-YORKE CHAOS 261

for disjointness, to our best knowledge, and we must follow some other approaches
for solving Problem 1. It is also clear that we can raise a continuous counterpart
of Problem 1 for strongly continuous semigroups of operators (cf. also the proof of
implication [38, Theorem 2.2, (1-2) ⇒ (1-1)]).

Concerning the notion introduced in Definition 2.4, the corresponding notion of
disjoint Li-Yorke irregular vectors and (uniform) disjoint Li-Yorke irregular mani-
folds can be also accompanied. The main difference is the use of notion of (d,mn)-
distributionally m-unbounded vectors of type 1 for ((Aj,k)k∈N)1≤j≤N and mn-
distributionally m-unbounded vectors for ((Ak)k∈N) in place of conditions analyzed
in the equations (2.12) or (2.14); see [26] for more details. For the sake of brevity
and better exposition, we will skip all related details about this subject.

In our previous research studies, we have observed some important differences
between Banach spaces and Fréchet spaces concerning the existence of (disjoint)
mn-distributionally unbounded vectors. These differences are also perceived for
(disjoint) Li-Yorke chaos (cf. [25] for more details):

Example 2.12. Set B̃ := {k ∈ N : Aj,k is purely multivalued for all j ∈ NN}.
Let Y be a Banach space and let B̃ be infinite. Then any non-zero vector x ∈∩N

j=1

∩∞
k=1D(Aj,k) satisfies (2.12), which is no longer true in the case that Y is a

Fréchet space.

3. The proof and corollaries of main result

We start this section by inserting the proof of Theorem 1.1:

Proof of Theorem 1.1. The proof is very similar to that of [7, Theorem 15]
and we will only outline the main details. It suffices to consider the case in which
X and Y are Fréchet spaces whose topology is induced by a countable system of
seminorms because otherwise we can endow Y (or X, if it is a Banach space) with
the following increasing family of seminorms pYn (y) := n∥y∥Y (n ∈ N, y ∈ Y ), which
turns the space Y into a linearly and topologically homeomorphic Fréchet space.
So, let it be the case. Then it is clear that, for every j ∈ NN and l, k ∈ N, there
exist finite numbers cj,l,k > 0 and aj,l,k ∈ N such that pYl (Tj,kx) ≤ cj,k,lpaj,k,l

(x),
x ∈ X, k, l ∈ N, j ∈ NN . Introducing recursively the following fundamental system
of increasing seminorms p′n(·) (n ∈ N) on X :

p′1(x) ≡ p1(x), x ∈ X,

p′2(x) ≡
N∑
j=1

[
p′1(x) + cj,1,1paj,1,1(x) + p2(x)

]
, x ∈ X,

· ··

p′n+1(x) ≡
N∑
j=1

[
p′n(x) + cj,1,npaj,1,n(x) + · · ·+ cj,n,1paj,n,1(x) + pn+1(x)

]
, x ∈ X,

· ··,

we may assume without loss of generality that

plY (Tj,kx) ≤ pk+l(x) for all x ∈ X, j ∈ NN and k, l ∈ N. (3.1)

Furthermore, we may assume without loss of generality that m = 1. Then we can
construct a sequence (xl)l∈N in X0 and a strictly increasing sequence (kl)k∈N of
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positive integers such that, for every l ∈ N, one has: pl(xl) ≤ 1, pY1 (Tj,nkl
xl) > l2l

and plY (Tj,kxs) < 1/l, provided j ∈ NN , s = 1, · · ·, l− 1 and k ≥ mkl+1/l. Take any
strictly increasing sequence (rq)q∈N in N \ {1} such that

rq+1 ≥ 1 + rq +mnkrq+1
+ nkrq+1 for all q ∈ N. (3.2)

Let α ∈ {0, 1}N be a sequence defined by αs = 1 iff s = rq for some q ∈ N. Further
on, let β ∈ {0, 1}N contains an infinite number of 1′s and let βq ≤ αq for all q ∈ N.
If βrq0 = 1 for some q0 ∈ N and xβ =

∑∞
q=1 βrqxrq/2

rq , then with k = nkrq0
and

j ∈ NN , we have 1 + k = 1 + nkrq0
≤ rq0+1 for q > q0, k ≥ mkrq

for q < q0 and

p
rq+1
Y (Tj,kxs) < 1/(rq + 1) for s < rq0 , as well as:

p1Y
(
Tj,kxβ

)
≥ rq0 −

∑
q<q0

p1Y (Tj,kxrq )

2rq
−
∑
q>q0

p1Y (Tj,kxrq )

2rq

≥ rq0 −
∑
q<q0

p1Y (Tj,kxrq )

2rq
−
∑
q>q0

p1+k(xrq )

2rq

≥ rq0 −
∑
q<q0

1

2rq (rq + 1)
−
∑
q>q0

1

2rq
≥ rq0 − 1.

Furthermore, if k ∈ [1,mkrq0+1 ] and p
rq0+1

Y (Tj,kxs) < 1/(rq0 + 1) for s < rq0 + 1,

which holds provided that k ≥ mkrq0+1+1/(rq0 + 1), then we have 1 + rq0 + k ≤
1 + rq0 +mkrq0+1 ≤ rq+1 due to (3.2) and therefore

pqY
(
Tj,kxβ

)
≤
∑
q≤q0

p
rq0+1

Y (Tj,kxrq )

2rq
+
∑
q>q0

p
rq0+1

Y (Tj,kxrq )

2rq

≤
∑
q≤q0

1

2rq (rq0 + 1)
+
∑
q>q0

p1+k+rq0
(xrq )

2rq

≤ 1

2(rq0 + 1)
+
∑
q>q0

1

2rq
≤ 1

rq0 + 1
, j ∈ NN ,

which clearly implies that

dY
(
Tj,kxβ , 0

)
=

rq0+1∑
q=1

1

2q
pq(Tj,kxβ)

1 + pq(Tj,kxβ)
+

∞∑
q=rq0+1

1

2q
pq(Tj,kxβ)

1 + pq(Tj,kxβ)

≤ 1

rq0 + 1
+

1

2rq0
, j ∈ NN

and xβ is a (d, span{xβ},mn, 1, 1)-Li-Yorke irregular vector for ((Tj,k)k∈N)1≤j≤N .
The final statement of theorem now follows similarly as in the proofs of [7, Theorem
15] and [30, Theorem 4.1].

Now we will state the following corollary of Theorem 1.1:

Corollary 3.1. Suppose that X is separable, ((Tj,k)k∈N)1≤j≤N is a sequence in
L(X,Y ), X0 is a dense linear subspace of X, and limk→∞ Tj,kx = 0, x ∈ X0,
j ∈ NN . Then the following statements are equivalent:

(i) The tuple ((Tj,k)k∈N)1≤j≤N is densely (d,mn, 1, 1)-Li-Yorke chaotic for
some (all) (mn) ∈ R.
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(ii) The tuple ((Tj,k)k∈N)1≤j≤N is densely (d,mn, 1, 2)-Li-Yorke chaotic for
some (all) (mn) ∈ R.

(iii) The tuple ((Tj,k)k∈N)1≤j≤N is densely (d, 1, 3)-Li-Yorke chaotic.
(iv) The tuple ((Tj,k)k∈N)1≤j≤N is densely (d, 1, 4)-Li-Yorke chaotic.

Proof. For the proof of implication (i)⇒ (ii), it suffices to recall that the assumption
dmn

(A) = 0 for some (mn) ∈ R and A ⊆ N implies Bdl;mn
(A) = 0. The implications

(ii) ⇒ (iii) ⇒ (iv) are trivial, while the implication (iv) ⇒ (i) follows from an
application of Theorem 1.1. �

In connection with Theorem 1.1, it should be recalled that the existence of dense
Li-Yorke irregular manifolds for orbits of linear continuous operators on Banach
spaces has been analyzed in [8, Section 4]. In particular, the authors have shown
that for any operator T ∈ L(X), where X is a separable Banach space, the existence
of a dense linear subspace X0 of X and a strictly increasing sequence (lk) of positive
integers such that limk→∞ ∥T lkx∥ = 0 for all x ∈ X0 implies that the Li-Yorke chaos
of T is equivalent either with the existence of dense Li-Yorke irregular manifold for
T or the existence of an unbounded orbit (see [8, Corollary 33]). The method used
in the proof of this result is substantially different from that of [7, Theorem 15] and
we will not reexamine it for disjoint Li-Yorke chaos.

Now we state the following corollary of Theorem 1.1, which can be deduced
by using the pivot spaces [R(C)], X and the sequence ((Tj,k)k∈N)1≤j≤N , where
Tj,k(Cx) := Tj,kCx, x ∈ X for k ∈ N and j ∈ NN :

Corollary 3.2. Suppose that Tj,k : D(Tj,k) ⊆ X → X is a linear mapping, C ∈
L(X) is an injective mapping with dense range, as well as

R(C) ⊆ D(Tj,k) and Tj,kC ∈ L(X) for all k ∈ N and j ∈ NN .

Suppose, further, that X is separable, m ∈ N, X0 is a dense linear subspace of X,
(mn) ∈ R as well as:

(i) limk→∞ Tj,kCx = 0, x ∈ X0, j ∈ NN ;
(ii) there exist a vector y ∈ X and an increasing sequence (nk) tending to in-

finity such that limk→∞ pm(Tj,nk
Cy) = +∞, j ∈ NN [limk→∞ ∥Tj,nk

Cy∥ =
+∞, j ∈ NN , provided that X is a Banach space].

Then there exists a dense submanifold W of X consisting of those vectors x ∈ R(C)
such that x is (d,mn)-distributionally near to zero of type 1 for ((Tj,k)k∈N)1≤j≤N

and for which there exists a strictly increasing subsequence (lk) of (nk) such that the
sequence (pm(Tj,lkx))k∈N tends to +∞ for all j ∈ NN [(∥Tj,lkx∥)k∈N tends to +∞
for all j ∈ NN , provided that X is a Banach space]. In particular, ((Tj,k)k∈N)1≤j≤N

is densely (d,W, 1, 1)-Li-Yorke chaotic.

Remark 3.3. Concerning possible applications of Theorem 1.1 (similar conclusions
hold for Corollary 3.2), it should be noted the following facts with regards to the
validity of condition (ii) in its formulation:

(i) Suppose that X and Y are Banach spaces, (nk) is a strictly increasing
sequence and ((Tj,k)k∈N)1≤j≤N is a sequence in L(X,Y ). If for each j ∈ NN

we have
∑∞

k=1
1

∥Tj,nk
∥ <∞, then there exists y ∈ X such that

limk→∞ ∥Tj,nk
y∥Y = ∞ for each j ∈ NN .

(ii) Suppose that X is a complex Hilbert space, Y is a complex Banach space,
(nk) is a strictly increasing sequence and ((Tj,k)k∈N)1≤j≤N is a sequence in
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L(X,Y ). If for each j ∈ NN we have
∑∞

k=1
1

∥Tj,nk
∥2 <∞, then there exists

y ∈ X such that limk→∞ ∥Tj,nk
y∥Y = ∞ for each j ∈ NN .

The statements (i) and (ii) are trivial consequences of [25, Proposition 3.9], which
slightly extend one of the main results of article [33] by V. Müller and J. Vršovský.

We close this section with the observation that [28, Proposition 3] can be refor-
mulated for disjointness, showing that some investigations can be reduced to the
case in which X̃ = X.

3.1. Applications to shift operators. Suppose that X is a Fréchet sequence
space in which (en)n∈N is a basis (see e.g. [19, Section 4.1]). In this subsection, we
will always assume that for each j ∈ NN the unilateral weighted backward shift Tj
on X is given by

Tj
⟨
xn
⟩
n∈N :=

⟨
wj,nxn+1

⟩
n∈N,

⟨
xn
⟩
n∈N ∈ X, and

D
(
Tj
)
:=
{⟨
xn
⟩
n∈N ∈ X : Tj

⟨
xn
⟩
n∈N ∈ X

} (
j ∈ NN

)
.

The continuity of operators Tj will not be assumed a priori.
We start by providing the following illustrative example:

Example 3.4. Suppose that X := l1(N), 0 < ζ1 ≤ ζ2 ≤ · · · ≤ ζn ≤ 1, ⟨ωn⟩n∈N :=
⟨ 2n
2n−1 ⟩n∈N and ⟨ωj,n⟩n∈N := ⟨( 2n

2n−1 )
ζj ⟩n∈N for all j ∈ NN ; see also [31, Theorem

3.5] and [30, Example 4.9]. Then for each j ∈ NN the corresponding operator Tj is
topologically mixing, absolutely Cesàro bounded and therefore not distributionally
chaotic; albeit this basically follows from the argumentation used in the proof of
[31, Theorem 3.5], we will include all relevant details for the sake of completeness.
Applying Stirling’s formula, we get that

β(n) :=
n∏

j=1

ωi ∼
√
πn, n→ +∞. (3.3)

Using this and [31, Proposition 3.1], we get that the operator Tj is topologically
mixing (j ∈ NN ). Furthermore, for each n ∈ N, X ∋ x = ⟨xk

⟩
k∈N ̸= 0 and j ∈ NN

we have:

1

n

n∑
l=1

∥∥T l
jx
∥∥ =

1

n

n∑
l=1

∞∑
k=l+1

(
ωk−l · · · ωk−1

)ζj |xk|
=

1

n

∞∑
k=2

min(k−1,n)∑
l=1

(
ωk−l · · · ωk−1

)ζj |xk|
=

1

n

n+1∑
k=2

k−1∑
l=1

(
ωk−l · · · ωk−1

)ζj |xk|+ 1

n

∞∑
k=n+2

n∑
l=1

(
ωk−l · · · ωk−1

)ζj |xk|
≤ 1

n

n+1∑
k=2

k−1∑
l=1

ωk−l · · · ωk−1|xk|+
1

n

∞∑
k=n+2

n∑
l=1

ωk−l · · · ωk−1|xk|.

For the estimation of second addend, the arguments used in [31] show that it does
not exceed 2∥x∥. For the first addend, we can employ (3.3) in order to see that
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there exist two finite constants c > 0 and c1 > 0 such that

1

n

n+1∑
k=2

k−1∑
l=1

ωk−l · · · ωk−1|xk| ≤
c

n

n+1∑
k=2

|xk|
k−1∑
l=1

√
k

k − l
≤ c1

n

n+1∑
k=2

|xk| ≤ c1∥x∥,

finishing the proof of fact that Tj is absolutely Cesàro bounded and consequently
not distributionally chaotic (j ∈ NN ). This implies that the operators T1, · · ·, TN
cannot be (d,X, i)-distributionally chaotic for any i ∈ N8; see [25]. On the other
hand, the operator T1 is clearly Li-Yorke chaotic and possesses a Li-Yorke irregular
vector y. In our concrete example, we have ∥Tnk

1 x∥ ≤ ∥Tnk
j x∥ for any x ∈ X,

j ∈ NN \ {1} and any strictly increasing sequence (nk) so that Corollary 3.2 with
C = I yields that the operators T1, · · ·, TN are densely (d, 1, 1)-Li-Yorke chaotic.
Finally, we want to note that these operators cannot be d-hypercyclic due to [37,
Theorem 2.1] (cf. also [9] and [11] for basic results given in this direction).

Now we will provide an application of Corollary 3.2 to unbounded unilateral
backward shift operators:

Example 3.5. Let S := {nk : k ∈ N}, where (nk) is a strictly increasing sequence
of positive integers, and let the operator Aj⟨xn⟩n∈N := ⟨(1 + j)n+1xn+1⟩n∈N act
with its maximal domain in the space X := c0(N) for j ∈ NN . Set C⟨xn⟩n∈N :=

⟨(3/2)−n2

xn⟩n∈N, ⟨xn⟩n∈N ∈ X. Then it is clear that C ∈ L(X) is injective and
R(C) is dense in X. Furthermore, it can be easily seen that Ak

jC ∈ L(X) for all
j ∈ NN and k ∈ N; strictly speaking, for any vector x := ⟨xn⟩n∈N in X we have∥∥Ak

jCx
∥∥ ≤ ∥x∥ sup

l≥1
(1 + j)lk+

k(k+1)
2 (3/2)−(l+k)2

≤ ∥x∥(1 + j)
k(k+1)

2 sup
l≥1

(
(1 + j)k

)l
(3/2)−l2

≤ cj,k∥x∥,

for some positive finite constant cj,k > 0. On the other hand, with sequence x :=
⟨1/n⟩n∈N we have∥∥Ak

jCx
∥∥ = sup

l≥1
(1 + j)lk+

k(k+1)
2 (3/2)−(l+k)2

∣∣xk+l

∣∣
≥ (1 + j)k

2+
k(k+1)

2 (3/2)−(2k)2
∣∣x2k∣∣

= (1 + j)k
2+

k(k+1)
2 (3/2)−(2k)2/2k → ∞, k ∈ N.

Define now Tj,k := Ak
j if k ∈ S and Tj,k := (1 + ∥Ak

jC∥)−3Ak
j if k /∈ S. By the

above argumentation, we have that the requirements of Corollary 3.2 are satisfied,
so that ((Tj,k)k∈N)1≤j≤N is densely (d,X, 1, 1)-Li-Yorke chaotic.

Arguing as in [25, Example 5.3], we can prove that there exist two distributionally
chaotic unilateral backward weighted shifts on the space X := c0(N) which cannot
be (d,X, n, 1, i)-Li-Yorke chaotic for i ∈ N2 or (d,X, n, 3, i)-Li-Yorke chaotic for
i ∈ N2.

Further on, it is clear that Theorem 1.1 and Corollary 3.2 cannot be applied in
the analysis of weighted forward shifts in Fréchet sequence spaces. On the other
hand, we can prove directly that tuples of such operators are disjoint Li-Yorke
chaotic with e1 being the corresponding disjoint Li-Yorke irregular vector:
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Example 3.6. Let a weighted forward shift Fω ∈ L(l2) be defined by Fω(x1, x2, · ·
·) 7→ (0, ω1x1, ω2x2, · · ·), where ω = (ωk)k∈N consists of sufficiently large blocks
of 2’s and blocks of (1/2)’s. In a great number of concrete situations, we have
that the operators cjFω, where cj ∈ K \ {0} for j ∈ NN , are (d, span{e1}, 1, 1)-Li-
Yorke chaotic. Observe, finally, that these operators cannot be disjoint hypercyclic
because Fω and its multiples cannot be hypercyclic.

4. Applications to abstract PDEs in Fréchet spaces

The main aim of this section is to continue the research raised in [23] concerning
Li-Yorke chaotic solutions of abstract PDEs of first order. In contrast with the
above-mentioned article, we consider here Li-Yorke chaotic solutions of abstract
fractional PDEs as well. For the sake of brevity, we will consider only continuous
counterpart of disjoint (X̃,mn, 1, 1)-Li-Yorke chaos here, which will be called dis-

joint (X̃, f, 1, 1)-Li-Yorke chaos (cf. [30] and [26] for the notion of disjoint reiterative

X̃f -distributional chaos and certain applications to abstract PDEs).
Suppose that T (t) : D(T (t)) ⊆ X → Y is a linear possibly not continuous

mapping (t ≥ 0). By Z(T ) we denote the set consisting of those vectors x ∈ X
such that x ∈ D(T (t)) for all t ≥ 0 as well as that the mapping t 7→ T (t)x,
t ≥ 0 is continuous. Denote by m(·) the Lebesgue measure on [0,∞) and by F
the class consisting of all increasing mappings f : [0,∞) → [1,∞) satisfying that

lim inft→+∞
f(t)
t > 0.

We will use the following continuous counterpart of Definition 1.2:

Definition 4.1. ([27]) Let A ⊆ [0,∞), and let f ∈ F. Then the lower f -density of
A, denoted by df (A), is defined through:

df (A) := lim inf
t→∞

m(A ∩ [0, f(t)])

t
.

Consider the following condition:

(∃m ∈ N)(∀k ∈ N)(∃tk ∈ [0,∞)) s.t. tk < tk+1, lim
k→∞

tk = +∞, k ∈ N,

and lim
k→∞

pYm
(
xj,tk − yj,tk

)
= +∞, k ∈ N, j ∈ NN ,

provided that Y is a Fréchet space, or

(∀k ∈ N)(∃tk ∈ [0,∞)) s.t. tk < tk+1, lim
k→∞

tk = +∞, k ∈ N,

and lim
k→∞

∥∥xj,tk − yj,tk
∥∥ = +∞, j ∈ NN , provided that Y is a Banach space.

(4.1)

Definition 4.2. Suppose that X̃ is a linear subspace of X, Tj(t) : D(Tj(t)) ⊆ X →
Y is a linear possibly not continuous mapping (t ≥ 0, j ∈ NN ) and f ∈ F. If there

exist an uncountable set S ⊆
∩

j∈NN
Z(Tj) ∩ X̃ and m ∈ N, in the case that Y is a

Fréchet space, such that (4.1) holds and for each ϵ > 0 and for each pair x, y ∈ S
of distinct points we have that

df

( ∪
j∈NN

{
t ≥ 0 : dY

(
Tj(t)x, Tj(t)y

)
≥ ϵ
})

= 0, (4.2)

then we say that the tuple ((Tj(t))t≥0)1≤j≤N is (d, X̃, f, 1, 1)-Li-Yorke chaotic

((d, f, 1, 1)-Li-Yorke chaotic, if X̃ = X). Furthermore, we say that the tuple
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((Tj(t))t≥0)1≤j≤N is densely (d, X̃, f, 1, 1)-Li-Yorke chaotic iff S can be chosen to

be dense in X̃. The set S is said to be (d, σX̃f
)-Li-Yorke scrambled set ((d, σf )-

scrambled set in the case that X̃ = X) of ((Tj(t))t≥0)1≤j≤N .
If q ≥ 1 and f(t) := 1 + tq (t ≥ 0), then we particularly obtain the notions of

(dense) disjoint X̃q-Li-Yorke chaos, (dense) disjoint q-Li-Yorke chaos, (d, σX̃ q
)-Li-

Yorke scrambled set and (d, σq)-Li-Yorke scrambled set for ((Tj(t))t≥0)1≤j≤N .

The main result for applications is the following continuous counterpart of The-
orem 1.1; the proof can be deduced similarly and therefore omitted (cf. [14] and
[30] for more details):

Theorem 4.3. Suppose that X is separable, m ∈ N, f ∈ F, ((Tj(t))t≥0)1≤j≤N is a
sequence of strongly continuous operator families in L(X,Y ), X0 is a dense linear
subspace of X, as well as:

(i) limt→∞ Tj(t)x = 0, x ∈ X0, j ∈ NN ;
(ii) there exist a vector y ∈ X and an increasing sequence (t′k) tending to infinity

such that limk→∞ pYm(Tj(t
′
k)y) = +∞, j ∈ NN [limk→∞ ∥Tj(t′k)y∥Y = +∞,

j ∈ NN , provided that Y is a Banach space].

Then there exist a dense submanifold W of X consisting of those vectors x which
are disjoint f-distributionally near to zero for ((Tj(t))t≥0)1≤j≤N , in the sense that
for each number ϵ > 0 we have that (4.2) holds with y = 0, and for which there
exists a strictly increasing subsequence (tk) of (t

′
k) tending to infinity such that the

sequence (pm(Tj(tk)x))k∈N tends to +∞ for all j ∈ NN [(∥Tj(tk)x∥Y )k∈N tends to
+∞ for all j ∈ NN , provided that Y is a Banach space]. In particular, the tuple
((Tj(t))t≥0)1≤j≤N is densely (d,W, f, 1, 1)-Li-Yorke chaotic.

We continue by providing two simple remarks:

Remark 4.4. Suppose that X and Y are Banach spaces as well as that the tuple
((Tj(t))t≥0)1≤j≤N of strongly continuous operator families in L(X,Y ) satisfies (i)
and

lim
t→∞

N∑
j=1

∥∥Tj(t)∥∥L(X,Y )
= +∞.

Considering the operators T (t) : XN → Y N defined by T (t)(x1, · · ·, xN ) :=
(T1(t)x1, · · ·, TN (t)xN ) for t ≥ 0 and x1, · · ·, xN ∈ X, it can be simply proved that
there exist a strictly increasing sequence (tk) of positive real numbers and a vector
(x1, · · ·, xN ) ∈ XN such that limk→∞[∥T1(tk)x1∥Y + · · · + ∥TN (tk)xN∥Y ] = +∞.
But, this does not imply the validity of condition (ii) in Theorem 4.3.

Remark 4.5. Suppose that X is a Banach space and Tj ∈ L(X) for all j ∈ NN . If
there exists an element y ∈ X such that limk→∞ ∥Tnk

j y∥ = +∞ for all j ∈ NN ,

then for each integer m ∈ N we have that limk→∞ ∥Tm⌊nk/m⌋
j y∥ = +∞ for all

j ∈ NN , as well; this can be deduced along the lines of proof of [35, Proposition
2.4]. Similarly, ifX is a Banach space, (Tj(t))t≥0 is a strongly continuous semigroup
on X for each j ∈ NN , y ∈ X and limk→∞ ∥Tj(t′k)y∥ = +∞, j ∈ NN for some
strictly increasing seqeunce (t′k) tending to infinity, then for each t0 > 0 we have
limk→∞ ∥Tj(t0⌊t′k/t0⌋)y∥ = +∞, j ∈ NN .

The trivial case in which the requirements of Theorem 4.3 hold, and which can
be also reworded for disjoint mn-distributional chaos, is given as follows:
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Example 4.6. Suppose that X is separable, m ∈ N, f ∈ F, (T1(t))t≥0 is a strongly
continuous operator family in L(X,Y ) satisfying the condition (ii) of Theorem
4.3 with j = 1, X0 is a dense linear subspace of X, as well as for each x ∈ X0

there exists a finite number t0 > 0 such that T1(t)x = 0 for all t > t0. Suppose,
further, that for each integer j ∈ NN \ {1} we have that fj : [0,∞) → K is a
given continuous function as well as that there exists a sufficiently small number
c > 0 such that |fj(t)| ≥ c, t ≥ 0, j ∈ NN \ {1}. Define Tj(t) := fj(t)T1(t), t ≥ 0,
j ∈ NN \ {1}. Then it can be simply checked that all requirements of Theorem
4.3 hold. In particular, if d/dx is the infinitesimal generator of a Li-Yorke chaotic
strongly continuous translation semigroup in the space Lp

ρ([0,∞)) of C0,ρ([0,∞)),
then the strongly continuous semigroups generated by the operators

d

dx
,
d

dx
+ ω2, · · ·,

d

dx
+ ωN (4.3)

are densely (d,X, f, 1, 1)-Li-Yorke chaotic, where ω2, · · ·, ωN are certain scalars
from the field K having non-negative real parts (cf. [15, Lemma 4.6] for precise
definition of generator); the same statement holds for Li-Yorke chaotic strongly
continuous semigroups induced by semiflows for which the condition [23, (D),
p. 25] holds. Observe, finally, that there exists a strongly continuous transla-
tion semigroup (T1(t))t≥0 on the space Lp

ρ([0,∞)), with a certain weight function
ρ : [0,∞) → (0,∞), which is topologically mixing but not distributionally chaotic
(see e.g. [2, Example 4.2] and [18, Theorem 2.1]). This implies that the strongly
continuous semigroups (T1(t))t≥0, (e

ω2tT1(t))t≥0, · · ·, (eωN tT1(t))t≥0, whose genera-
tors are given by (4.3), cannot be (d,X, i)-distributionally chaotic for any i ∈ N8;
see [24] for the notion.

The following corollary of Theorem 4.3 can be deduced similarly as in discrete
case:

Corollary 4.7. Suppose that X is separable, m ∈ N, f ∈ F, ((Tj(t))t≥0)1≤j≤N

is a sequence of linear operator families in L(X,Y ), X0 is a dense linear subspace
of X, C ∈ L(X) is injective with the mapping t 7→ Tj(t)Cx be well-defined and
continuous for t ≥ 0 and j ∈ NN , as well as:

(i) limt→∞ Tj(t)Cx = 0, x ∈ X0, j ∈ NN ;
(ii) there exist a vector y ∈ X and an increasing sequence (t′k) tending to infinity

such that limk→∞ pYm(Tj(t
′
k)Cy) = +∞, j ∈ NN [limk→∞ ∥Tj(t′k)Cy∥Y =

+∞, j ∈ NN , provided that Y is a Banach space].

Then there exist a dense submanifold W of X consisting of those vectors x ∈ R(C)
which are disjoint f-distributionally near to zero for ((Tj(t))t≥0)1≤j≤N , in the sense
that for each number ϵ > 0 we have that (4.2) holds with y = 0, and for which there
exists a strictly increasing subsequence (tk) of (t

′
k) tending to infinity such that the

sequence (pm(Tj(tk)x))k∈N tends to +∞ for all j ∈ NN [(∥Tj(tk)x∥Y )k∈N tends to
+∞ for all j ∈ NN , provided that Y is a Banach space]. In particular, the tuple
((Tj(t))t≥0)1≤j≤N is densely (d,W, f, 1, 1)-Li-Yorke chaotic.

Remark 4.8. The condition (ii) in Theorem 4.3 (Corollary 4.7) is satisfied in many
concrete cases in which there exists a vector y ∈ X such that limt→∞ pYm(Tj(t)y) =
+∞, j ∈ NN (limt→∞ pYm(Tj(t)Cy) = +∞, j ∈ NN ); but, in this case, for each
function f ∈ F the tuple ((Tj(t))t≥0)1≤j≤N will be densely (d, f)-distributionally
chaotic (cf. [26] for discrete case) in the sense that there exist an uncountable set
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S ⊆ X and a finite number σ > 0 such that

df

( ∪
j∈NN

{
t ≥ 0 : dY

(
Tj(t)x, Tj(t)y

)
≤ σ

})
= 0

and for each ϵ > 0 and for each pair x, y ∈ S of distinct points we have that

df

( ∪
j∈NN

{
t ≥ 0 : dY

(
Tj(t)x, Tj(t)y

)
≥ ϵ
})

= 0,

which is a much stronger notion than that of dense (d,X, 1, 1)-Li-Yorke chaos (fur-
thermore, for each number t0 > 0 the operators T1(t0), · · ·, TN (t0) will be densely
(d,mn)-distributionally chaotic, where mn := ⌈f(n)⌉). A concrete example for ab-
stract fractional PDEs can be simply constructed: Suppose that 0 < α < 2 and
for each j ∈ NN we have that (Tj(t))t≥0 ⊆ L(X) is an α-times C-regularized re-
solvent family with the integral generator Aj , as well as that R(C) is dense in X
and there exist a vector x ∈ X and a number λj ∈ Σαπ/2 such that Ajx = λjx;
see [21] for the notion. Then, due to [21, Lemma 3.3.1], for each j ∈ NN we have
that Tj(t)x = Eα(t

αλj)Cx, t ≥ 0, so that the asymptotic expansion formulae for
the Mittag-Leffler functions [21] yield that the tuple ((Tj(t))t≥0)1≤j≤N is densely
(d, f)-distributionally chaotic for each function f ∈ F.

We will provide the following illustrative application of Corollary 4.7; see also
[14, Example 5.12] and [21, Example 3.2.39]:

Example 4.9. Suppose that n ∈ N, f ∈ F, ρ(t) := 1
t2n+1 , t ∈ R, Af := f ′,

D(A) := {f ∈ C0,ρ(R) : f ′ ∈ C0,ρ(R)}, En := (C0,ρ(R))n+1, D(An) := D(A)n+1

and An(f1, · · ·, fn+1) := (Af1 + Af2, Af2 + Af3, · · ·, Afn + Afn+1, Afn+1), (f1, · ·
·, fn+1) ∈ D(An). Then ±An generate global polynomially bounded n-times inte-
grated semigroups (Sn,±(t))t≥0, neither An nor −An generates a local (n−1)-times
integrated semigroup and we have that, for every φ1, ..., φn+1 ∈ D,

G±,n(δt)
(
φ1, ..., φn+1

)T
=
(
ψ1, ..., ψn+1

)T
,

where G±,n denote distribution semigroups generated by ±An, and

ψi(·) =
n+1−i∑
j=0

(±t)j

j!
φ
(j)
i+j(· ± t), 1 ≤ i ≤ n+ 1.

Denote by Gn the corresponding distribution cosine function generated by A2
n.

Using Corollary 4.7, the first observation from Remark 4.8, and arguing as in the
above-mentioned examples, we can prove that the operator families ((eiajt(1 +
t)bjG±,n(δt)t≥0)1≤j≤N and ((eiajt(1 + t)bjGn(δt))t≥0)1≤j≤N are densely
(d, f)-distributionally chaotic, provided that aj ∈ R and bj ∈ [0, n + 1) for all
j ∈ NN . The interested reader may simply write down the corresponding abstract
Cauchy problems of first and second order which do have such operator families as
solutions.

Concerning possible applications to the abstract ill-posed Cauchy problems of
first and second order, we should also mention the paper [13]:

(i) (see [13, Example 2.12]) Consider the general situation of this example
with the first inclusion in the equation [13, (2.7)] being satisfied. If there
exists a complex number λ ∈ Ω such that ℜ(Pj(−λ)) > 0 for all j ∈
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NN , then Corollary 4.7 is applicable to the entire C-regularized groups
((Tj(z))z∈C)1≤j≤N ; the tuple ((C−1Tj(t))t≥0)1≤j≤N will be densely (d, f)-
distributionally chaotic for any f ∈ F.

(ii) (see [13, Example 2.13]) Similarly, we can simply modify the correpsond-
ing conditions used in this example to conclude that the operators Aj will
generate exponentially equicontinuous, analytic ζ-times integrated semi-
groups (Sj

ζ(t))t≥0 of angle π/2 on the product space X ≡ E × E (j ∈
NN ). Then we can apply Corollary 4.7 in order to show that the tu-

ple ((C−1Sj
ζ(t))t≥0)1≤j≤N is densely (d, f)-distributionally chaotic for any

f ∈ F, with a certain regularizing operator C ∈ L(X).

Fairly complete analysis of disjoint Li-Yorke chaos for strongly continuous semi-
groups induced by semiflows is without scope of this paper (cf. [20] and [23] for
related problematic). We will only revisit [20, Example 3.19] and [21, Example
3.1.41(iii)] to close the whole paper:

Example 4.10. Suppose that any element of a real matrix [ajs]1≤j≤N,1≤s≤m is
a positive real number and, for every j, s ∈ NN with j ̸= s, there exists an
index l ∈ Nm such that ajl ̸= asl. Let Ω := Rm and q > m

2 . Define semiflows
φj : [0,∞)× Ω → Ω, j = 1, 2, · · ·, N and ρ : Ω → (0,∞) as follows:

φj(t, x1, · · ·, xm) :=
(
eaj1tx1, · · ·, eajmtxm

)
and

ρ(x1, · · ·, xm) :=
1

(1 + |x|2)q
, t ≥ 0, x = (x1, · · ·, xm) ∈ Ω.

Define [Tφj (t)f ](x) := f(φj(t, x)), t ≥ 0, x ∈ Ω, j ∈ NN . Then, for every j ∈ NN ,
(Tφj (t))t≥0 is a non-hypercyclic strongly continuous semigroup in C0,ρ(Ω). Suppose
now that 0 < ϵ1 < ϵ2 < · · · < ϵN < min{ajs : 1 ≤ j ≤ N, 1 ≤ s ≤ m}. Since for
each j ∈ NN and f ∈ D(Rm) (the space of scalar-valued smooth test functions with
compact support and domain Rm) we have ∥Tφj (t)f∥ ≤ ∥f∥∞, it can be simply
seen that the condition (i) of Theorem 4.3 holds for ((e−ϵjtTφj (t))t≥0)1≤j≤N , with
X0 := D(Rm). The condition (ii) of Theorem 4.3 also holds and, in this concrete
situation, we have that limt→∞ ∥e−ϵjtTφj (t)y∥ = +∞, j ∈ NN with the vector
y := | · |. Therefore, the strongly continuous semigroups ((e−ϵjtTφj (t))t≥0)1≤j≤N

are densely (d, f)-distributionally chaotic for each function f ∈ F.
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[13] C.-C. Chen, M. Kostić, S. Pilipović and D. Velinov, d-Hypercyclic and d-chaotic properties

of abstract differential equations of first order, Electron. J. Math. Anal. Appl. 6 (2018), 1–26.
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