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STRONG CONVERGENCE OF THREE STEP ITERATION

PROCESS FOR NONEXPANSIVE AND STRONGLY

PSEUDOCONTRACTIVE MAPPINGS

APURVA KUMAR DAS, SHAILESH DHAR DIWAN AND SAMIR DASHPUTRE

Abstract. In this paper, we introduce a three step iteration process and prove
strong convergence theorem for finding the common fixed point associated

with nonexpansive and strongly pseudocontractive mappings in real uniformly

smooth Banach space. A numerical example is given in support of our result.
We remark that the iteration process of Kang et al. [16] can be obtained as a

particular case of our iteration process. In our result the necessity of condition

(C) is not require to prove strong convergence.

1. Introduction

Let E be a real uniformly smooth Banach space and let K be a nonempty
convex subset of E. The mapping T : K → K is said to be nonexpansive if
‖Tx−Ty‖ ≤ ‖x−y‖ ∀x, y ∈ K. Let J denote the normalized duality mapping from
E to 2E

∗
defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2, ‖f∗‖ = ‖x‖}, ∀x, y ∈ E (1)

where E∗ denotes the dual space of E and 〈., .〉 denotes the generalized duality
pairing. We will denote the single-valued duality map by j.

• The mapping T is said to be pseudocontractive if

‖x− y‖ ≤ ‖x− y + t ((I − T )x− (I − T )y) ‖ ∀x, y ∈ K and t > 0 (2)

According to Kato [14], T is pseudocontractive if and only if there exists
j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 ∀x, y ∈ K (3)

• The mapping T is said to be strongly pseudocontractive if there exists a
constant t > 1 such that

‖x− y‖ ≤ ‖(1 + r)(x− y)− rt(Tx− Ty)‖ ∀x, y ∈ K and r > 0. (4)
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Or equivalently (see [18]) one has for 0 < k < 1,

〈Tx− Ty, j(x− y)〉 ≤ (1− k)‖x− y‖2 ∀x, y ∈ K. (5)

Whenever the existence of fixed point of a given mapping is established, then an
iteration procedure is required to converge the fixed point of the mapping. In 1953,
Mann [17] introduced the following iteration process.

Let K be a nonempty convex subset of E and T : K → K is a mapping. Then
the sequence {xn} defined by{

x0 ∈ K,
xn+1 = (1− αn)xn + αnTxn, n ≥ 0,

(6)

where {αn} is a sequence in [0,1].
In 1974, S. Ishikawa [12] introduced the following iteration process which is

known as Ishikawa iteration process defined by
x0 ∈ K,
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 0,

(7)

where {αn} and {βn} are sequences in [0, 1] and proved the following theorem.
Theorem 1.1. [12] Let K be a compact convex subset of a Hilbert space H and let
T : K → K be a Lipschitzian pseudocontractive mapping. For arbitrary x1 ∈ K,
let {xn} be a sequence defined iteratively by (7) satisfying

(i) 0 < αn < 1;
(ii) limn→∞ βn = 0;
(iii) Σ∞n=1αnβn =∞.
Then the sequence {xn} converges strongly to a fixed point of T .

It is well known that the Mann iteration process does not converge always to fixed
point of Lipschitz pseudocontractive mapping therefore the Ishikawa iteration pro-
cess is significantly desirable for these type of mappings. A detail information re-
garding the convergence of Mann iteration process of such mapping is given in [5]. In
a paper Rashwan [20] studied the convergence of Mann iterates to a common fixed
point for a pair of mappings in normed space. Many papers have been published on
the iterative approximation of fixed points of Lipschitz strongly pseudocontractive
mappings using the Ishikawa iteration process (see, e.g., [3, 12, 13, 19, 24, 28, 31]
and the references cited therein).

New iterative techniques for approximation of fixed points of Lipschitz pseudo-
contractive mapping have been studied independently by the authors Bruck [2],
Chidume [6], Chidume and Zegeye [7], Schu [23], Zhou [32], Zhange and Su [33] in
Hilbert space, uniformly smooth Banach space, refexive real Banach space. Noor
et al. [18] obtained strong convergence result for strongly pseudocontractive map-
ing in real uniformly smooth Banach space using three-step iteration process. In a
paper Rhoades and Soltuz [22] studied that Mann and Ishikawa iteration schemes
are equivalent to a multi-step iteration scheme for various classes of the operators.

The following S-iteration process is given by Sahu et al. [26, 27]. The sequence
{xn} defined by 

x1 ∈ K,
xn+1 = Tyn,

yn = (1− βn)xn + βnTxn, n ≥ 1,

(8)
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where {βn} is a sequence in [0, 1]. In 2013, Kang et al. [16] proved the following
theorem.
Theorem 1.2. [16] Let K be a nonempty closed convex subset of a real Banach
space E, let S : K → K be a nonexpansive mapping and let T : K → K be a
Lipschitz strongly pseudocontractive mapping such that p ∈ F (S) ∩ F (T ) = {x ∈
K : Sx = Tx = x} and

‖x− Sy‖ ≤ ‖Sx− Sy‖, ‖x− Ty‖ ≤ ‖Tx− Ty‖, ∀x, y ∈ K (C)

Let {βn} be a sequence in [0,1] satisfying
(i) Σ∞n=1βn =∞;
(ii) limn→∞ βn = 0.
For arbitrary x1 ∈ K, let {xn} be a sequence iteratively defined by{

xn+1 = Syn,

yn = (1− βn)xn + βnTxn, n ≥ 1
(9)

Then the sequence {xn} converges strongly to a common fixed point p of S and T .
For approximation of fixed point many iteration process involving multi-step

have been discussed by the researchers for various classes of nonlinear operators
(see [8, 15, 21, 25, 30]). In many respects it is well known that the approximation
of fixed point a three step iteration process is better than a two and single step
iteration process under suitable conditions (see [1, 10, 11]). Above facts inspired us
to introduce a three step iterative process as follows.

For arbitrary x0 ∈ K, {xn} be a sequence iteratively defined by
x0 ∈ K,
xn+1 = Syn,

yn = (1− αn)xn + αnTzn,

zn = (1− βn)xn + βnSxn, n ≥ 0

(10)

and prove strong convergence theorem for finding the common fixed point associ-
ated with nonexpansive and strongly pseudocontractive mappings in real uniformly
smooth Banach space.

2. Main Results

We will need the following lemmas.
Lemma 2.1. [4, 29] Let J : E → 2E

∗
be the normalized duality mapping. Then

for any x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, j(x+ y)〉 , ∀j(x+ y) ∈ J(x+ y).

Lemma 2.2. [28] Let {ρn} and {θn} be nonnegative sequence satisfying

ρn+1 ≤ (1− θn)ρn + bn,

where θn ∈ [0, 1), Σ∞n=1θn =∞ and bn = o(θn), Then limn→∞ ρn = 0.
It is well known that the existence of a fixed point for strongly psedocontractive

mapping follows from Deimling [9] and the set of fixed points for strongly pseudo-
contractive mapping is a singleton (see [31]). Now we will prove our main result.
Theorem 2.3. Let K be a nonempty closed convex subset of a real uniformly
smooth Banach space E, let S : K → K be a nonexpansive mapping and T :
K → K be a strongly pseudocontractive mapping with bounded range such that
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p ∈ F (S) ∩ F (T ) = {x ∈ K : Sx = Tx = x}. Let {αn} and {βn} be sequences in
[0,1] satisfying
(i) limn→∞ αn = 0,
(ii) limn→∞ βn = 0,
(iii)

∑∞
n=0 αn =∞.

For arbitrary x0 ∈ K, let {xn} be a sequence defined by (10). Then the sequence
{xn} converges strongly to a common fixed point p of S and T .
Proof. Let p ∈ F (S) ∩ F (T ). Since the mapping T has bounded range, let

d1 = sup{‖Tx− Ty‖ : x, y ∈ E} (11)

Then d1 <∞. We claim that ‖xn − p‖ ≤ d1 + ‖x0 − p‖, ∀n ≥ 0, n ∈ Z.
For n = 0, the inequality is true. Suppose the inequality is true for n = k, then we
will prove for n = k + 1.
Using equations (10) and (11), we get

‖xk+1 − p‖ = ‖Syk − p‖
= ‖Syk − Sp‖
≤ ‖yk − p‖
≤ ‖(1− αk)xk + αkTzk − p‖
≤ ‖(1− αk)(xk − p) + αn(Tzk − p)‖
≤ ‖(1− αk)(xk − p) + αn(Tzk − Tp)‖
≤ (1− αk)‖xk − p‖+ αk‖Tzk − Tp‖
≤ (1− αk)[d1 + ‖x0 − p‖] + αkd1

≤ d1 + (1− αk)‖x0 − p‖
≤ d1 + ‖x0 − p‖

This implies that {‖xn − p‖} is bounded.
Let M1 = d1 + ‖x0 − p‖, then ‖xn − p‖ ≤M1 <∞ ∀n ∈ Z, n ≥ 0.
Since,

‖xn − yn‖ = ‖xn − (1− αn)xn − αnTzn‖
= αn‖xn − Tzn‖
≤ αn‖xn − p‖+ αn‖p− Tzn‖
≤ αn‖xn − p‖+ αn‖Tp− Tzn‖
≤ αnM1 + αnd1

≤ αn(M1 + d1)

→ 0 as n→∞

This implies that {‖xn − yn‖} is bounded.
Since,

‖yn − p‖ ≤ ‖xn − p‖+ ‖xn − yn‖
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Therefore {‖yn − p‖} is bounded.
Since,

‖zn − p‖ = ‖(1− βn)xn + βnSxn − p‖
≤ (1− βn)‖xn − p‖+ βn‖Sxn − p‖
≤ (1− βn)‖xn − p‖+ βn‖Sxn − Sp‖
≤ (1− βn)‖xn − p‖+ βn‖xn − p‖
≤ ‖xn − p‖
≤M1

This implies that {‖zn − p‖} is bounded.
Let

d2 = sup{‖xn − p‖ : n ∈ Z, n ≥ 0}
d3 = sup{‖yn − p‖ : n ∈ Z, n ≥ 0}
d4 = sup{‖zn − p‖ : n ∈ Z, n ≥ 0}

Denote M = M1 + d2 + d3 + d4, then M <∞.
Using equations (10), (5) and Lemma 2.1, we have

‖yn − p‖2 = ‖(1− αn)xn + αnTzn − p‖2

≤ ‖(1− αn)(xn − p) + αn(Tzn − p)‖2

≤ ‖(1− αn)(xn − p) + αn(Tzn − Tp)‖2

≤ (1− αn)2‖xn − p‖2 + 2αn(1− αn)〈Tzn − Tp, j(xn − p)〉
≤ (1− αn)2‖xn − p‖2 + 2αn(1− αn)〈Tzn − Tp, j(zn − p)〉

+ 2αn(1− αn)〈Tzn − Tp, j(xn − p)− j(zn − p)〉
≤ (1− αn)2‖xn − p‖2 + 2αn(1− αn)(1− k)‖zn − p‖2

+ 2αn(1− αn)〈Tzn − Tp, j(xn − zn)〉
≤ (1− αn)2‖xn − p‖2 + 2αn(1− αn)(1− k)‖zn − p‖2

+ 2αn(1− αn)‖Tzn − Tp‖‖xn − zn‖ (12)

Also,

‖xn − zn‖ = ‖xn − (1− βn)xn − βnSxn‖
= βn‖xn − Sxn‖
≤ βn‖xn − p‖+ βn‖p− Sxn‖
≤ βn‖xn − p‖+ βn‖Sxn − Sp‖
≤ βn‖xn − p‖+ βn‖xn − p‖
≤ 2βn‖xn − p‖
≤ 2βnM (13)

→ 0 as n→∞
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Using equation (10) and Lemma 2.1, we have

‖zn − p‖2 = ‖(1− βn)xn + βnSxn − p‖2

= ‖(1− βn)(xn − p) + βn(Sxn − p)‖2

= ‖(1− βn)(xn − p) + βn(Sxn − Sp)‖2

≤ (1− βn)2‖xn − p‖2 + 2βn(1− βn)〈Sxn − Sp, j(xn − p)〉
≤ (1− βn)2‖xn − p‖2 + 2βn(1− βn)‖Sxn − Sp‖‖xn − p‖
≤ (1− βn)2‖xn − p‖2 + 2βn(1− βn)‖xn − p‖2

≤ (1− β2
n)‖xn − p‖2 (14)

Using equations (11), (13) and (14) in (12), we get

‖yn − p‖2 ≤ (1− αn)2‖xn − p‖2 + 2αn(1− αn)(1− k)(1− β2
n)‖xn − p‖2

+ 4αn(1− αn)d1βnM

≤ [(1− αn)2 + 2αn(1− αn)(1− k)(1− β2
n)]‖xn − p‖2

+ 4αn(1− αn)d1βnM

(15)

Using equation (10) and (15), we get

‖xn+1 − p‖2 = ‖Syn − p‖2

= ‖Syn − Sp‖2

≤ ‖yn − p‖2

≤ [(1− αn)2 + 2αn(1− αn)(1− k)(1− β2
n)]‖xn − p‖2

+ 4αn(1− αn)d1βnM (16)

Since k ∈ (0, 1), αn ∈ [0, 1] and limn→∞ αn = 0, ∃ a natural number N ∈ N and a
constant C such that for all n ∈ N, n ≥ N

2k + αn(1− 2k) ≥ C > 0

Hence,

[2k + αn(1− 2k)]αn ≥ Cαn > 0

This implies

1− [2k + αn(1− 2k)]αn ≤ 1− Cαn

Thus for all n ∈ N, n ≥ N , we have

(1− αn)2 + 2αn(1− αn)(1− k)(1− β2
n) ≤ (1− αn)2 + 2αn(1− αn)(1− k)

≤ 1 + α2
n − 2αn + 2αn − 2α2

n − (2αn − 2α2
n)k

≤ 1− α2
n − 2αn(1− αn)k

≤ 1− αn[2k + αn(1− 2k)]

≤ 1− αnC (17)

Thus for all n ∈ N, n ≥ N , we have

‖xn+1 − p‖2 ≤ (1− αnC)‖xn − p‖2 + 4αn(1− αn)d1βnM (18)
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For all n ≥ 1, taking

ρn = ‖xn − p‖
θn = αnC

bn = 4αn(1− αn)d1βnM

Using Lemma 2.2, we obtain from equation (18) that

lim
n→∞

‖xn − p‖ = 0.

This completes the proof.
Taking S = I in Theorem 2.3 (I is identity mapping), we obtain the following
corollary.
Corollary 2.4. Let K be a nonempty closed convex subset of a real uniformly
smooth Banach space E and T : K → K be a strongly pseudocontractive mapping
with bounded range. Let {αn} be a sequence in [0,1] satisfying
(i) limn→∞ αn = 0,
(ii)

∑∞
n=0 αn =∞.

For arbitrary x0 ∈ K, let {xn} be a sequence defined by

xn+1 = (1− αn)xn + αnTxn, n ≥ 0.

Then the sequence {xn} converges strongly to fixed point of T .
Example 2.5. Let E = R, K = [−2, 2] and S, T : K → K be mappings defined
by

Sx =

{
x, x ∈ [0, 2]
−x, x ∈ [−2, 0)

and

Tx =


1, x ∈ (−2,−1)√

1− (1 + x)2, x ∈ [−1, 0)

−
√

1− (x− 1)2, x ∈ [0, 1]
−1, x ∈ (1, 2)

Clearly S is nonexpansive mapping and 0 is the fixed point of S. Also by a simple
calculation one can see that T is strongly pseudocontractive mapping with bounded
range and 0 is the fixed point of T . Thus 0 is the common fixed point of mappings
S and T .

Let us consider the parameters αn = 1
n+1 and βn = n

n2+1 for n = 0, 1, 2, ....,

then the conditions (i) to (iii) of Theorem 2.3 are satisfied by the parameters. The
following Table shows that the sequence {xn} generated by our three step iteration
process converges to the common fixed point 0 of S and T for arbitrary initial values
of x0 ∈ K.
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x0 0.1 -0.1 -1
x1 0.43588 0.43588 1
x2 0.43588 0.43588 0
x3 0.01536 0.01536 0
x4 0.03212 0.03212 0
x5 0.02459 0.02459 0
x6 0.01624 0.01624 0
x7 0.01171 0.01171 0
x8 0.00883 0.00883 0
x9 0.00688 0.00688 0
x10 0.00552 0.00552 0
x11 0.00452 0.00452 0
x12 0.00377 0.00377 0
x13 0.00319 0.00319 0
x14 0.00274 0.00274 0
x15 0.00238 0.00238 0
x16 0.00207 0.00207 0
x17 0.00184 0.00184 0
x18 0.00163 0.00163 0
x19 0.00146 0.00146 0
x20 0.00132 0.00132 0
x21 0.00119 0.00119 0
x22 0.00108 0.00108 0
x23 0.00098 0.00098 0
x24 0.00091 0.00091 0
x25 0.00083 0.00083 0
x26 0.00077 0.00077 0
x27 0.00071 0.00071 0
x28 0.00066 0.00066 0
... ... ... ...
x60 0.00014 0.00014 0

Remark 2.6. Our result improves the result of Kang et al. [16] in the following
ways:

(i) If βn = 0 in iteration process (10), then it reduces to the iteration process
(9).

(ii) The condition (C) is not require to prove the strong convergence.
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