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NEW INEQUALITIES FOR THE FUNCTION y =tInt

M. KOSTIC

ABSTRACT. The main aim of this note, which can be viewed as a certain ad-
dendum to the paper [1], is to propose several new inequalities for the function
y = tInt. We consider the local behaviour of this function near the point t = 1,
as well as the global behaviour of this function on the intervals [1, co) and (0, 1].

1. INTRODUCTION

The reading of paper [I] by C. Chesneau and Y. J. Bagul has strongly infuenced
us to write this note. In Theorem 2, we give new abstract local bounds for the
function y = tInt near the point ¢ = 1. The obtained inequalities can be used to
improve the main results of paper [I], Proposition 1 and Proposition 2. We also
present an interesting result with regards to these propositions, which claims that
there is no rational real function which intermediates the functions In(1 + z) and
f(z)/vx+1for x >0 (x € (—1,0]); here and hereafter,

1
flz): =7+ 5(4+ﬂ)x—2(x+2)arctan\/z+ 1, x>-1.

The following inequalities are well known (see also [3, Problem 3.6.19, p. 274]
and [4]):

2
x>0, ln(l—I—x)Sx +

z (
Ve+1 - 2(1+x)’

(x+2)[(:v+1)3—1]
z >0 and ln(l—l—x)g3(1+x)[(x+1)z+1], z > 0.

(2)
Taken together, the first inequality in and the second inequality in are known

in the existing literature as Karamata’s inequality [2]. As clarified in [I], all these
inequalities are weaker than the inequality:

In(1+2) <

(6 + )
In(1+2) < m,

In(1+x) < \/J%, x> 0. (3)
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This inequality has been proved in [I, Proposition 1]. In [I, Proposition 2], the
authors have proved that
f(z)
z+1

In(1+x) > , =€ (—1,0], (4)

as well.
Our approach leans heavily on the use of substitution ¢ = /x + 1. Then the
inequalities and become

2 _ 2 _
21ntgu, t>1 and 21nt2f(%1), t € (0,1],

ie.,
2tlnt < f(t* —1), t>1 and 2tlnt> f(* - 1), te (0,1]. (5)
We can prove in the following way. Notice that

"

1 -
[lnt—<2(4+7r)t—2tarctant—2> ()= —(-D*2(+1)7% t>0

Using an elementary argumentation, this estimate implies
1
Int < 5(44— m)t — 2tarctant — 2, ¢ > 0.

Define R(t) := 2tInt—f(t>—1),t > 0. Since R/(t) = 2(1+Int)—(4+7)t+4t arctan t+
2, t > 0, the previous inequality yields R/(t) < 0,¢ > 0 and . Moreover, by taking
the limit of function R(-) as t — 0+, we get that 2¢tInt — f(t2 — 1) € (2 — (7/2),0]
for ¢t € (0,1].

In this paper, we will first generalize the inequalities in by considering the
local behaviour of the function y = ¢Int near the point ¢ = 1. We will use the
following simple lemmae, which is known from the elementary courses of mathe-
matical analysis:

Lemma 1 Suppose tg € R, a > 0, n € N and function f : (tg — a,to +a) — R is

2n-times differentiable. If f()(ty) = 0 for all i = 1,---,2n — 1 and fC™ () > 0

(f@")(ty) < 0), then the function y = f(¢) has a local minimum (maximum) at

t=1p.

Lemma 2 We have

) _ (D" —1)!
1+ a2

After that, we will prove the following result with regards to [, Proposition 1,
Proposition 2]:

Theorem 1
(i) There do not exist real polynomials P(-) and Q(-) such that Q(z) # 0 for

(arctan x) sin(nm/2 — narctanz), x €R, neN.

x > 0 and
Pz) _ f(=)
In(1+x) < o) < Jort ¢ > 0. (6)
(ii) There do not exist real polynomials P(-) and Q(-) such that Q(z) # 0 for
z € (—1,0] and
In(1+z) > P() > /(@) , x€(=1,0]. (7)
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2. THE MAIN RESULTS AND THEIR PROOFS

We start this section by stating the following result:
Theorem 2 Suppose that a € (0,1), P : (1 —a,1+a) — R is a function and
P(1) = 0. Then the following holds:

(i) If P’(1) > 2 and there exists an odd natural number n such that P(-) is
(n + 2)-times differentiable, P("+2)(1) + 2(—1)"*!n! > 0 and

PO +2(=1)(j—2)!=0 forall j=2,3,---n+1,
then there exists a real number ¢ € (0, a] such that
2tInt < P(t), te[l,1+¢] and 2tlnt>P(t), te[l—-C1].  (8)

(ii) Assume that there exists an even natural number n > 6 such that P(-) is
(n + 1)-times differentiable, P+ (1) +2(—~1)"(n — 1)! > 0 and

PO)+2(=1)F(j—2)! =0 forall j=1,2,--- n.
Then there exists a real number 7 € (0, a] such that

2tlnt < P(t) < f(t* — 1), te[l,1+7]
and 2tlnt>P(t)> f(t* —1), te[l—n1]. (9)

(iii) Assume that there exists an even natural number n > 6 such that P(-) is
(n + 1)-times differentiable,

PO +2(=1)F(j—2)! =0 forall j=1,23,4, (10)

PUHD(1) 44

D+ /gy + ED sin(mf/4)] <0

2(n+1)/2 on/2
and, for every j = 5,6, -, n,
. 1)1 = 1)! —1)3(5 — 1)
() (SR Vi) Ly (=1)7(j . B
PY)(1)+4 Tsm(ﬁr/@ + G- sin((j — 1) /4)| = 0.

(11)

Then there exists a real number 7 € (0,a] such that (9 holds.
(iv) If P(-) is five times differentiable, holds and P(*)(1) € (—12, —8), then
there exists a real number 7 € (0, a] such that @ holds.

Proof. Define G(t) := P(t) — 2tlnt, ¢t > 0. Then, for every real number ¢ > 0,
we have G'(t) = P'(t) — 2(1 4+ Int), G"(t) = P"(t) — (2/t) and G (t) = P (t) +
2(=1)" 1 (n —2)!-¢1=" n > 3. The assumptions made in (i) imply that G'(1) > 0,
(GNU)(1) =0 for 1 < j <mand (G) "D (1) > 0. Applying Lemma 1, we get that
the function ¢ — G’(t) has a local minimum at ¢ = 1. Since G'(1) > 0, we get that
the function ¢ — G’(¢) is non-negative in an open neighborhood of point ¢ = 1, so
that the mapping ¢ — G(t) is increasing in an open neighborhood of point ¢t = 1.
This finishes the proof of (i). For the proof of (ii), define Q(t) := P(t) — f(t2 — 1),
t > 0. Then a simple computation yields that, for every real number ¢ > 0, we have

Q' (t) = P'(t)—(4+m)t+4t arctant+2 and Q" (t) = P”(t)— (4+m)+4 arctan t+ t;‘il.
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Using Leibniz rule and Lemma 2, for every real number ¢ > 0 and for every natural
number n > 3, we can show that

QM (t) = PM™(t) + 4[ arctan ] (nfl)(t)

(—1)" 1 (n — 1)!

=P () + 4|t
&)+ (1+t2)n/2

sin(nm/2 — narctant)
(—1)"(n— 1)!

+ (1 + t2)(n—1)/2

sin((n — 1)7/2 — (n — 1) arctant) | .

Arguing as in the proof of (i), we have that (Q')U)(1) = 0 for j = 0,1,2,3 and
(Q)® (1) < 0; hence, the function ¢ — Q'(t) has a local maximum at ¢ = 1 and the
mapping ¢t — Q(t) is decreasing in an open neighborhood of point ¢ = 1. Similarly,
(G"Y(1) =0 for j = 0,1,2,---,n — 1 and (G")"™(1) > 0; hence, the function
t — G'(t) has a local minimum at ¢ = 1 and the mapping ¢t — G(t) is increasing in
an open neighborhood of point ¢ = 1. This completes the proof of (ii). The proof
of (iii) can be deduced similarly, by interchanging the roles of G(t) and Q(¢). If the
assumptions of (iv) holds, then we can apply Lemma 1, with n = 2, in order to
see that the function t — G’(t) has a local minimum at ¢ = 1, as well as the func-
tion ¢ — G'(t) is non-negative in an open neighborhood of point ¢t = 1; hence, the
mapping ¢t — G(t) is increasing in an open neighborhood of point ¢ = 1. Similarly,
we can show that the mapping ¢ — Q(¢) is decreasing in an open neighborhood of
point t = 1. The proof of the theorem is thereby complete.

Remark 1 Define H(t) := f(t*> — 1), t € R. Concerning the conditions used in
Theorem 2, it is worth noting that the function H(-) satisfies H(1) = 0, H'(1) =
H"(1) =2, H"(1) = =2, H®)(1) = 4 and H")(1) = —8. This implies that the
values of terms appearing at the right hand sides of and coincide for
j =1,2,3,4 and differ for j = 5 (observe that G(*)(1) = P(")(1) 4 12).

Remark 2 The parts (ii)-(iv) of Theorem 2 ensure the existence of a large class of
elementary functions for which we can further refine the inequalities in locally
around the point ¢ = 1. Compared with the function H(-), the most simplest exam-
ple of function which provides a better estimate describing the local behaviour of
function y = tInt around the point ¢ = 1 is given by the function t — H (t)—e(t—1)?,
t > 0, where € € (0,1/30).

Concerning the global behaviour of function y = tlnt, t > 0, it is clear that the
inequalities in give some very uninteresting estimates with regards to the as-
ymptotic behaviour of function y = tInt when ¢ — 400 or t — 0+; on the other
hand, the importance of estimate lies in the fact that it gives some bounds
for the behaviour of function y = ¢lnt on any compact interval [a,b], where
0 <a <1< b Itis clear that there exists a large class of infinitely differen-
tiable functions P : (0, 00) — R such that

2tlnt < P(t) < f(#*—1), t>1
and 2tlnt > P(t) > f(t*—1), te(0,1]. (12)

Finding new elementary functions P(-) for which the equation holds is without
scope of this paper.
We close the paper by giving the proof of Theorem 1:
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Proof of Theorem 1. Suppose that () holds for some real polynomials P(-)
and Q(-) such that Q(z) # 0 for > 0. Without loss of generality, we may assume
that Q(z) > 0, > 0. Using the substitution ¢ = v/x + 1, we get that

2 2
ot < LE-D -1
Q2 —1) t
If P(t) = Y7 _gat! and Q(t) = -7 bt/ for some non-negative integers m, n

and some real numbers a;, b; (apb,, # 0; clearly, we cannot have P(z) = 0), we
get

t>1.

tzn:aj(tz—l)j§f(t2—l)§:bj(t2—l)j, t>1 (13)
j=0 j=0
and

n

a; (P = 1) >2mty b;(t2-1), t>1 (14)
: =

7=0
Since f(t> — 1) ~ (2 — (7/2))t?, t — +o00, the estimate implies n < m. The
positivity of polynomial Q(-) on the non-negative real axis implies b,,, > 0 so that
(14) gives a,, > 0. Considering the asymptotic behaviour of terms appearing in
(14), we get that the inequality n < m cannot be satisfied so that m = n. Dividing
the both sides of with t2* and letting ¢t — +oo in the obtained expression, we
get that a,/2b, > +o0o, which is a contradiction. This completes the proof of (i).
To prove (ii), suppose that the estimates

Po(z) _  f(z)
In(1+2) > Q@) > —T
hold for some real polynomials Py(-) and Qo(+) such that Qo(x) # 0 for = € (—1,0].
Then holds for some real polynomials P(-) and Q(-) such that Q(x) > 0 for
z € (—1,0]. Letting 2 — —1— in (7)), we get that Q(—1) = 0. If P(z) = > im0 ajz’
and Q(z) = >."", b;x? for some non-negative integers m, n and some real numbers
aj, bj (anby # 0; again, we cannot have P(z) = 0), this implies

RPN o S (IR _
In(1+ x) Zb]z Zj;)a]m Z\/mjz:(:)b]x, xz € (—1,0]. (15)

J=0

x € (—1,0]

Letting © — 0— in this expression, we get that ag = 0 so that n > 1 and z|P(z).
Define Py (z) := P(z)/x and Q1(z) := Q(z)/(x+1). Then P;(x) and Q1 (z) are real

polynomials, Q1(z) > 0 for x € (—1,0] and after multiplication with z’ggi) <0 the
estimate implies
z+1 Py(x) f(x)
In(1+2x) < <Vzx+1—=, z€(-1,0). 16
() < pU < VT (-1,0) (16)
Letting *+ — —1— in this expression, we get that lim, , ;_ gll((‘:)) = 0, which

implies P;(—1) = 0. Since P;(z) is a non-zero polynomial, we get that « + 1|P;(z).
Multiplying the equation with %5 <0, we get

Pi(x) f(z)
In(1+42z) > e —

> z € (~1,0).
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Letting z — 0—, we get

L@ | @)
Qi(r) — Vr+1

Repeating this procedure, we get that for every natural number k& we have (z +

1)*|Q(z), which is a contradiction.

In(1+ x)

xz € (—1,0].
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