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INVERSE SCATTERING FOR THE ONE DIMENSIONAL
SCHRÖDINGER EQUATION WITH THE ENERGY DEPENDENT

POTENTIAL AND DISCONTINUTY CONDITIONS

A.ADILOGLU NABIEV AND R.KH. AMIROV

Abstract. This work studies the direct and inverse scattering problems on
the real axis for the one dimensional Schrödinger equation with the potential
linearly dependent on the spectral parameter and with the discontinuity con-
ditions at some point. Using the integral representations of the Jost solutions
it is investigated the properties of the scattering data, obtained the main in-
tegral equations of the inverse scattering problem and the uniqueness theorem
for recovering of the potential functions is proved.

1. Introduction

Consider the di¤erential equation

� y00 + q(x)y + 2kp(x)y = k2y , �1 < x < +1; x 6= a (1)

with discontinuity conditions at a point a 2 (�1;+1)
y(a� 0) = �y(a+ 0); y0(a� 0) = ��1y0(a+ 0); (2)

where 1 6= � > 0; k is a complex parameter, q(x) and p(x) are real-valued functions.
Assume the following conditions are satis�ed:

(a)

+1Z
�1

(1 + jxj) jq(x)j dx < +1;
+1Z
�1

jp(x)j dx < +1; (3)

(b) p(x) is bounded and continuous on R:
This work deal with the inverse scattering problem for the equation (1) with the
jump conditions (2):It is well known that one of the important method in the inverse
problems theory is the method which was introduced by Marchenko [1, 2, 7]. He
applied the transformation operators to the solution of the inverse problems for one
dimensional Schrödinger operator on a �nite interval and on the half line. Transfor-
mation operators were also used in the fundamental papers of Gelfand, Levitan [3]
and Levitan, Gasymov [4], where they obtained necessary and su¢ cient conditions
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for recovering a Sturm-Liouville operator from its spectral characteristics. Later
the idea of the Marchenko method was developed by Faddeev [5, 6] (see also [7])
who solved the inverse scattering problem on the real line.
The full-line inverse scattering problem for an energy dependent (or general-

ized) Schrödinger equation, as a generalization of the Marchenko method, was �rst
investigated by Jaulent an Jean [10], and by Kaup [11] in connection with a non-
linear evolution equation (see also [12, 13]). The inverse scattering problem which
was considered in [11], was also investigated in [14] by reduction this problem to
the inverse scattering problem for the matrix-valued energy dependent Schrödinger
equation. In the case when the potential functions are real valued di¤erentiable
functions belonging to the spaces of integrable functions together with derivatives
the full-line inverse scattering problem (ISP) for (3) without discrete spectrum has
been studied in [15]. This problem and the inverse scattering problem on the half
line for the equation (1) recently has been investigated in [16] where the di¤eren-
tiability assumptions on the function p(x) is not required. In [26] inverse scattering
problem for the equation (1) with the jump conditions (2) is investigated in the
class of integrable potentials.
The direct and inverse scattering problems, also some inverse problems of the

spectral analysis for (1) in various statements were studied in details by many
authors. We refer for further discussion to articles [8, 20, 21, 22, 23, 24, 25, 9, 17,
18, 19] and the references therein.
In this work using the integral representations of the Jost solutions of equation

(1) with the jump conditions (2); in the class (3) of the coe¢ cients , the main inte-
gral equation of the inverse scattering problem is derived and uniqueness theorem
recovering the potential functions is proved.

2. Integral representations of the Jost solutions

Let e�(x; k) be solution of (1) satisfying the conditions (2) and the condition at
in�nity

lim
x!�1

e�(x; k)e�ikx = 1: (4)

The solution e+(x; k) and e�(x; k) will be called the right and the left Jost-type
solutions of the problem (1); (2); (3): If q(x) � p(x) � 0 then the Jost-type solutions
are

e�0 (x; k) =

�
eikx ; � x > �a
A+e�ikx �A�e�ik(2a�x) ; � x < �a ; (5)

where A� = 1
2

�
�� 1

�

�
:The Jost solution e�(x; k) is equivalently de�ned as the

solution of the integral equation

e�(x; k) = e�0 (x; k)�
�1Z
x

S�0 (x; t; k) [q(t) + 2kp(t)] e
�(t; k)dt; (6)

where

S�0 (x; t; k) =

(
� sin k(t�x)

k ;�a < �x < �t or � x < �t < �a
�A+ sin k(t�x)

k + A� sin k(t�2a+x)
k ; � x < �a < �t .
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Let��(x) = �
�1Z
x

[(1 + jtj) jq(t)j+ 2 jp(t)j] dt:

The following theorem is proved by the same way as in [26, 16].

Theorem 1. If the conditions (a) are satis�ed then

e�(x; k) = R�1 (x)e
�ikx+R�2 (x)e

�ik(2a�x)�
�1Z
x

K�
t (x; t)e

�iktdt; Im k � 0; x 2 R;

(7)
where

R�1 (x) = e
i!�(x); R�2 (x) = 0; � x > �a; (8)

R�1 (x) = A
+ei!�(x); R�2 (x) = �A�e�i!�(x)+2i!�(a); � x < �a; (9)

!� (x) = �
�1Z
x

p(s)ds

and the bounded kernels K�(x; t); de�ned on x � t < 1 and �1 < t � x re-
spectively, are di¤erentiable with respect to t almost everywhere and satisfy the
inequalities

�
�1Z
x

��K�
t (x; t)

�� dt � Ce��(x): (10)

Moreover, the functions K�(x; t) are continuous at t 6= 2a � x; x 6= a and the
following relations are satis�ed:

K�
t (x; x) =

�
� i
2
p(x) + ��(x)

�
ei!�(x); � x > �a; (11)

K�
t (x; x) = A

+

�
� i
2
p(x) + ��(x)

�
ei!�(x); � x < �a; (12)

K�
t (x; 2a� x� 0)�K�

t (x; 2a� x� 0) =

�A�
0@� i

2
p(x) + ��(a)� 1

2

aZ
x

(q (s) + p2(s))ds

1A e�i!�(x)+2i!�(a); � x < �a;
(13)

where

��(x) =

0@�1
2

�1Z
x

�
q (t) + p2(t)dt

�1A :
Note that from the relations (11)� (13) we have

p(x) =

�
2A�t (x; x) sin!� (x)� 2B�t (x; x) cos!� (x) ;�x > �a
2
A+A

�
t (x; x) sin!� (x)� 2

A+B
�
t (x; x) cos!� (x) ;�x < �a

; (14)

A�t (x; x) cos!� (x) +B
�
t (x; x) sin!� (x) =

�
��(x); � x > �a
A+��(x); � x < �a ; (15)

where A�t (x; x) = ReK
�
t (x; x) and B

�
t (x; x) = ImK

�
t (x; x):
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3. Direct Scattering Problem

Since the functions q(x), p(x) and the number � are real, the functions e+(x; k)
and e�(x; k) are also solutions of the problem (1)� (2) for real k: Because of
e�(x; k) = e�ikx [1 + o(1)] ; e�(x; k)0 = e�ikx

�
�ikR�1 (x) + o(1)

�
; x! �1

(16)
which follows from the representation (7), the Wronskian

W
h
e�(x; k); e�(x; k)

i
=: e�(x; k)0e�(x; k)� e�(x; k)e�(x; k)0 (17)

is equal to�2ki for all real k: Consequently, when k 6= 0; the pairs e+(x; k); e+(x; k)
and e�(x; k); e�(x; k) form two fundamental systems of solutions. Hence for k 2
R� = R� f0gthe representation

e�(x; k) = b(k)e+(x; k) + a(k)e+(x; k) (18)

holds, where

a(k) =
1

2ki
W
�
e�(x; k); e+(x; k)

�
; k 2 R� (19)

b(k) = � 1

2ki
W
h
e�(x; k); e+(x; k)

i
; k 2 R�: (20)

From the formulas (19); (20) we obtain

ja(k)j2 � jb(k)j2 = 1; k 2 R� (21)

(18) also implies

e+(x; k) = �b(k)e�(x; k) + a(k)e�(x; k): (22)

Further, from (18) and (22) we have

1

a(k)
e�(x; k) =

b(k)

a(k)
e+(x; k) + e+(x; k) (23)

1

a(k)
e+(x; k) = � b(k)

a(k)
e�(x; k) + e�(x; k) (24)

We put

u�(x; k) =
e�(x; k)

a(k)
; r�(k) =

b(k)

a(k)
; r+(k) = � b(k)

a(k)
; t(k) =

1

a(k)
(25)

Then (23) and (24) can be rewritten as

u�(x; k) = r�(k)e�(x; k) + e�(x; k) (26)

From (16) we obtain the asymptotic formulas

u�(x; k) = r�(k)e�ikx + e�ikx + o (1) ; x! �1
u�(x; k) = t(k)e�ikx + o(1); x! �1

The solution u�(x; k) are called the eigenfunctions of the left (u�(x; k)) and the
right (u+(x; k)) scattering problems, the coe¢ cients r�(k); r+(k) are called the
left and right re�ection coe¢ cients, respectively, and t(k) is called the transmission
coe¢ cient. Since e+(x; k) and e�(x; k) are analytic on the half plane Im k > 0,
the function a(k) is analytically continued to the half plane Im k > 0 by the same
formula (19) : It can be proved that the function a(k) may have only a �nite number
of zeros on the half plane Im k > 0 (see [15]). But here we suppose that a(k) has
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not any zero on the half plane Im k > 0: From (21) we also have that a(k) 6= 0 for
k 2 R�: Therefore we can assume that a(k) 6= 0 for all k 6= 0: Using Theorem 1 it
is easy to prove the following lemma.

Lemma 2. For k 2 R� the function a(k); b(k) de�ned by formulas (19); (20) have
the following representations

a(k) =
1� ik
2ik

0@�2A+ei�0V + 0Z
�1

G(t)e�iktdt

1A ; (27)

b(k) =
1� ik
2ik

0@2A�e�2ika�ip0V + 1Z
�1

L(t)V e�iktdt

1A ; (28)

where

�0 =

1Z
�1

p(t)dt;

0Z
�1

jG(t)j dt <1 and

1Z
�1

jL(t)j dt <1:

Proof. By equation (6) it follows that, for real k 6= 0 ,

e�(x; k) = e�ikx

24A+ � aZ
�1

A+eikt +A�eik(2a�t)

2ik
[q(t) + 2kp(t)] e�(t; k)dt �

�
+1Z
a

eikt

2ik
[q(t) + 2kp(t)] e�(t; k)dt

35+eikx
24 aZ
�1

A+e�ikt +A�e�ik(2a�t)

2ik
[q(t) + 2kp(t)] e�(t; k)dt+

+

+1Z
a

e�ikt

2ik
[q(t) + 2kp(t)] e�(t; k)dt

35+ o(1); x! +1:

On the other hand by (22) , we have

e�(x; k) = b(k)eikx + a(k)e�ikx + o(1); x! +1:
A comparison of corresponding terms shows that

a(k) = A+ �
aZ

�1

A+eikt +A�eik(2a�t)

2ik
[q(t) + 2kp(t)] e�(t; k)dt�

�
+1Z
a

eikt

2ik
[q(t) + 2kp(t)] e�(t; k)dt; (29)

b(k) =

aZ
�1

A+e�ikt +A�e�ik(2a�t)

2ik
[q(t) + 2kp(t)] e�(t; k)dt+

+1Z
a

e�ikt

2ik
[q(t) + 2kp(t)] e�(t; k)dt: (30)
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for real k 6= 0: Now, from the representation (7) of the solution e�(x; k) we get

a(k) = A+ exp

0@�i +1Z
�1

p(s)ds

1A� A+
2ik

WA +
1� ik
2ik

0Z
�1

G(s)e�iksds; (31)

b(k) = �A�e�2ika�ip0 + A
�e�2ika

2ik
WB +

1� ik
2ik

1Z
�1

L(s)e�iksds; (32)

where WA;WB are constants ,

p0 =

1Z
�1

p(t)sgn(t� a)dt (33)

Now the formulas (27) and (28) easily are derived from (31) and (32) ( see [16]). �

From the previous lemma using the Wiener-Levy theorem we can prove the
following lemma.

Lemma 3. Let the conditions (a) are satis�ed. Then the re�ection coe¢ cient r�(k)
is expressed as

r�(k)� r�0 (k) =
1Z

�1

F0(s)e
�iksds; (34)

where

r�0 (k) = �
A�

A+
e�2ika�i


+

; 
+ =

+1Z
a

p(s)ds (35)

and

1Z
�1

jF0(s)j ds <1.

4. Main integral equation and uniqueness theorem

In order to establish the main integral equations of the scattering problem we
start from the formula (23) written in the form�

1

a(k)
� 1

A+ei�0

�
e�(x; k) =

�
r�(k)� r�0 (k)

�
e+(x; k) + e+(x; k) + (36)

+r�0 (k) e
+(x; k)� 1

A+ei�0
e�(x; k):

Multiplying both sides of this equation by 1
2� e

iky ,where y > x and integrating with
respect to k from �1 to +1; we have

1

2�

+1Z
�1

�
1

a(k)
� e

�i�0

A+

�
e�(x; k)eikydk

=
1

2�

+1Z
�1

�
r� (k)� r�0 (k)

�
e+(x; k)eikydk+
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+
1

2�

+1Z
�1

�
e+(x; k) + r+0 (k) e

+(x; k)� 1

A+
e�i�0e�(x; k)

�
eikydk (37)

Then using the representation (7) for the solution e+(x; k); we get

1

2�

+1Z
�1

�
r+ (k)� r+0 (k)

�
e+(x; k)eikydk = F+(x; y) +

+1Z
x

K+
t (x; t)F

+
0 (t+ y)dt;

where

F+(x; y) =

�
R+1 (x)F0(x+ y) ; x > a
R+1 (x)F0(x+ y) +R

+
2 (x)F0(2a� x+ y) ; x < a

(38)

F0(x) =
1

2�

+1Z
�1

�
r+ (k)� r+0 (k)

�
eikxdk:

For the second integral in the right-hand side of (37) we have

1

2�

+1Z
�1

�
e+(x; k) + r+0 (k) e

+(x; k)� 1

A+
e�i�0e�(x; k)

�
eikydk

= K+
y (x; y)�

A�

A+
e�2i


+

K+
y (x; 2a� y);

therefore equation (37) takes the form

1

2�

+1Z
�1

�
1

a(k)
� e

�i�0

A+

�
e�(x; k)eikydy = F+(x; y) +

+1Z
x

K+
t (x; t)F0(t+ y)dt

+K+
y (x; y)�

A�

A+
e�2i


+

K+
y (x; 2a� y); (y > x) (39)

Now consider the left-hand side of (39). Using the Lemma 1 and the Paley-Wiener
theorem we can easily compute that (see [16])

1

2�

+1Z
�1

�
1

a(k)
� e

�i�0

A+

�
e�(x; k)eikydy =

1

2�

+1Z
�1

�
1

a(k)
� e

�i�0

A+

�
e�(x; k)eikxeik(y�x)dk = 0:

Then (39) shows that

F+(x; y)+K+
y (x; y)�

A�

A+
e�2i


+

K+
y (x; 2a�y)+

+1Z
x

K+
y (x; t)F0(t+y)dt = 0; (y � x) :

(40)
Integrating both sides of (40) ; we get

K+(x; t)� A
�

A+
e�2i


+

K+(x; 2a� t) +
+1Z
x

K+
r (x; r)dr

+1Z
r+t

F0(s)ds+

+R+1 (x)

+1Z
x+t

F0(s)ds+R
+
2 (x))

+1Z
2a�x+t

F0(s)ds = 0; t � x:
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Performing integration by parts we have the following main integral equation:

K+(x; t)� A
�

A+
e�2i


+

K+(x; 2a� t) +
+1Z
x

K+(x; r)F0(r + t)dr+

+ h+1 (x)

+1Z
x+t

F0(s)ds+ h
+
2 (x)

+1Z
2a�x+t

F0(s)ds = 0; (41)

where
h+1 (x) = R

+
1 (x)�K+(x; x);

h+2 (x) = R
+
2 (x)�K+(x; 2a� x+ 0) +K+(x; 2a� x� 0):

Obviously,
h+1 (x) + h

+
2 (x) = e

+(x; 0) (42)

The uniqueness property and the solution of the inverse problem can be proved by
the same arguments as in [26]. The main integral equations (41) can be rewritten
in the form

e+(x; 0)

+1Z
x+y

F0(s)ds+K+(x; y)+

+

+1Z
x

K+(x; t)F0(t+ y)dt = 0; x > a; y > x ; (42)

h+1 (x)

+1Z
x+y

F0(s)ds+ h
+
2 (x)

+1Z
2a�x+y

F0(s)ds+K+(x; y)� A
�

A+
e�2i


+

K+(x; 2a� y)+

+

+1Z
x

K+(x; t)F0(t+ y)dt = 0; x < a; y < x < (2a� x) ; (43)

h+1 (x)

+1Z
x+y

F0(s)ds+ h
+
2 (x)

+1Z
2a�x+y

F0(s)ds+K+(x; y)+

+1Z
x

K+(x; t)F0(t+ y)dt = 0; x < a; y > (2a� x) (44)

Theorem 4. If the conditions (3) are satis�ed then equations (42) - (44) have the
unique solutions K+(x; :) 2 L1(x;1) for each �xed x > �1 .

Proof: For each �xed x > �1 consider the operator (see [18] )

(M+
x f)y =

(
f(y) ; x > a

f(y)� A�

A+ e
�2i
+f(2a� y) ; x < a

acting in the space L1(x;1) (and also L2(x;1)). It is easy to show that the
operator M+

x is invertible. Using this operator the main equation (41) can be
rewritten as

K+(x; y) + (M+
x )

�1F+(x; y) + (M+
x )

�1�+K+(x; :)(y) = 0 , y > x (45)
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where the operator �+ is de�ned as

�+f(y) =

+1Z
x

F0(t+ y)f(t)dt; y > x (46)

for each �xed x > �1:
It is known that (see [7]) the operator �+ is a compact operator in the space

L1(x;1) (also in L2(x;1)). By the boundness of the operator M�1
x we have that

the operator M�1
x �+ is also a compact operator. Therefore, to prove the theorem,

it is su¢ cient to show that the homogeneous equation

hx(y)�
A�

A+
e�2i


+

hx(2a� y) +
+1Z
x

hx(t)F0(t+ y)dx = 0; y > x (47)

has only the trivial solution hx(y) 2 L1(x;1). By conditions (3) the function F+0 (y)
and the corresponding solution hx(y) are bounded in the half axis x � y < +1:
Therefore hx(:) 2 L2(x;1). Consequently, we have

0 =

+1Z
x

jhx(y)j2 dy�
A�

A+
e�2i


+

+1Z
x

hx(2a�y)hx(y)dy+
+1Z
x

+1Z
x

hx(t)hx(y)F0(t+y)dtdy

(48)
Using the the Parsevall�s identities we get

+1Z
x

jhx(y)j2 dy =
1

2�

+1Z
�1

���eh(�)���2 d�;
�A

�

A+
e�2i


+

+1Z
x

hx(y)hx(2a� y)dy =
1

2�

+1Z
�1

r�0 (�)
eh2(�)d�;

where eh(�) = +1R
x

hx(t)e
�i�tdt; we obtain

1

2�

+1Z
�1

���eh(�)���2 d�+ 1

2�

+1Z
�1

�
r�(�)� r�0 (�)

�eh2(�)d�+ 1

2�

+1Z
�1

r�0 (�)
eh2(�)d� = 0

i.e.

1

2�

+1Z
�1

���eh(�)���2 d� = � 1

2�

+1Z
�1

r�(�)eh2(�)d�:
Therefore

+1Z
�1

���eh(�)���2 d� =
�������

+1Z
�1

r�(�)eh2(�)d�
������ �

+1Z
�1

��r�(�)�� ���eh(�)���2 d�;
that is

+1Z
�1

(1�
��r�(�)��) ���eh(�)���2 d� � 0: (49)
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Since jr�(�)j < 1 for � 6= 0; (49) implies that eh(�) � 0: Consequently the equation
(41) has a unique solution.
This theorem implies that the potential functions q(x) and p(x) from class (3)

in problem (1) � (2) without discrete spectrum are uniquely de�ned by the left
re�ection coe¢ cient.

Theorem 5. If conditions (3) are satis�ed and there exist a pair real-valued matrix
functions (q(x); p(x)) which has a given matrix r�(k) as its re�ection coe¢ cient,
then (q(x); p(x)) is recovered from eR�(k) by (11) � (13) where K+(x; t) is the so-
lution of (41) with F0(x) de�ned by

F0(x) =
1

2�

+1Z
�1

�
r+ (k)� r+0 (k)

�
eikxdk (50)
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