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A NOTE ON THE STEIN RESTRICTION CONJECTURE AND

THE RESTRICTION PROBLEM ON THE TORUS

DUVÁN CARDONA

Abstract. In this note we discuss the Stein restriction problem on arbitrary
n-torus, n ≥ 2. In contrast with the usual cases of the sphere, the parabola
and the cone, we provide necessary and sufficient conditions on the Lebesgue
indices, by finding conditions which are independent of the dimension n.

1. Introduction

This note is devoted to the Stein restriction problem on the torus Tn, n ≥ 2. In
harmonic analysis, the Stein restriction problem for a smooth hypersurface S ⊂ Rn,
asks for the conditions on p and q, 1 ≤ p, q < ∞, satisfying

∥f̂ |S∥Lq(S,dσ) :=

∫
S

|f̂(ω)|qdσ(ω)

 1
q

≤ C∥f∥Lp(Rn), (1.1)

where dσ is a surface measure associated to S, the constant C > 0 is independent

of f, and f̂ |S denotes the Fourier restriction of f to S, where

f̂(ξ) =

∫
Rn

e−i2πx·ξf(x)dx, (1.2)

is the Fourier transform of f. Let us note that for p = 1, the Riemann-Lebesgue

theorem implies that f̂ is a continuous function on Rn and we can restrict f̂ to every
subset S ⊂ Rn. On the other hand, if f ∈ L2(Rn), the Plancherel theorem gives

∥f∥L2(Rn) = ∥f̂∥L2(Rn) and the Stein restriction problem is trivial by considering
that every hypersurface is a subset in Rn with vanishing Lebesgue measure. So,
for 1 < p < 2, a general problem is to find those hypersurfaces S, where the
Stein restriction problem has sense. However, the central problem in the restriction
theory is the following conjecture (due to Stein). It is of particular interest because
it is related to Bochner-Riesz multipliers and the Kakeya conjecture.
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Conjecture 1.1. Let S = Sn−1 = {x ∈ Rn : |x| = 1} be the (n − 1)-sphere and
let dσ be the corresponding surface measure. Then (1.1) holds true if and only if
1 ≤ p < 2n

n+1 and q ≤ p′ · n−1
n+1 , where p′ = p/p− 1.

That the inequalities 1 ≤ p < 2n
n+1 and q ≤ p′ · n−1

n+1 , are necessary conditions for
Conjecture 1.1 is a well known fact. In this setting, a celebrated result by Tomas
and Stein (see e.g. Tomas [15]) shows that

∥f̂ |Sn−1∥L2(Sn−1,dσ) ≤ Cp,n∥f∥Lp(Rn) (1.3)

holds true for every 1 ≤ p ≤ 2n+2
n+3 . Surprisingly, a theorem due to Bourgain shows

that the Stein restriction conjecture is true for 1 < p < pn where pn is defined
inductively and 2n+2

n+3 < pn < 2n
n+1 . For instance, p(3) = 31/23. We refer the reader

to Tao [14] for a good introduction and some advances to the restriction theory.
In this paper we will consider the n-dimensional torus Tn = (S1)n modelled on

R2n, this means that

Tn = {(x1,1, x1,2, x2,1, x2,2, · · · , xn,1, xn,2) : x
2
ℓ,1 + x2

ℓ,2 = 1, 1 ≤ ℓ ≤ n}. (1.4)

In this case
Tn ⊂

√
n S2n−1 ⊂ R2n.

In order to illustrate our results, we will discuss the case n = 2, where

T2 ⊂
√
2S3 ⊂ R4. (1.5)

As it is well known, the n-dimensional torus can be understood of different ways.
Topologically, Tn ∼ S1 × · · · × S1, where the circle S1 can be identified with the
unit interval [0, 1), where we have identified 0 ∼ 1. The case n = 2, implies that
T2 ∼ S1×S1. From differential geometry, a stereographic projection π from S3\{N}
into R3 gives the following embedding of (1/

√
2)T2 ⊂ S3,

Ṫ2 = {((
√
2 + cos(ϕ)) cos(θ), (

√
2 + cos(ϕ)) sin(θ), sin(ϕ) ∈ R3 : 0 ≤ θ, ϕ < 2π},

(1.6)
of the 2-torus in R3. At the same time, the Fourier analysis and the geometry on
the torus can be understood in a better way by the description of the torus given
in (1.4). So, we will investigate the restriction problem on the torus by using (1.5)
instead of (1.6). In this case, the Stein restriction conjecture for S = S3 assures
that (1.1) holds true for every 1 ≤ p < 8

5 and q ≤ 3
5p

′. However, we will prove the

following result, where we characterise the Stein restriction problem on T2.

Theorem 1.2. Let f ∈ Lp(R4). Then there exists C > 0, independent of f and
satisfying the estimate

∥f̂ |T2∥Lq(T2,dσ) :=

∫
T2

|f̂(ξ1, ξ2, η1, η2)|qdσ(ξ1, ξ2, η1, η2)

 1
q

≤ C∥f∥Lp(R4), (1.7)

if and only if 1 ≤ p < 4
3 and q ≤ p′/3. Here, dσ(ξ1, ξ2, η1, η2) is the usual surface

measure associated to T2.

An important difference between the restriction problem on the n-torus, n ≥ 2,
and the Stein-restriction conjecture come from the curvature notion. For example,
the sphere S2, has Gaussian curvature non-vanishing, in contrast with the 2-torus
T2 where the Gaussian curvature vanishes identically. In the general case, let us
observe that the Stein conjecture for S = S2n−1 asserts that (1.1) holds true for all
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1 ≤ p < 4n
2n+1 and q ≤ 2n−1

2n+1p
′. Curiously, the situation for the n-dimensional torus

is very different, as we will see in the following theorem.

Theorem 1.3. Let f ∈ Lp(R2n), n ≥ 2. Then there exists C > 0, independent of
f and satisfying

∥f̂ |Tn∥Lq(Tn,dσn) ≤ Cn∥f∥Lp(R2n), (1.8)

if and only if 1 ≤ p < 4
3 and q ≤ p′/3. Here, dσn is the usual surface measure

associated to Tn.

Remark 1.4. By a duality argument we conclude the following fact: if F ∈ Lq′(Tn, dσn),
then there exists C > 0, independent of F and satisfying

∥(Fdσn)
∨∥Lp′ (R2n) =

∥∥∥∥∥∥
∫
Tn

ei2πx·ξF (ξ)dσn(ξ)

∥∥∥∥∥∥
Lp′ (R2n)

≤ Cn∥F∥Lq′ (Tn,dσn)
, (1.9)

if and only if p′ > 4 and q′ ≥ (p′/3)′. We have denoted by (Fdσn)
∨ the inverse

Fourier transform of the measure µ := Fdσn.

We end this introduction by summarising the progress on the restriction conjec-
ture as follows. Indeed, we refer the reader to,

• Fefferman [6] and Zygmund [17] for the proof of the restriction conjecture
in the case n = 2 (which is (1.8) for n = 1).

• Stein [11], Tomas [15] and Strichartz [12], for the restriction problem in
higher dimensions, with sharp (Lq, L2) results for hypersurfaces with non-
vanishing Gaussian curvature. Some more general classes of surfaces were
treated by A. Greenleaf [7].

• Bourgain [2, 3], Wolff [16], Moyua, Vargas, Vega and Tao [8, 9, 13] who
established the so-called bilinear approach.

• Bourgain and Guth [4], Bennett, Carbery and Tao [1], by the progress on
the case of nonvanishing curvature, by making use of multilinear restriction
estimates.

• Finally, Buschenhenke, Müller and Vargas [5], for a complete list of refer-
ences as well as the progress on the restriction theory on surfaces of finite
type.

The main goal of this note is to give a simple proof of the restriction problem on
the torus. This work is organised as follows. In Section 2 we prove Theorem 1.2.
We end this note with the proof of Theorem 1.3. Sometimes we will use (Ff) for
the 2-dimensional Fourier transform of f and (FRnu) for the Fourier transform of
a function u defined on Rn.

2. Proof of Theorem 1.2

In this note we will use the standard notation used for the Fourier analysis on
Rn and the torus (see e.g. Ruzhansky and Turunen [10]). Throughout this section
we will consider the 2-torus T2,

T2 = {(x1, x2, y1, y2) : x
2
1 + x2

2 = 1, y21 + y22 = 1} = S1(x1,x2)
× S1(y1,y2)

⊂ R4. (2.1)

Here, T2 will be endowed with the surface measure

dσ(ξ1, ξ2, η1, η2) = dσ(ξ1, ξ2)dσ(η1, η2),
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where dσ(ξ1, ξ2) is the usual ‘surface measure’ defined on S1. Indeed, if (ξ1, ξ2) ≡
(ξ1(κ), ξ2(κ)) = (cos(2πκ), sin(2πκ)), 0 ≤ κ < 1, then dκ = dσ(ξ1, ξ2).

Conjecture 1.1 has been proved by Fefferman for n = 2, the corresponding an-
nouncement is the following (see Fefferman [6] and Zygmund [18]).

Theorem 2.1 (Fefferman restriction Theorem). Let S = S1 = {x ∈ R2 : |x| = 1}
be the 1-sphere and let dσ be the corresponding ‘surface measure’. Then (1.1) holds
true if and only if 1 ≤ p < 4

3 and q ≤ p′/3, where p′ = p/p− 1.

In order to prove Theorem 1.2, let us consider 1 ≤ p < 4
3 , q ≤ p′/3 and

f ∈ Lp(R4). By the argument of density we can assume that f ∈ C∞
c (R4). If

(ξ1, ξ2, η1, η2) ∈ T2, then

f̂(ξ1, ξ2, η1, η2) =

∫
R4

e−i2π(x·ξ+y·η)f(x, y)dy dx, x = (x1, x2), y = (y1, y2). (2.2)

By the Fubini theorem we can write

f̂(ξ1, ξ2, η1, η2) =

∫
R2

e−i2πx·ξ(Fy→ηf(x, ·))(η)dx, η = (η1, η2),

where (Fy→ηf(x, ·))(η) = f̂(x, η) is the 2-dimensional Fourier transform of the
function f(x, ·), for every x ∈ R2. By writing

f̂(ξ1, ξ2, η1, η2) = Fx→ξ(Fy→ηf(x, ·))(η))(ξ), (2.3)

for 1 ≤ p < 4
3 and q ≤ p′/3, the Fefferman restriction theorem gives,

∥f̂(ξ1, ξ2, η1, η2)∥Lq(S1,dσ(ξ)) ≤ C∥f̂(x, η)∥Lp(R2
x)
. (2.4)

Now, let us observe that

∥f̂ |T2∥Lq(T2,dσ) = ∥f̂(ξ, η)∥Lq((S1,dσ(η));Lq(S1,dσ(ξ)))

≤ C∥∥f̂(x, η)∥Lp(R2
x)
∥Lq(S1,dσ(η)) =: C∥f̂(x, η)∥Lq((S1,dσ(η));Lp(R2

x))

:= I.

Now, we will estimate the right hand side of the previous inequality. First, if we
assume that 4/3 ≤ q < p′/3, then p ≤ q and the Minkowski integral inequality
gives,

I =

∫
S1

∫
R2

|f̂(x, η)|pdx


q
p

dσ(η)


1
q

≤

∫
R2

∫
S1

|f̂(x, η)|qdσ(η)


p
q

dx


1
p

.

∫
R2

∫
R2

|f(x, y)|pdydx

 1
q

= ∥f∥Lp(R4),

where in the last inequality we have used the Fefferman restriction theorem. So we
have proved that (1.7) holds true for 4/3 ≤ q < p′/3. Now, if q < 4

3 , then we can
use the finiteness of the measure dσ(ξ, η) to deduce that

∥f̂ |T2∥Lq(T2,dσ) . ∥f̂ |T2∥
L

4
3 (T2,dσ)

≤ C∥f∥Lp(R4) (2.5)
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holds true for 1 ≤ p < 4
3 . Now, we will prove the converse announcement. So, let

us assume that p and q are Lebesgue exponents satisfying (1.7) with a constant
C > 0 independent of f ∈ Lp(R4). If g ∈ C∞

c (R2), let us define the function f by
f(x, y) = g(x)g(y). The inequality,

∥f̂ |T2∥Lq(T2,dσ) :=

∫
T2

|f̂(ξ1, ξ2, η1, η2)|qdσ(ξ1, ξ2, η1, η2)

 1
q

≤ C∥f∥Lp(R4), (2.6)

implies that

∥ĝ|S1∥Lq(S1,dσ) :=

∫
S1

|ĝ(ξ1, ξ2)|qdσ(ξ1, ξ2)

 1
q

≤ C∥g∥Lp(R2). (2.7)

But, according with the Fefferman restriction theorem, the previous inequality only
is possible for arbitrary g ∈ C∞

c (R2), if 1 ≤ p < 4
3 and q ≤ p′/3.

3. Proof of Theorem 1.3

Let us consider the n-dimensional torus

Tn = {(x1,1, x1,2, x2,1, x2,2, · · · , xn,1, xn,2) : x
2
ℓ,1 + x2

ℓ,2 = 1, 1 ≤ ℓ ≤ n}. (3.1)

We endow to Tn with the surface measure

dσn(ξ1,1, ξ1,2, ξ2,1, ξ2,2, · · · , ξn,1, ξn,2) =
n⊗

j=1

dσ(ξj,1, ξj,2), (3.2)

where dσ is the ‘surface measure’ on S1. In order to prove Theorem 1.3 we will use
induction on n. The case n = 2 is precisely Theorem 1.2. So, let us assume that
for some n ∈ N, there exists Cn depending only on the dimension n, such that

∥(FRnu)|Tn∥Lq(Tn,dσn) ≤ Cn∥u∥Lp(R2n), (3.3)

for every function u ∈ Lp(R2n). If f ∈ C∞
c (R2n+2) ⊂ Lp(R2n+2), 1 ≤ p < 4

3 and
q ≤ p′/3, by using the approach of the previous section, we can write

f̂(ξ1, ξ2, η) =

∫
R2

e−i2πx·ξ(Fy→ηf(x, ·))(η)dx, η ∈ Rn.

By applying the Fefferman restriction theorem we deduce

∥f̂(·, ·, η)∥Lq(S1,dσ(ξ)) ≤ ∥Fy→ηf(x, ·))(η)∥Lp(R2
x)
. (3.4)

Now, by using that

∥f̂ |Tn+1∥Lq(Tn+1,dσn+1) = ∥f̂(ξ1, ξ2, η)∥Lq((Tn,dσn(η));Lq(S1,dσ(ξ)))

≤ C∥∥f̂(x1,1, x1,2, η)∥Lp(R2
x)
∥Lq(Tn,dσn(η))

=: C∥f̂(x, η)∥Lq((Tn,dσn(η));Lp(R2
x))

:= II,
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for 4/3 ≤ q < p′/3, p ≤ q, and the Minkowski integral inequality, we have

II =

∫
Tn

∫
R2

|f̂(x, η)|pdx


q
p

dσn(η)


1
q

≤

∫
R2

∫
Tn

|f̂(x, η)|qdσn(η)


p
q

dx


1
p

.n

∫
R2

∫
R2n

|f(x, y)|pdydx

 1
p

= ∥f∥Lp(R2n+2),

where in the last inequality we have used the induction hypothesis. So, we have
proved Theorem 1.3 for 4/3 ≤ q < p′/3. The case q < 4

3 now follows from the

finiteness of the measure dσn+1. That 1 ≤ p < 4
3 and q ≤ p′/3, are necessary

conditions for (1.8) can be proved if we replace f in (1.8) by a function of the form

f(x1,1, x1,2, x2,1, x2,2, · · · , xn,1, xn,2) =
n∏

j=1

g(xj,1, xj,2), g ∈ C∞
c (R2). (3.5)

Indeed, we automatically have

∥ĝ|S1∥Lq(S1,dσ) :=

∫
S1

|ĝ(ξ1, ξ2)|qdσ(ξ1, ξ2)

 1
q

≤ C∥g∥Lp(R2). (3.6)

Consequently, the Fefferman restriction theorem, shows that the previous inequality
only is possible for arbitrary g ∈ C∞

c (R2), if 1 ≤ p < 4
3 and q ≤ p′/3.

An usual argument of duality applied to Theorem 1.3, allows us to deduce the
following result.

Corollary 3.1. Let F ∈ Lq′(Tn, dσn). Then there exists C > 0, independent of F
and satisfying

∥(Fdσn)
∨∥Lp′ (R2n) =

∥∥∥∥∥∥
∫
Tn

ei2πx·ξF (ξ)dσn(ξ)

∥∥∥∥∥∥
Lp′ (R2n)

≤ Cn∥F∥Lq′ (Tn,dσn)
, (3.7)

if and only if p′ > 4 and q′ ≥ (p′/3)′. Here, dσn is the usual surface measure
associated to Tn and r′ := r/r − 1.
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