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VALUE DISTRIBUTION OF GENERAL ¢-DIFFERENCE
POLYNOMIALS

SUBHAS S. BHOOSNURMATH, SHILPA N. AND MAHESH BARKI

ABSTRACT. In this article, we mainly study the value distribution of more
general g-difference polynomials for a transcendental entire function of zero
and finite order. These are significant generalization of earlier results. As a
very special case, we obtain the results of N. X. Xu and C. P. Zhong and
others.

1. INTRODUCTION, DEFINITONS AND RESULTS

For a meromorphic function f in the complex plane we assume familiarity with
the standard notations of Nevanlinna theory such as, T'(r, f), N(r, f) and m(r, f)
etc., as explained in [7, 19]. We need the following definitions.

Definition 1.1. Let f(z) and a(z) be meromorphic functions in the complex
plane. If T'(r,a) = S(r, f), then a(z) is called a small function of f(z), where
S(r, f) =o(T(r, f)) as r — o0, except possibly on a set of finite linear measure.
Definition 1.2. Let

k
M;(f(qz)) = £ f19 (@2) /1% (a22) - - % (az) = [ [ F7(a2), (1)
=0

where g0 = 1 and ¢1,42,...,qx € C\{0}, lo;, 01, ..., x; are non-negative integers.
Let the degree and weight of the monomial be ™ = loj +lij + -+ I; and

Par, = loj + 2l 44 (k+ 1)l = Zfzo(i + 1)l;;, respectively. If

Pi(Fa2) = 3 a;My(f(02)), 2

where a;(j = 1,2,3,...,s) are constants, then P,(f(gz)) is called a difference
polynomial in f of degree vp, and the weight I'p,. We define upper and lower
degree of Py(f(gqz)) as follows Vp, = MaT1<j<sVP,y Vp = MANI<j<sYp, and
I'p, = mazi<j<svp,. I 5p, =7, = p,, then P,(f(gqz)) is called homogeneous

g-difference polynomial in f(gz), otherwise non-homogeneous.
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Definition 1.3.[18] For a meromorphic function f(z), the order and exponent of
convergence of zeros is defined respectively as follows

logT'(r, f)

logN(r. )
logr '

» A(f) = limsup, o log T

o(f) = limsup, o0
A Borel exceptional value of f(z) is any value a satisfying A(f —a) < o(f).
In 1959, W. K. Hayman [8], discussed about Picard values of an entire and
meromorphic functions and their derivatives. He obtained the following result.
Theorem A. Let f(z) be a transcendental entire function. Then

(1) for n > 3 and a # 0, Y(z) = f'(2) — a(f(z))™ assumes all finite values
infinitely often.

(2) For n > 2, ¢(z) = f'(2)(f(2))™ assumes all finite values except possibly
zero infinitely often.

As we have seen in recent years many researchers [4, 3, 5, 6, 9, 11, 13, 14, 16,
17, 15] are showing interest in the study of difference analogue of the Nevanlinna
theory. Many articles [10, 14, 12, 18] have focused on the study of difference version
of Hayman conjecture.

In 2007, I. Laine and C. C. Yang [10], considered the difference version of The-
orem A and obtained the following result.

Theorem B. Let f(z) be a transcendental entire function of finite order, ¢ is a
nonzero complex constant and n > 2, then f™(z)f(z + ¢) takes every nonzero value
infinitely often.

Again in 2011, K. Liu and X. G. Qi [14] proved the following result by considering

g-difference polynomials.
Theorem C. If f(z) is a transcendental meromorphic function of zero order, a, g
are nonzero complex constants. If n > 6, then f™(2) f(gz+c) assumes every nonzero
value b € C infinitely often. If n > 8, then f™(2) + a[f(qz + ¢) — f(2)] assumes
every nonzero value b € C' infinitely often.

In the same year, K. Liu, X. L. Liu and T. B. Cao [12] obtained extension of
above results by considering zero distribution of ¢-difference polynomials.

Theorem D. If f(z) is a transcendental meromorphic function of zero order,
a,q are nonzero complex constants, a(z) is a nonzero small function with respect
to f. It n > 6, then f™(2)(f™ — a)f(gz + ¢) — a(z) has infinitely many zeros. If
n > 7, then f"(2)(f™ —a)[f(¢z + ¢) — f(2)] — a(z) has infinitely many zeros.

In 2016, N. Xu and C. P. Zhong [18] generalized above results to more general
case and proved the following results.

Theorem E. Let {(z) be a transcendental entire function of zero order, a be a
nonzero complex constant, ¢ € C\{0,1}, n be any positive integer. Considering
g-difference polynomial H(z) = f(qz) — a(f(2))",

(1) if n = 3, then H(z)—a(z) has infinitely many zeros, where a(z) is a nonzero
small function with respect to f(z).

(2) In particular, if a(z) is a nonzero rational function, then the condition n = 3
can be reduced to n > 1.

Theorem F. Let f(z) be a transcendental entire function of zero order, q1, g2, - . ., gm

be non-zero complex constants such that at least one of them is not equal to 1, a €
C—{0},m,n € N*. Considering ¢-difference polynomial F(z) = f(q12)f(q22) - - - f(qmz)—
a(f(2))",
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(1) ifm < ;’:i Then F(z) — a(z) has infinitely many zeros, where a(z) is a

nonzero small function with respect to f(z).
(2) In particular, if «(z) is a nonzero rational function, then the condition

m < ;L__i can be reduced to n > m.

(3) It m # 1”77 then also F'(z) — a(z) has infinitely many zeros.

Theorem G. Let f(z) be a transcendental entire function of finite and positive
order o(f), q1,92,--.,qm be non-zero complex constants such that at least one of
them is not equal to 1 and q‘f(f) +qg(f) NI #n,a€C—{0},mneNT.
If f(z) has finitely many zeros, then F(z) — «(z) has infinitely many zeros, where
a(z) is a nonzero small function with respect to f(z).
If G(z) be an entire function with order less than one and if F/(z)—a(f(2))" = G(z),
then f(z) has infinitely many zeros.

In this article we generalize all the above results to more general ¢-difference
polynomials.

Theorem 1.1. Let f(z) be a zero order transcendental entire function, q1,qa, . . ., Gm
be non-zero complex constants and at least one of them is not equal to 1, a €
C—{0},9p,,n € N. Let the q-difference polynomial be H(z) = Py(f(qz)) — aP(f),
where Py(f(gz)) be as defined in (1.2) and P(f) = anf™ + an—1f" 1+ + ao.

(1) If7p, < 2=1, then H(z) — a(z) has infinitely many zeros, where a(z) # 0
is a small fzznction of f.
1

(2) If a(z) # 0 is a rational function, then ¥p < 7=t reduces ton >7p, .

Corollary 1.1. The g-difference polynomial P,(f(¢gz)) — aP(f) — R(z) = 0 has
no zero order transcendental entire solution when n > 7p, , where R(%) is a nonzero
rational function.

Remark 1.1. Substituting lo1 = 0, l11 = 1 in (1.2) we get 7p = 1. Hence we
get Theorem E.

Theorem 1.2. Let f(z) be a zero order transcendental entire function, qo = 1 and

Q1,92 - - -,qm be non-zero complex constants and at least one of them is not equal

to1,a € C—{0},¥p,,n € N. If (29p, — 7, ) # n, then H(z) — a(z) has infinitely
-—*tq

many zeros, where a(z) # 0 is a small function of f.

Remark 1.2. Substituting j = 1,lp1 =0, l; =13 = - =l = 1 in (1.2) and
considering P(f) = f™ then Theorem 1.1 and 1.2 reduces to Theorem F.

All the previous results are obtained for the case when f(z) is a transcendental
entire function of zero order. In Theorem 1.3 and 1.4 by considering f(z) as a finite
and positive order transcendental entire function we discuss the value distribution
of ¢-difference polynomial H(z).

Theorem 1.3. Let f(z) be a finite and positive order transcendental entire function
o(f), g =1 and q1,q2, - .., qn be non-zero complex constants and at least one of
them is not equal to 1 and lo; + lquf(f) + lgqu(f) + - 4 lqufn(f) #*n, a €
C —{0},7p,,n € N. If f(2) has finitely many zeros. Then H(Z) — a(z) has
infinitely many zeros, where a(z) # 0 is a small function of f.

Theorem 1.4. Let f(z) be a finite and positive order transcendental entire function
and G(z) is an entire function with order less than 1, go =1 and q1,4qa2,- .., qm be
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non-zero complex constants and at least one of them is not equal to 1 and ly; +
l1ij(f) + l2jq;(f) +-+ lqum #n,a€C—{0},7p,neN. If

Py(f(gz)) — aP(f) = G(2), 3)
then f(z) has infinitely many zeros.

Remark 1.3. Substitutingj = 1, l()l = Oalil = lil == lzm =1in (12) and
considering P(f) = f™ then Theorem 1.3 and 1.4 reduce to Theorem G.

2. SOME LEMMAS.

Lemma 2.1. [20] Let f(z) be a transcendental meromorphic function of zero order
and q be a non-zero complex constant. Then

T(rv f(QZ)) = (1 + 0(1)>T(r> f(Z)) or T<r7 f(QZ)) = T(rv f(Z)) + 51(7“, f)a
on a set of lower logarithmic density 1.

Lemma 2.2. [2] Let f(z) be a nonconstant zero order meromorphic function and

q € C\{0}. Then
o (v L9 _ g,
(n 2 = st

on a set of logarithmic density 1.

Lemma 2.3. [1] If an entire function f has a finite exponent of convergence \(f)
for its zero-sequence, then f has a representation in the form f(z) = Q(2)ed),
satisfying M(Q) = o(Q) = A(f). Further, if f is of finite order, then g in the above
form is a polynomial of degree less or equal to the order of f.

Lemma 2.4. [19] Suppose that fi(z), fo(2),..., fn(2),(n > 2) are meromorphic
functions and g1(2),92(2),...,gn(2) are entire functions satisfying the following
conditions,

(1) S0 f3(2)e0 ) =0,

(2) gj(2) — gr(2) are not constants for 1 < j <k <n;

(3) for1<j<mn,1<h<k<n, T(rf;)=0T(r,e 9%))(r = oco,r & E).
Then fi(z2) =0(j =1,2,...,n).

Lemma 2.5. Let f(qz) be a zero-order meromorphic function and Py(f(qz)) be a
q-difference polynomial in f of degree n > 1 with coefficients a;(z), upper degree
Fp and lower degree Vps then

m (n Pqiﬂfz”) < (Tp, —2p)m (n ;) +5(r 1),

on a set of logarithmic density 1.

Proof. Let M;(f(gz)) and P,(f(gz)) are defined as in (1.1) and (1.2) respec-
tively, then
Yp—UM;

Falfles)) | Z| a5l |2 7 (1)

f’YM Hf



144 SUBHAS S. BHOOSNURMATH, SHILPA N. AND MAHESH BARKI EJMAA-2020/8(2)

where vy, is the degree of the monomial M;(f).

Fp—Tm,
Case 1: When |f(gz)| <1, |f \ > 1 and f(qz) n > 1, and we have
TYp—TM; 1 [T <s Y0y 1 7P 2p
R < o
’ f(gz) - ' f(gz) ’ f(gz)
Hence we get from (2.1),
f"’P f “ f f

Using the logarithmic derivative lemma, we get
Py(f(qz)) - 1
m (LI < 5, 3 (17 ) + 510102

Since f is a meromorphic function of zero order, we have

Sl(T,f(qZ)):Sl(’l’7f). (5)

m (r, Pqijiiqz”) < (e, =25 )1 (n }) + 511, )

Outside of a possible exceptional set with the finite logarithmic measure.

Ypy —VM;
Case 2: When |f(gz)| > 1 we have L[ < 1 and log™ ‘f(éz
0.

Hence from (2.1) and logarithmic derivative lemma we get,

m (n 2 < 5 1)

Hence

TPy —TM;

_1
flgz)| =

Proceeding as in Case 1, we get,

(242)

IN

Sl(rvf)v
< G~ (r 7 ) + 5100

3. PROOF OF THE THEOREMS.

Proof of Theorem 1.1.

(1) Let @(2) = %W. From the condition 7p < §=r 11 we get n > Yp .

Since f(z) is a zero order transcendental entire function, by Lemma 2. 1, we get,

T(r,P(z)) = PQ(f(qZ))—a(z)’

a®(z)
nT'(r, f) T(r, Pa(f(q2))) +T(r,a(z2)) + T(r, ®(2)) + O(1),
¥p,T'(r, f) +T(r,®(2)) + 5(r, f).
From the above equation, we obtain

(n=7p)T(r, f) <T(r,®(2)) + 5(r, f), (6)

INIA
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on a set of logarithmic density 1. Since n >7%p_we can note that ®(z) is transcen-
dental. On the other hand,

7(r0() =7 (r SLENZODN < 10,1, (102)) + Tra(:) + 0 P + O1)
< ﬁqu(’f', f) + nT(r, f) + S(rv f)
Therefore
T(r,0(2)) < (n+7p,)T(r, ) + S(r.f). @

From (3.1), (3.2) and the condition n > 7¥p, , we get T'(r, ®(z)) = O(T'(r, f)).
Suppose H(z) — a(z) has finitely many zeros, then ®(z) has only finite 1-points.
Hence

N (n q>(z)11) — S(r, 0(2)) = S(r, /).

We can note from the second fundamental theorem

T(r,®(z) < N(r,@)JrN(r,;)) +N(r,q)1_1> + S(r, ®)

< SN TR T f) + ()

<1 - jl) T(r,®) <75, T(r, /) + S0, ). ®)
From (3.1), (3.3), we get
1- 1. n )T (r,®) < S(r, ®). 9)

n. n—9p,

n—1
T
25

which is a contradiction, since 7p, <
Z€eros.
(2.) By Lemma 2.1, we have

T(r,H(2)) < T(r, Py(f(qz)) — aP(f)) < T(r, Py(f(q2))) + T(r, P(f)) + S(r, f)
S (n+7Pq)T(Ta f) + S(Ta f)

. Hence H(Z) — a(z) has infinitely many

(10)
On the other side,
T(r,aP(f)) <T(r,Pe(f(qz)) — H(2)) < T(r, F4(f(q2))) + T(r, H(2)),

nT(r, f) <3p,T(r, f) +T(r, H(z)) + 5(r, f). (11)
From (3.5) and (3.6) we obtain,

(n—=7p)T(r, f)+S(r, f) <T(r,H) < (n+7p,)T(r, f) +S(r, [). (12)

From the above equation we obtain, T'(r, H) = O(T'(r, f)). Since n > ¥p_and
o(f) =0, clearly H(z) is of zero order.

Let us assume that R(z) = H(z)—a(z) has finitely many zeros. Then R(z) becomes
a rational function, since H(z) is a function of zero order and «(z) is a non-zero
rational function. Then we get T'(r, H) = S(r, f), which is a contradiction to our
assumption. Hence, H(z) — a(z) has infinitely many zeros.



146 SUBHAS S. BHOOSNURMATH, SHILPA N. AND MAHESH BARKI EJMAA-2020/8(2)

Proof of Theorem 1.2.
Let us assume that H(Z) — a(z) has finitely many zeros, by Lemma 2.1, we obtain
T(r,H(z) - a(z)) T(r, By(f(g2)) — aP(f) — a(z))
T(r, By(f(q2))) + T(r, P(f)) + T(r,a(2)) + 5(r, f),
Vp,T(r, f) +nT(r, f) + 5(r, f),
(n+7p)T(r, f) + S(r, f).

From the above inequality we get o(H(z) — a(z)) = 0.
From the Hadamard factorization theorem, we obtain

IANINCIA

H(z) — a(z) = Fy(f(q2)) — aP(f) — a(z) = Pi(2), (13)
where P (z) is a polynomial. Rewriting (3.8), we get
aP(f) = Py(f(qz)) — P1(z) — a(z). (14)
When n > (2yp, — lpq)’ from (3.9) and Lemma 2.1, we have
T(r,aP(f)) = T(r,B(f(gz)) = P1(2) — (2))
nT(T’ f) S quT(T, f) + 5(73 f)a
<

(QWPQ - lpq)T(’I“, f) —+ S(T’ f)

Which is a contradiction to the assumption.
When n < 2yp — 7, , from (3.9), Lemma 2.2 and Lemma 2.5, we have
a —1q

W)

TP = e By(fa) = m (7 UL

VP, —mlr prq
i) (’Pq(f(qz))>

Yp,m(r, f) — (qu —5p,)m(r, f) +S(r, f)
> (275, — 15 Imlr. ) + S(. ).
On the other hand by (3.9), we get
T(r,Py(f(gz))) =T(r,aP(f) + Pi(2) + a(2))
(75, = 1p )T ) <0 f)+ S )

Which is a contradiction to our assumption. Hence H(z) — a(z) has infinitely many
Z€eros.

Proof of Theorem 1.3.
Let f(z) be a finite and positive order transcendental entire function and has finitely
many zeros, then from Lemma 2.3, f(z) can be expressed in the form

f(2) = g(2)e"®), (15)
where g(z) (# 0), h(z) are polynomials. Set

v

Y

h(z) = apz® + - + ag, (16)

where ay(# 0), ..., aq are constants. Given that o(f) # 0, hence o(f) = degh(z) =
k> 1.
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From (1.2), (3.10) and (3.11) we have

s k
Py(f(g2)) = Y [Jaeif(@2)
j=1i=0
s k
= > aglaz)e @t
j=1i=0
s k

j=1i=0
e og iy Flzjtetlmg)

S
Py(f(gz) = 3, Palz)enslorthsal lasalo-tludl )= (17)
Jj=1

where PQ(Z) — Hk L ajg(qizyij eak—l(ZOj+l1jq’1€71+l2jq§71+"‘+l7anfyrl)zk71 . ea0(10j+l1j+12j+"‘+l7nj).
1=

Thus o(P2) < k—1 < k. On the other side, from (3.10) and (3.11) we have

P(f) = anf"+an 1"+ +ag
angnenh + an—1gn716(”71)h +- +ap

_ angnen(akzk+...+a0) + an_lgn—1e(n—1)(akzk+...+ao) + -+ ag

= e ang’e e

P(f) = Py(z)e" =", (18)

where Pg(Z) _ angnenak,lzk71+'~~+nag+an_1gn—1e—akzk+(n—1)ak,1zk*1+...+(n—l)ao+
-+ 4 age =" From (3.12) and (3.13), we get

H(z) = 3 Py(a)ets el stasab ttoab ) _opcycnas\ [0} (19)
Jj=1

Since Py(2)(# 0), P3(2)(# 0),0(P2) < k,o(Ps) < k, lo; + ljg7" + lojaf " +
s lqufn(f) # n, it follows that H(z) is a transcendental entire function and
o(H)=o0(f)=k.

Suppose H(z) — a(z) has finitely many zeros, then o(H — «(z)) < o(H) = o(f).
Hence H(z) — a(z) can be expressed as

H(z) —a(z) = S(2)e'*, (20)

where S(z) is an entire function with o(S) < k, ¢ # 0 is a constant. From (3.14)
and (3.15), we get

k

Zpz(z)eak(ll.fq’f+lzjq§+~-+lwq’,‘g)zk _ apg(z)enakz’“ —S(2)et —a(z) =0. (21)
j=1

Since lquf(f) + lgqu(f) + -+ lqu;'n(f) 7& n.

Case (i): ax(loj + ljqf + lojg5 + - + Lnjgk,)2* # t,napz® # t. By Lemma 2.4,
we obtain Pa(z) =0, P3(z) =0,5(z) = 0,a(z) = 0. This is a contradiction.

nakzk[ n_nap_12°"4++nag + anilgn—l —akzk+(n—1)ak,1zk71+...+(n—1)a0 4.

-+ ape

k k kL k k—1 k—1 k—1y k—
_ E Hajg(qiz)lijeak(lo_j+lqu1+l2jq2+"'+lm_7‘qm)z eﬂk—l(loj-"lqul Hlojay T A lmgl 2Rt

—nakzk]
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Case (ii): ax(loj + l1;qF +1lojq5 + - + ;) 2" =t. Then (3.16) can be written
as

S
ZPQ(Z) — S(z) | e osthyartlaaz - Hmian)2" _ g py(z)enarz’ _ o(z) = 0,
j=1

By Lemma 2.4, we obtain Py(z) — S(z) = 0, P3(z) = 0,a(z) = 0. This is a contra-
diction.
Case (iii): nay = t, following the same procedure as above, we arrive at a contra-
diction. Hence, H(z) — a(z) has infinitely many zeros.

Proof of Theorem 1.4.
Let us assume that f(z) has finitely many zeros.
Using (3.12) and (3.13) in (1.3), we get

S
ZPQ(Z)eak(loj+l1jq’f+lzjq§+---+lqufn)zk _ apg(z)enakzk _ Gv(z)7 (22)
j=1

where Py(z) and P3(z) are defined as in Theorem 1.3.

Since P»(2)(% 0), P3(2)(# 0),0(P2) < k,0(Ps) <k, loj+11;0f +l2505+ - +lmjah, #
n we get 0(G) < 1 < k. From (3.17) and Lemma 2.4, we get Py(z) = 0, P3(z) =
0, G(z) = 0, which is a contradiction. Hence f(z) has infinitely many zeros.
Acknowledgement. The authors are grateful to the referee for their suggestion
towards the improvement of the paper.
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