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INCLUSION PROPERTIES FOR CERTAIN k-UNIFORMLY
SUBCLASSES OF p—VALENT FUNCTIONS ASSOCIATED WITH
THE LIU-OWA OPERATOR

TAMER M. SEOUDY

ABSTRACT. In this paper, we introduce several k—uniformly subclasses of
p—valent functions defined by the Liu-Owa integral operator and investigate
various inclusion relationships for these subclasses. Some interesting applica-
tions involving certain classes of integral operators are also considered.

1. INTRODUCTION

Let A, denote the class of functions of the form:

o)
f(z)=2"+ Z anz” (p e N={1,2,3,...}) (1)
n=p+1

which are analytic in the open unit disk U = {z € C: |z| < 1}. If f and g are
analytic in U, we say that f is subordinate to g, written f < g or f(2) < g(z), if there
exists a Schwarz function w, analytic in U with w (0) = 0 and |w (2)] < 1 (2 € U),
such that f(z) = g(w(z)) (2 € U). In particular, if the function ¢ is univalent in U,
the above subordination is equivalent to f(0) = ¢g(0) and f(U) C g(U) (see [1] and
2)).

For 0 < 7,17 < p,k > 0and z € U, we define US}; (k; ), UCy, (k; ), UK, (k;7,1)
and UK, (k;~,n) the k—uniformly subclasses of A, consisting of all analytic func-
tions which are, respectively, p—valent starlike of order 7, p—valent convex of order
v, p—valent close-to-convex of order 7, and type n and p—valent quasi-convex of

order v, and type 7 as follows:
2f (2

US, (k;v) = {fEAp:%(Zf,(z) —7) >k

f(2) f(2)
o | o () ()
UCp(k,'y)—{fEAp.S?<1+ ) 7>>k1+ ) p‘}, 3)
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Ky (kiv,m) = {feAptﬂge Us, (hn)ﬁ(zfl(z) —7) >k zg(z) —p|},

g(2)
, 4
UK, (k;v,n) =4 f€A,:3geUC,(kn),R (Zf/(Z))—v >k (Zf,(Z)) p
g (2) g (2)

These subclasses were introduced and studied by Al-Kharsani [3]. We note that
(1) UST (k;y) = US* (ks ) and UCh (k;v) = UC (ks ) (0 < v <1) (see [4] and [5]);
(ii) US*( 0;7) =S5 (v) (0 <~ <p) (see [6] and [7]);
(ili) UC (0;7) = Cp (7) (0 < v < p) (see [6]);
(iv) UK, (0 ”Y n) = Kp (7:m) (0 < 7,1 < p) (see [8]);
v) U ( ) =Ky (v,n) (0 <v,m <p) (see [9]).

Corresponding to a conic domain €, ;. , defined by

Qp7k77:{u+iv:u>k\/m+’y}, (6)

we define the function g~ (2) which maps U onto the conic domain Q, ; , such
that 1 € £, as the following:

p+(p—27)2 _
1—2z (k=10),
1 ,
s cos{fr(cos1 k)ilog1+ﬁ}— kff;z'y 0<k<1),
-z
Ty (2) = ( ) ,
2(p—~ ( 4+Vz
1 ) —1
P+ 2 081z (k )s
— . k2p—
]?27’}/1 Sln{ fO \/1 t2 ﬁ %212 } + k.2pil’y (k > ].) s

(7)
where u (z) = = ﬁ,aﬁ € (0,1) and ¢ (k) is such that k = cosh C(() By virtue of
the properties of the conic domain (2, 1, we have

R {gp ()} > L 0

Making use of the principal of subordination between analytic functions and

the definition of g, (2), we may rewrite the subclasses US} (k;7), UC, (k;7),
UK, (k;~y,B) and UK}, (k; v, B) as the following:

US; (kyy) = {f €A,: fo((zz)) = Gp,k,y (2)} ) 9)
UG, (ki) = P!
p(kiy) = feA 1+ 7 (2) = Gpky (2) 0 (10)

UK, (ki) = {f e 4,39 €U i, T <, <z)} SENCH




EJMAA-2020/8(2) INCLUSION PROPERTIES FOR k—UNIFORMLY SUBCLASSES 3

* (/')
UKp (k;v,m) =14 f€ Ap,:3gelUC, (ksm), 9'7(73) = Qp,k,y (2) ¢ - (12)
Motivated essentially by Jung et al. [10], Liu and Owa [11] introduced the
integral operator Qf , : Ay — A, (o >0,8> —p,p € N) as follows (see also [12]):
a — a z a—1l_g_

(p;-i-gél 1)713 fo (1 o 5) t° 1f (t)dt  (a>0),
Qs pf(2) = (13)

f(2) (a=0).

For f € A, given by (1), then from (13), we deduce that

I'(a+B+p) i I'(B+n)
T

Q5 pf(2) =2"+ an?" (@ >0;8> —p;p € N).

r@+p S Tle+B+n)
(14)
It is easily verified from the definition (14) that
2 (Q55(2) = (@+B+p) Q5 () — (a+B)Q (). (1)
We note that
1 _ _CtP [ e
QL) = Foy (1) () = 22 [ @)t (e ), (16)

where the operator Fi , is the generalized Bernardi-Libera-Livingston integral op-
erator (see [13] and [14]). Also, we note that the one-parameter family of integral
operator QF ; = Q3 was defined by Jung et al. [10] and studied by Aouf [15] and
Gao et al. [16].

Next, using the operator QF ,, we introduce the following k—uniformly classes
of p—valent functions for « > 0,8 > —p,p € Nk >0 and 0 < ~,n < p:

US: (aik;y) ={f € Ay : Q5 ,f (2) €US; (k) ;2 € U}, (17)
UCy (ask;y) = {f € Ay : QF,f (2) €UC, (k;v);2 € U}, (18)
UK, (s k;y,m) = {f € Ay : Q5 ,f (2) € UK, (k;v,m) ;2 € U}, (19)
UK, (askyy,n) = {f € A4y : QF ,f (2) € UK, (ksv,m);2€ U, (20)

We also note that
feUS: (ask;v) Z; cUC, (a; k;7), (21)

and

fGUKp(Oé;k;%n)ﬁzzlGUK;(Oé;k;%n)- (22)

In this paper, we investigate several inclusion properties of the classes US; (a; k5 ),
UCy (o k;7), UKy (a;k;,m), and UK (a; k;7y,m) associated with the operator
Q3 ,- Some applications involving integral operators are also considered.
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2. INCLUSION PROPERTIES INVOLVING THE OPERATOR Qg‘p

In order to prove the main results, we shall need The following lemmas.
Lemma 1 [17]. Let & (z) be convex univalent in U with R {nh (z) +~} > 0(n,v € C).
If p (z) is analytic in U with p (0) = h (0), then

2p (2)
implies
p(z) <h(2). (24)

Lemma 2 [1]. Let h(z) be convex univalent in U and let w be analytic in U with
R{w (2)} > 0. If p(2) is analytic in U and p (0) = h(0), then

p(2)+w(2)zp (2) < h(z) (25)
implies
p(z) <h(z). (26)
Theorem 1. Let (a+ 8) (k+ 1)+ kp+~ > 0. Then,
US, (ask;y) CUS, (a+ 15 k;7) (27)

Proof. Let f € US;; (a; k;7) and set
A G R (28)
p(2) = —F5— (2€U),
Qﬁj;lf(z)
where the function p (z) is analytic in U with p (0) = p. Using (15), (27) and (28),
we have

’

a ,
W —p@) g ). (29)
Since (aw+ B) (k+ 1) + kp +~ > 0, we see that
R{gpky(2) +a+8} >0 (2€0). (30)
Applying Lemma 1 to (29), it follows that p (2) < gpx,~ (2), thatis, f € USy (a + 1;k; 7).
Therefore, we complete the proof of Theorem 1. O
Theorem 2. Let (o + 8) (k+ 1) + kp+~ > 0. Then,
UC, (e k;v) CUC, (a+1;k;7) . (31)

Proof. Applying (21) and Theorem 1, we observe that

feUC (ak;y) <= 2L e US; (ask;7)

zf * < L.
— =- € US) (a+ L;k;y)  (by Theorem 1),

— feUC,(a+1;k;y),

which evidently proves Theorem 2. ([l

Next, by using Lemma 2, we obtain the following inclusion relation for UK, (¢; k; v, ).
Theorem 3. Let (o + 8) (k+ 1) + kp+n > 0. Then,

UKy (ask;vy,m) CUK, (a+ 1k;57,1m) (32)
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Proof. Let f € UK, (c; k;v,m). Then, from the definition of UK, (a; k;7,n), there
exists a function 7 (2) € US, (k;n) such that

’

2 QF ,f (2)
W = oy (2). (33)
Choose the function g such that Qf ,g(z) =7 (2). Then, g € US; (a; k;n) and
(3,0 (2)
Q90 = Gpky (2)- (34)
Now let ,
2 (@55 (2)
p(Z)ZW (2 €U), (35)

where p (2) is analytic in U with p (0) = p. Since g € US;; (a; k;n), by Theorem 1,
we know that g € US; (v + 1;k; 7). Let

’

2 (@559 (=)

t(z) = QO‘+1 @ (z€U), (36)
where ¢ (z) is analytic in U with R {¢ (z)} > klfiln Also, from (35), we note that
Q55'ef ()= Q519 (2) (o). (37)
Differentiating both sides of (37) with respect to z, we obtain
Qs ) 2(@sle=) ,
Gew T anem PO
= t(2)p(e) +2p (2). (38)

Now using the identity (15) and (36), we obtain

(@5, ) Qo0 ()2 (5eS () +(a+ B QS (2

ngg (2) Q%)pg (2) (Qg:‘;l (2 )) (a+f) Qa+1 (2)
S(@5tar ) . (@511 ()
) IO Q39 ()
CHIS)
IO
)P+ () + (et B)p(2)
t(z) +a+p
= p(z)+ zpi(z) (39)

t(z) +a+p
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kp+n
E+1

R{t(z)+a+B} >0 (2€0).

Since (a+8) (k+1)+kp+~>0and R{t(2)} >

, we see that

Hence, applying Lemma 2, we can show that p (2) < gk, (2) so that f € UK, (a; k;7,7).
Therefore, we complete the proof of Theorem 3. (Il

Theorem 4. Let (o + 8) (k+ 1) + kp+n > 0. Then,

UK, (a;k;vy,m) CUK, (a+1;k;57,1). (2.18)

Proof. Just as we derived Theorem 2 as consequence of Theorem 1 by using the
equivalence (21), we can also prove Theorem 4 by using Theorem 3 and the equiv-
alence (22). O

3. INCLUSION PROPERTIES INVOLVING THE INTEGRAL OPERATOR Fc’p

In this section, we consider the generalized Libera integral operator F; , defined
by (16).
Theorem 5. Let ¢ > —p and 0 < v < p. If f € US; (a;k;7), then F., (f) €
US, (a; k;).

Proof. Let f € US, (a;k;y) and set

/

o @ 0e) »
MG IO R
where p (z) is analytic in U with p (0) = p. From (16), we have
2 (@5 Fen (1) () = (€+D) Q5,0 ()= Qf P () (2). (41)
Then, by using (40) and (41), we obtain
@ e
(c+p) INAGIE) =p(2) +ec (42)

Taking the logarithmic differentiation on both sides of (42) and multiplying by z,
we have

’

z (Qg,pf (Z)> Cp(e) + zp (2)

= —— <Gk (2 z€U). 43
Qﬁ,pf(z) p(z)—l—c ’Y( ) ( ) ( )
Hence, by virtue of Lemma 1, we conclude that p (z) < ¢x, (2) in U, which implies
that F.p, (f) € US; (s k7). O

Next, we derive an inclusion property involving F. , (f), which is given by the
following.
Theorem 6. Let ¢ > —p and 0 < v < p. If f € UC, (a; k;), then F, ), (f) €
UCy (e ks ).
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Proof. By applying Theorem 5, it follows that

’

zf

feUCy(ak;y) - € US, (a; ks )
2f P
= F., <p> € US; (a;k;y)  (by Theorem 5) (44)
Fop(f)
= s l) ’;(f)) € US; (a5k;7)
= F., (f) €eUC, (as k;7),
which proves Theorem 6. O

Theorem 7. Let ¢ > —pand 0 <~,n <p. If f € UK, (a; k;7y,n), then F., (f) €
UKy (a; k5 7,m).

Proof. Let f € UK, (a; k;7y,n). Then, in view of the definition of the class UK, (o; k;v,7),
there exists a function g € US;, (a; k;n) such that

’

W = iy (%) (45)
Thus, we set
(@3, F (D)

p(z) = ( €0), (46)

Qf pFep (9) (2)

where p (z) is analytic in U with p(0) = p. Since g € US} (a;k;7), we see from
Theorem 5 that I, (f) € US, (a; k;). Let

(@R 0 @) , .
D= e Y

k
Pt i Also, from (46), we note that

where t (2) is analytic in U with R {¢ (2)} > E 1

QS ,2F., () (2) = Q5 F-p (9) (2) - p(2). (48)

Differentiating both sides of (48) with respect to z, we obtain

2 (Q4,7FL, (1) (z))' 2 (Q8,Fe (9) () ,
Qf Fep (9) (=) B Qf  Fep (9) (2) p(2)+2p (2)

= &P+ (). (49)




: S— Eian 202075
Now using the identity (41) and (49), we obtain
Q5,7 2)  #(QeF, (D) +eQs, L, (1) ()
0 (2) (@5, (9)(2)) + Q3 Fep () (2)
(@5, (00)  (@8,F () 0)
Q3o @) ) %, )

2 (@5, Fen (9)(2))
Q5 ,Fer (9) (2)

t(2)p(2) +2p (2) +ep ()
t(z)+c

+c

— p(2)+ t?;)(j—)c' (50)

kp+n
k+1’

R{t(z)+c} >0 (2€0). (51)
Hence, applying Lemma 2 to (50), we can show that p(z) < gp k. (2) so that
fe UKy (a;sk;y,m). 0

Since ¢ (k+1)+kp+n>0and R{t(2)} > we see that

Theorem 8. Let ¢ > —p and 0 < v, < p. If f € UK, (a;k;7,n), then
Fop ()UK (o5 ks y,m).

Proof. Just as we derived Theorem 6 as consequence of Theorem 5, we easily deduce
the integral-preserving property asserted by Theorem 8 by using Theorem 7. [

REFERENCES

[1] S. S.Miller and P. T.Mocanu, Differential subordinations and univalent functions, Michigan
Math. J., 28(1981), no. 2, 157-172.

[2] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series
on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker,
New York and Basel, 2000.

[3] H. A. Al-Kharsani, Multiplier transformations and k—uniformly p—valent starlike functions,
General Math.,17 (2009), no.1, 13-22.

[4] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155(1991), 364-370.

[5] F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ.
Mariae Curie-Sklodowska 47 (1993), no. 13, 123-134.

[6] S. Owa, On new classes of p—valent function with negative coefficients, Simon Stevin,
59(1985), no. 4, 385-402.

[7] D. A. Patil and N. K. Thakare, On convex hulls and extreme points of p-valent starlike
and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S), 27
(1983), 145-160.

[8] M. K. Aouf, On a class of p—valent close-to-convex functions, Internat. J. Math. Math. Sci.,

1 (1988), no. 2, 259-266.

[9] K. I. Noor, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10
(1987), 241-258.

[10] T.B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated
with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1993),
138-147.



EJMAA-2020/8(2) INCLUSION PROPERTIES FOR k—UNIFORMLY SUBCLASSES 9

(11]
(12]
13]

[14]

(15]

J.-L. Liu and S. Owa, Properties of certain integral operators, Internat. J. Math. Math. Sci.,
3(2004), no. 1, 69-75.

M. K. Aouf and T. M. Seoudy, On certain subclass of multivalent functions defined by the
Liu-Owa operator, Bull. Belgian Math. Soc.-Simon Stevin, 18(2011), 941-955.

J. H. Choi, M. Saigo and H.M. Srivastava, Some inclusion properties of a certain family of
integral operators, J. Math. Anal. Appl., 276 (2002), 432-445.

N. E. Cho,O. S. Kwon and H.M. Srivastava, Inclusion relationships and argument properties
for certain subclasses of multivalent functions associated with a family of linear operators, J.
Math. Anal. Appl., 292 (2004), 470-483.

M. K. Aouf, Inequalities involving certain integral operator, J. Math. Inequal. 2(2008), no.
2, 537-547.

[16] C.-Y. Gao, S.-M. Yuan and H. M. Srivastava, Some functional inequalities and inclusion

relationships associated with certain families of integral operator, Comput. Math. Appl., 49
(2005), 1787-1795.

[17] P. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, On a Briot-Bouquet differen-

tial subordination, in General Inequalities, 3 (Oberwolfach, 1981), vol. 64 of Internationale
Schriftenreihe zur Numerischen Mathematik, 339-348, Birkh&user, Basel, Switzerland, 1983.

TAMER M. SEOUDY

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, FAYouM UNIVERSITY, FAYouM 63514,
EaypT

DEPARTMENT OF MATHEMATICS, JAMOUM UNIVERSITY COLLEGE, UMM AL-QURA UNIVERSITY,
MAKKAH, SAUDI ARABIA

E-mail address: tms00@fayoum.edu.eg



