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ON THE GLOBAL BEHAVIOR OF A HIGHER-ORDER

NONAUTONOMOUS RATIONAL DIFFERENCE EQUATION

MOHAMED AMINE KERKER AND ASMA BOUAZIZ

Abstract. In this article, we study the global behavior of the following higher-

order nonautonomous rational difference equation

yn+1 =
αn + yn−l
αn + yn−k

, n = 0, 1, ...,

where {αn}n≥0 is a convergent sequence of positive numbers, k, l are nonneg-

ative integers such that l < k, and the initial values y−k, ..., y0 are positive

real numbers. We give sufficient conditions under which the unique equilib-
rium ȳ = 1 is globally asymptotically stable. Furthermore, we establish an

oscillation result for positive solutions about the equilibrium point. As an
application, we give some examples to illustrate our results.

1. Introduction

Difference equations have been studied intensively in the last few decades. Es-
pecially, there has been great interest in the study of the dynamics of rational
difference equations, and many researchers have investigated the behavior of their
solutions, (for example, see [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18]).

In [11], Kocic and Ladas studied the following high order difference equation

yn+1 =
a+ byn
A+ yn−k

, n ∈ N, , (1)

a, b, A are nonnegative real numbers and k is a positive integer. They showed that
the positive equilibrium point of the Eq. (1) is globally asymptotically stable. In
addition, they showed that all positive solutions of Eq. (1) are oscillatory about
the positive equilibrium point. These results were extended in [3] and [10] to the
following nonautonomous analogues rational difference equation

yn+1 =
αn + yn
αn + yn−k

, n = 0, 1, ... (2)
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Precisely, Dekkar et al. [3] considered Eq. (2) in the case where {αn}n≥0 is a
periodic sequence of positive numbers with period T , while Kerker et al. [10]
studied Eq. (2) when {αn}n≥0 is a convergent sequence.

In this work, we study the global behavior of the more general rational difference
equation

yn+1 =
αn + yn−l
αn + yn−k

, n = 0, 1, ..., (3)

where {αn}n≥0 is a convergent sequence of positive numbers, k, l are nonnegative
integers such that l < k, and the initial values y−k, ..., y0 are nonnegative real
numbers. We give sufficient conditions under which the unique equilibrium ȳ = 1 is
globally asymptotically stable. Furthermore, we show that every positive solution
of (3) is oscillatory about the equilibrium point ȳ = 1.

2. Preliminaries

In this preliminary section, we recall some notions and results about the theory
of difference equations. For more details we refer readers to [4, 12].

Let I be an interval of real numbers and let f : N×Ik+1 −→ I be a continuously
differentiable function. Consider the difference equation

yn+1 = f(n, yn, yn−1, ..., yn−k), n ≥ 0, (4)

with y0, y−1, ..., y−k ∈ I.

Definition 1. A point ȳ ∈ I such that ȳ = f(n, ȳ, ȳ, ..., ȳ) for all n ≥ 0, is called
an equilibrium point of Eq. (4).

Definition 2. An equilibrium point ȳ of (4) is said to be

(1) Stable if, for every ε > 0, there exists δ = δ(ε) such that if y0, y−1, ..., y−k ∈
(ȳ − δ, ȳ + δ) ⊂ I then |yn − ȳ| < ε, for all n ≥ −k. Otherwise, the
equilibrium ȳ is called unstable.

(2) Attractive if there exists µ > 0 such that if y0, y−1, ..., y−k ∈ (ȳ−µ, ȳ+µ) ⊂
I then

lim
n→∞

yn = ȳ.

If µ =∞, ȳ is called globally attractive.
(3) Asymptotically stable if it is stable and attractive.
(4) Globally asymptotically stable if it is stable and globally attractive.

Definition 3. A solution {yn}n≥−k of Eq. (4) is called nonoscillatory if there
exists p ≥ −k such that either

yn > ȳ, ∀n ≥ p or yn < ȳ, ∀n ≥ p,
and it is called oscillatory if it is not nonoscillatory.

Finally, we state the comparison principle for nonautonomous difference equa-
tions.

Lemma 1. Let z ≥ 0 be a real number, g(n, z) be a nondecreasing function with
respect to z for any fixed natural number n ≥ n0, n0 ∈ N. Suppose that for n ≥ n0,
we have

xn+1 ≤ g(n, xn),

yn+1 ≥ g(n, yn).
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Then,

xn0
≤ yn0

implies that

xn ≤ yn, ∀n ≥ n0.

3. Global asymptotic stability

In this section, we investigate the global asymptotic stability of the equilibrium
point. Throughout this paper, we use the following notations

α = limαn, a = inf {αn} and A = sup {αn} .

We have the following lemma.

Lemma 2. Assume that

a > 1. (5)

Then, every positive solution is bounded.

Proof. We have

yn+1 =
αn + yn−l
αn + yn−k

≤ A

a
+

1

a
yn−l,

which gives (see [4, p. 77])

yn ≤
A

a− 1
+ a−

n
l+1

l∑
i=0

cin
i →
n→∞

A

a− 1
.

Then, by Lemma 1, there exists M > 0, such that

yn ≤M, ∀n ≥ k.

�

We begin with the following local stability result.

Theorem 1. Assume that (5) holds. Then, ȳ = 1 is stable.

Proof. Let ε > A
a−1 such that

y−k, ..., y0 ∈ [0, ε[.

Hence,

yn+1 =
αn + yn−l
αn + yn−k

≤ A+ yn−l
a+ yn−k

≤ A+ yn−l
a

<
A+ ε

a
< ε, ∀n ≥ 0.

This implies that yn ∈ [0, ε[, ∀n ≥ −k. �

In the next theorem, we show the global attractivity of the equilibrium point.

Theorem 2. Assume that (5) holds. Then, ȳ = 1 is globally attractive.
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Figure 1. Plot of the solution {yn}n≥0 of Eq. (9) for the initial
values y−4 = 10, y−3 = 0.9, y−2 = 6.5, y−1 = 1.9 and y0 = 0.1.

Proof. Let {yn}n≥−k be an arbitrary positive solution of Eq. (3). Set

I = lim inf
n→∞

yn and S = lim sup
n→∞

yn,

which by Theorem 2 exist. Then, Eq. (3) yields

S ≤ α+ S

α+ I
and I ≥ α+ I

α+ S
.

Hence,

α+ I(1− α) ≤ IS ≤ α+ S(1− α)

and so

I ≥ S.
Thus, the sequence {yn}n≥−k is convergent to a limit l. By taking limits on both
sides of Eq. (3) we find that l = 1. �

From Theorems 1 and 2 we obtain the following result.

Theorem 3. Assume that a > 1. Then, the unique equilibrium point of Eq. (3) is
globally asymptotically stable.

Here are some illustrative examples:

Example 1. We consider the following third order difference equation

yn+1 =
(n+ 2)/(n+ 1) + yn−3
(n+ 2)/(n+ 1) + yn−4

(6)

with the initial values y−4 = 10, y−3 = 0.9, y−2 = 6.5, y−1 = 1.9 and y0 = 0.1.
From Theorem 2, the equilibrium point of equation (6) is globally asymptotically
stable, see Fig. 1.

Example 2. We consider the following rational difference equation

yn+1 =
(5n+ 7)/(3n+ 2) + yn−4
(5n+ 7)/(3n+ 2) + yn−11

, (7)
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Figure 2. Plot of the solution {yn}n≥0 of Eq. (10) for the initial
values y−11 = 3.3, y−10 = 2, y−9 = 7, y−8 = 0.1, y−7 = 5.3,
y−6 = 4.5, y−5 = 0.8, y−4 = 2.5, y−3 = 1.1, y−2 = 0.7, y−1 = 2.5
and y0 = 1.2.

with the initial values y−11 = 3.3, y−10 = 2, y−9 = 7, y−8 = 0.1, y−7 = 5.3,
y−6 = 4.5, y−5 = 0.8, y−4 = 2.5, y−3 = 1.1, y−2 = 0.7, y−1 = 2.5 and y0 = 1.2. By
Theorem 2, ȳ = 1 is globally asymptotically stable, see Fig. 2.

4. Oscillation

In this section, we study the oscillatory behavior of positive solutions of Eq. (3).

Theorem 4. Every nonoscillatory positive solution of (3) tends to ȳ = 1 as n→∞.

Proof. Assume that

yn > 1, for all n ≥ n0 for n0 ≥ −k.

The case where yn < 1 is similar and will be omitted. So, for n ≥ n0 + k, we have

yn+1 = yn−l
(αn/yn−l + 1)

αn + yn−k
< yn−l

αn + 1

αn + yn−k
< yn−l. (8)

Next, setting

zin = yn0+i+n(l+1), for all, n ≥ 0 and i = 0, ..., l,

it follows from (8) that

zin+1 < zin, for all n ≥ 0 and i = 0, ..., l,

and so the subsequences
(
zin
)

are convergent to a limit, say li. Therefore, for i =
0, ..., l, we have

zin+1 =
αn0+i+n(l+1) + zin−l
αn0+i+n(l+1) + zin−k

.

By taking limits on both sides, as n→∞, we get

li =
α+ li
α+ li

= 1.
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Thus, we have

l = 1.

�

Now, we state and prove the main result of this section.

Theorem 5. Every positive solution of (3) oscillates about ȳ = 1.

Proof. Assume that Eq. (3) has a nonoscillatory solution. Then, there exists
n0 ≥ −k such that

yn > 1, for all n ≥ n0
or

yn < 1, for all n ≥ n0.
Suppose that yn > 1, ∀ n ≥ n0. Let p such that

yn0+k+p = max {yn0+k+i, i = 0, ..., l} .

Therefore, there exists m ∈ N and j ∈ {0, ..., l}, such that

k − l + p = jmod (l + 1) .

Hence, we get

yn0+2k+p+1 =
αn0+2k+p + yn0+k+k−l+p

αn0+2k+p + yn0+k+p

=
αn0+2k+p + yn0+k+m(l+p)+j

αn0+2k+p + yn0+k+p
.

By (8), we have two situations to contemplate:

Case 1: If m = 0, we have

yn0+2k+p+1 =
αn0+2k+p + yn0+k+j

αn0+2k+p + yn0+k+p

≤ αn0+2k+p + yn0+k+p

αn0+2k+p + yn0+k+p
= 1.

Case 2: If m ≥ 1, we have

yn0+2k+p+1 <
αn0+2k+p + yn0+k+j

αn0+2k+p + yn0+k+p

≤ αn0+2k+p + yn0+k+p

αn0+2k+p + yn0+k+p
= 1.

Thus, in both cases we have a contradiction, and the proof is complete. �

Remark 1. By virtue of Theorem 2 and Theorem 5, when a > 1, all positive
solutions of Eq. (3) tend to the equilibrium point while oscillating.

To confirm our result on the oscillatory behavior of the positive solutions of Eq.
(3), we consider the two following numerical examples.
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Figure 3. Plot of the solution {yn}n≥0 of Eq. (9) for the initial
values y−4 = 1.4, y−3 = 0.9, y−2 = 0.7, y−1 = 1.5 and y0 = 2.3.

with the initial values y−3 = 7, y−2 = 1.2, y−1 = 0.3 and y0 = 2.1. The solution of
Eq. (9) is oscillatory about ȳ = 1, see Fig. 3.

Figure 4. Plot of the solution {yn}n≥0 of Eq. (10) for the initial
values y−11 = 1.02, y−10 = 3.5, y−9 = 10.1, y−8 = 1.2, y−7 = 3.3,
y−6 = 0.5, y−5 = 2.8, y−4 = 2.5, y−3 = 1.9, y−2 = 2.7, y−1 = 12.5
and y0 = 0.1.

Example 3. We consider the following fifth order difference equation

yn+1 =
1/(n+ 1) + yn−2
1/(n+ 1) + yn−4

, (9)

with the initial values y−4 = 1.4, y−3 = 0.9, y−2 = 0.7, y−1 = 1.5 and y0 = 2.3.
The solution of Eq. (9) is oscillatory about the equilibrium point ȳ = 1, see Fig. 3

Example 4. We consider the following rational difference equation

yn+1 =
(n+ 10)/(8n+ 9) + yn−3

(9n+ 10)/(8n+ 9) + yn−11
, (10)
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with the initial values y−11 = 1.02, y−10 = 3.5, y−9 = 10.1, y−8 = 1.2, y−7 = 3.3,
y−6 = 0.5, y−5 = 2.8, y−4 = 2.5, y−3 = 1.9, y−2 = 2.7, y−1 = 12.5 and y0 = 0.1.
Since a = 10/9, by Theorem 2 and Theorem 5 the solution of Eq. (10) tends to the
equilibrium point by oscillating about it, see Fig. 4.
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