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UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING
VALUES WITH THEIR »n-TH DERIVATIVES

DILIP CHANDRA PRAMANIK AND JAYANTA ROY

ABSTRACT. In this paper, we prove some results on the uniqueness of mero-
morphic functions which share some values with their n-th derivatives. Our
results improve and generalizes the results due to Gopalakrishna and Bhoos-
nurmath; Yang; Chen, Chen and Tsai; Lahiri and Pal; R. S. Dyavanal.

1. INTRODUCTION AND MAIN RESULTS

In the paper, by meromorphic functions we always mean meromorphic functions
in the open complex plane C. Let f be a non-constant meromorphic function. By
S(r, f) we denote any quantity satisfying S(r, f) = o (T'(r, f)) as r — oo, possibly
outside a set of finite linear measure. A meromorphic function a = a(z) is said to
be a small function of f if either a = oo or T'(r,a) = S(r, f). We denote by S(f)
the collection of all small functions of f. Clearly CU {oo} € S(f) and S(f) is a
field over the set of complex numbers.

For a positive integer p and a € C U {oo} we denote by Ep)(a; f) the set of
those zeros of f — a whose multiplicities do not exceed p, each zero is counted
according to its multiplicities and Ep)(a; f) the set of those distinct zeros of f —a
whose multiplicities do not exceed p, where we mean by a zero of f — oo a pole of
f. Also by E)(a; f)(Eoo)(a;f)) we denote the set of all zeros of f — a counted
with multiplicities(ignoring multiplicities). If Ew)(a; f) = Eo)(a; 9) (Eooy(a; f) =
E)(a;g)), we say that f and g share a CM(IM). Also we say that a meromorphic
function f(z) partially shares a with a meromorphic function g(z) if Ew)(a; f) C

For A C C we denote by N 4(r, a; f) the reduced counting function of those zeros
of f — a which belong to the set A, where a € C U {co}. Clearly if A = C, then
Na(r,a; f) = N(r,a; f). .

For a positive integer p and a € CU {oo} we denote by Ny (7, a; f)(Np (7, a; f))
the counting function (reduced counting function) of those zeros of f —a whose mul-
tiplicities do not exceed p. Similarly we define N, (r, a; f)(W(p(r, a; f)) the counting
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function (reduced counting function) of those zeros of f — a whose multiplicities
greater than equal to p. Also we write Noo)(r, a; f) = N(r,a; f).

For standard definitions and notations of Nevanlinna theory we refer the reader
to [4, 6]. The modern theory of uniqueness of entire and meromorphic functions
was initiated by R. Nevanlinna with his two famous theorems: The Five Value
Theorem and The Four Value Theorem. The five value theorem of Nevanlinna may
be stated as follows:

Theorem 1[[4], p. 48] Let f(z) and g(z) be two non-constant meromorphic
functions and a; € CU{oo} be distinct for j = 1,2,...,5. If Ex)(a;; f) = Ex)(a;; 9)
for j =1,2,...,5, then f(z) = g(z).

Gopalakrishna and S. S. Bhoosnurmath [3] improved the above theorem in the
following manner.

Theorem 2[3] Let f, g be distinct non-constant meromorphic functions. If there
exist distinct elements ay, as, ..., ax € C U {oo} such that E, (as; f) = E,,)(a;;9)
for j = 1,2, ..., k, where p1, ps, ..., px are positive integers or co with p; > py > ... >
Pk, then

k
ZL§2+ P
1+ p; 1+p

Jj=2

C. C. Yang [[6],Theorem 3.2, p. 157] improved Theorem 1 by considering partial
sharing of values and proved the following theorem.

Theorem 3][[6],Theorem 3.2, p. 157] Let f(z) and g(z) be two non-constant
meromorphic functions such that Eo(aj; f) € Eu(ay; g) for five distinct elements
ay,asg, ...,a5 of CU {oo}.

If

e
=

(Taa‘j;f)
1
9’

I
—

..
lim inf
T—00

ot

1N(’I"7 a’jag)

J

then f(z) = g(z).
In 2007 Chen, Chen and Tsai [1] extended Theorem 3 by considering f(z) and
g(z) partially sharing more than five values proved the following theorem.
Theorem 4[1] Let f(z) and g(z) be two non-constant meromorphic functions
such that Eoo)(aj;f) C Eoo)(aj;g) for k (> 5) distinct elements ay,as, ..., a of
CU {o0}.
If

M=
=

y (Ta aj;f)
lim inf >
r—00 —
N(Ta a]?.g)

Il
—
—_

k—3’

NgES

~
Il
-

then f(z) = g(z).

In 2012 R. S. Dyavanal [2] improved Theorem 3 and Theorem 4 by considering
uniqueness of n-th derivatives of meromorphic functions and proved the following
theorem.

Theorem 5[2] Let f and g be two non-constant meromorphic functions and
a; € CU{oo} be distinct for j = 1,2,...,k (> 5) and for a non-negative integer
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n, if Ex(aj, f™

) - )(a]ag(n)) for 1 < J < k7 Eoo)(oaf) C Eoo)(oaf(n))a

g™) and

k
roag {0
NG )

“ k- 13

lim inf 2=
T—00

k
2 NG a;; gt™)
i=1
then f() = ¢("),

I. Lahiri and R. Pal[5] prove the following uniqueness theorem of meromorphic
functions sharing k (> 5) small functions.

Theorem 6[5] Let f and g be two non-constant meromorphic functions and
a; = a;(z) € S(f) N S(g) be distinct for j = 1,2,..k (k > 5). Suppose that
p1 > pa2 > ... > py are positive integers or infinity and 6 (> 0) is such that

1+(1+1)Zlipj (k—2)(1+pil).

Let A; = E, ) (a;; f)\Ep,)(aj;9) for j = 1,2,..., k. IfZ§:1 N, (r,a5; f) < 6T(r, f)

P
lim inf Zj:l Np;(r;a5; f) S D1

e S Ny (razig)  (k=2)(14p1) — (L4p) Xy — 1= (1+ 0
then f=g.

In the paper we prove the following theorems:

Theorem 7 Let f and g be two non-constant meromorphic functions and a;
(=1, 2, ..., k) be k (> 5) distinct complex numbers. For a non-negative integer n,
let A; = E(aj; f™)\ E(ay; g(”)) and Z?Zl N, (r, aj; fM) < o(T(r, f™)), for

some d such that 0 < § < m If

N T, a5 (n) 1
lim inf Z;_l ( i+ ) > )
ree Zj:l N (T7 Qg3 g(n)) k—3+ k7z+k 1 Y

then £ (z) = g™ (2).

Theorem 8 Let f; and fo be two non-constant meromorphic functions and
a; = a;(z) € S(f) N S(g) be distinct for j = 1,2,..k (k > 5). Suppose that
m (1 <m < k) is an integer; p1 > pa > ... > py are positive integers or infinity and
d (> 0) is such that

k
1
1+— (k—m—-1)(14+—)+m.

—~ 1+ Dm

j=m
Let A )(a‘]7f1)\Ep_‘] (aj7f2) for ] 72a"'ak' If Z?:lNAj(raaj;fl> S
0T (r, f1) and

Zk N;DJ)(T a]’fl) Pm

lim inf — >
ree Zj Ny (ragif2) - (L4pm) X5 o Ty (M =2 = 0)ppm — 2(1 +Pm)
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Theorem 9 Let fi, fo be two non-constant meromorphic functions and a; €
C U {00} be distinct for j = 1,2,....k (k > 5). Suppose that p; > ps > ... > py are
positive integers or infinity and § (> 0) is such that
k
1 1 1 k—2
—+(1+— 1< (14—
N TRARERE =1

P1 D1 P1

for a non-negative integer n. Let A; = Epj)(aj;fl(”)) \Ep].)(aj;fé”)) for j =

2,....,kand E(0; f;) C E(O;fi(n)) fori =1,2. If Z?:lNAj (r, aj;fl(n)) < 6T(r, fn))
and

1 N, )(r,aj;ffn)) (n+ 1)p1
im inf o) > Z n ,
e Zj 1 Ny (rags f2) (B=2)(1+p1) = (n+ 1)1 +p1) 25 755 — (n+ D{(1 +6)pr + 1}

then f{"(2) = £ (2).

2. LEMMA

In this section we prove some lemmas which is needed in the sequel.
Lemma 1[7] Let f be a non-constant meromorphic function and a; € S(f) be
distinct for j =1, 2,.., k. Then for any (> 0)

k
(]{1—2—6 ’I“f SZ Taja (va)'

Lemma 2 ([6], Theorem 1.35, p-49) Let f(z) be a transcendental meromorphic
function in the complex plane and ay, ag, ..., ar be k (> 2) distinct finite complex
numbers. Then for any positive integer n, we have

k-1 % . ¢(n) (n) ()
(k ! kn+k—1>T(r’f K;N(r’“?’f ) + €Tl 1) + 84,

where € is any positive number.
Lemma 3 Let f be a non-constant meromorphic function and a1, asg, ..., ar be
k (> 3) distinct complex numbers. If for a non-negative integer n, E(0; f) C

E(0; f™), then (k — 2+ o(1)T(r, f) < 35 N(r,a;; f™).

Proof. By the Nevanlinna’s first fundamental theorem, we have

T(r.f) = T(r,§>+0<1>
(n)
< N0 f) i )+ i) +00)
< N(r,0; ) +T(r, f™) = N(r,0; f™) + S(r, ) (1)

By the Nevanlinna’s second fundamental theorem, we get

(k—1)T(r, f) < N(r,00; f™) +ZNTay,f( )+ N (r,0; f™)) + S(r, f).

j=1
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Without loss of generality, we may assume that a;y = 0. Otherwise a suitable

linear transformation is done. Then the above inequality reduces to

o

(k= 1)T(r, f) < N(r,00; f™) + 2: (ryaj; f™) + S(r, f)

Using (2) in (1), we obtain

k
(k= 1)T(r, f) < (k= )N (r,0; f) + N(r, 00; f") Z (r,az; f™) — (k —

k
= (k—1)T(r,f) < (k—1)N(r,0; f) + N(r,00; f) Z (roaj; f

i=1
—(k = )N (r,0; ) + 5(r, f).
Since E(0; f) € E(0; f™), we have from (3)

(ki]‘)T(va) T‘OOf Ta]af +S'(va)

H'M»

k
= (k- 2+ o(1) Z (r,a5; f™).
This complete the proof of the lemma.

3. PROOF OF MAIN THEOREMS
Proof of Theorem 7:
Proof. Let us assume that f(")(z) # ¢(™(z). By Lemma 2, we have

k—1

k
-1-— (n) . p(n) (n)
(k=1- - m 9T )<;N(r,a],f ) +5Gr, 1),

k
kE—1
1 _ (n) . p(n)
= (k N e+o(1)>T(r,f )<;N(na],f )
Similarly,
E—1-— koL —e+o0(1)) T(r,g™) < zk:N (7“ a»'g("))
kn+k—1 ’ = T
Now, let B; = E(a;; f()\ A;, for j = 1,2, ..., k. Then,
k k k
ZN(ruaj;fn) = ZNAj(T7aj;f(n))+ZNBj(T7aj;f(n))

j=1 j=1 =1
< OT(r ™)+ N, 0 £ — gt
< (14 O)T(r, f) + T(r,g'™).

(2)

DN (r,0; f™) + S(r, f)

3)

(4)
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Using (4) and (5) we have,

k k k
k—1 n n n
= (’“‘ Ll oy i —6+o<1>) ;N(ﬁaﬁf( ) < (146) Ezj (ryaz; ™)+ ;zv(naj;ﬁ ).
Therefore,
ko1 k k
B 1 N L)y < N (1)
{k kn+k—1 € ( +5)+0( )}; (Tva’Jvf )—j:l (raahg )
L S Nea /™) 1
2?21 N(fr’aj;g(n)) kE—1-— 7k:n+k 1 —6—(1+6)+0(1)
Since € is arbitrary, taking limit as » — oo, we have
S N(r,ag; f™) 1
lim inf =2 < =
r—00 Z] 1_]\[(7'(1J7 ()) k_l_ikark 1 (1+(5)
_ 1
- kn ’
k—=3+ kn+k—1 -0
which is a contradiction.
Hence f()(z) = ¢(")(z).
O

Corollary 1 In Theorem 7 if Ew)(aj;f(")) - Ew)(aj;g(")), for j =1,2,...,k,
then A; = ¢. So we can choose § = 0. Then

k n
lim inf ZJ 1 N, aj;f( )) > !
oo Z;  N(raj90) k=34 i

1

o — < ki(n+3), therefore Theorem 7 is an improvement of Theorem

Since

5.
Proof of Theorem 8.

Proof. Supposefi # fa. Then by Lemma 1 we have

k
(k—2—eT(r, fi) < Y N(r,a;fi)+58(r f1)

j=1
k
< Y N rags f1) + Ny pa(rags f1) ) + S, )
j*l
1
< Z{N (r,aj3 f1) + mN(ij(T,aj;ﬁ)}+S(T,f1)
— 1
S 1+p T, jafl) +ij(T7aj;f1)}+S(T7fl)
< jﬂl;p p7><naj;f1>+j§:jl1+pj T(r, f1) + S(r, f1)(6)
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Since 1> {4~ > ¢#2- > .. > > 1 we get from (6)

1 = 1+4p2 _1+Pk_2’
m—1 D P k 1
k—2-T(nf1) < i _Pm AN g i) + T
( T f1) §{1+pj Tt p 1 Vo0 (i 1) ;1“9]- 71
i D
T N, i S
+ ;1+pm pJ)(T’a]7f1)+ (T7f1)
- Pm
< N, B
> Z 11 pm )(Tv a]7fl)

<
Il
—

(m_l)pm b 1
+ m—l—i—i—z - | T(r, f1) + S(r, f1)

i.e.,

k
Dpj (m — 1L)pm
+ —2—€e+o(1 ) <
1+p; 14+ pm W) Tl 1) <

k
Z Dj) rajvfl
(7)

j=m

Similarly, we get

k _ 1, i
1ijpj + (”i Hif —2—e+o0(l) | T(r, f2) < _Zip Zij)(r, aj; fa)
(8)

j=m

Let B, = E, y(a;; f1) \ A, for j = 1,2, ...,k and using (7), (8) we have
J pi)\4j J

k k k
Z /r'ajmfl = ZNA_j(r7aj;f1)+ZNBj(T’aj;f1)

Jj=1 Jj=1 Jj=1

< 8T(r, f1) + N(r,0; f1 — fo)
< (A48T, f1)+T(r, f2) + O(1)
i.e.,
Zk: Dj +(m—1)]9m7 —e+o(1 zk:Np (r,aj; f1)
1 +pj 1 +pm j=1 )

j=m

k
< (1+9) Dm Zﬁpj)(r7aj;f1)+{1+0(1)}

k
Pm
Nopy(r,a5; f2)
L+ pm pm; P

1+

k k
Pj (m — 1)pp, Pm _ )
J§1+pj+ 1+ pm — (0= =2 c+o(l) | D Ny (ras:fi)
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Since € (> 0) is arbitrary, we have

Z L Ny (r,ag; f1) 1f-;;m
S N e SRt e _3)
j=14Vp;) 33 J2 Zj:m T+p; +W_(1+5) —

which is a contradiction.
Therefore f1(z) = f2(z). This completes the proof. O

Corollary 2 For m = 1 in Theorem 8 we get Theorem 6. Hence Theorem 8 is
a generalization of Theorem 6.
Proof of Theorem 9.

Proof. By Lemma 3, we have

k
(k—2+o(I)T(r, f1) < Y N(r,a;; f{") (9)

j=1

<.

and

M;r

(k =2+ o()T(r, f2) < > N(r,a; f5"). (10)

7j=1

From (9) we have

(k=2+01)T(r, fr) < Z{Np)raﬁfl )+ Ny, 1 (raj; 1)}
AT n 1 n
< Z{ij)(raaj;fl( )+1+ N(pJJrl(T)aj;fl( ))}
~ () 1 ()
S Z{1+p Pj) Ta]vf )+1+ij(7" a]vf )}
~ v (my N~ (n)
J AT . n n
< a 1+ijpj)(Tvajvf1 )‘f'Z:ﬁpjT(rv 1)
j=1 Jj=1
k v, . k 1
< Ny, (rya5; ;) + (n+1) T(r, f1)
j:11+pj J ];14—])]
i.e.,
k 1 k »; -
k—=2)—(n+1 — T(r, f1) < N i
{k=2) - );H ADIT(r ) £ 3 77y Mo asi )
Similarly from (10) we get
k 1 k b —
{(k—2)—(n+1)27+o DIT(r, f2) < 2N, (r,a5: £)
o 114— j:11+pj

Let Bj = E, (aj; (n)) \A for j=1,2,... k.
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Now

k
S N, as )
j=1

k k
ZNA] (T7 aj; fl(n)) + ZNBJ‘ (73 Qj; fln))

j=1 j=1

< OT(r, /") + N(r, 05 £ = £5)
< (40 n+0)T(r f1) + (n+1)T(r, f2)
ie.,
k k
{(k=2)-(n+1)> o)} N, (raz )
j=1 L+p; j=1

k k
< 148 +)Y PN, (a7 + (4 1) Y PN, (g )

j:11+pj j:11+pj
Since 1 > lﬁn > 1%92 > ... > 1+pk > %, we get from above inequality
k ko
{(k=2) = (4 1) 0 1 o)} DNy (s 417)
j=1 J j=1
k k
< (1+0)(n+ (r, aj;fl(n)) +(n+ (rya;; f ("))
j:]. ]:1
ie.,
k » k
1 m
{(k—-2) ]:11 — 1+ n+ 1)+ ol Z:: o (rag; f17)
k
(n+ (r,a;; ("))
j:1
Therefore
N, (g £7)
lim inf o)
oo ZJ 1 Npy(ryags £57)
< (n+1)py
T (=2 4p) - (n+ DA +p) X Ty — (A +)p
(n+1)ps

— (11
(=2t m) (1 D P b — (e D oy £ 1)

which is a contradiction.
Therefore f{™(z) = f{™ (). This complete the proof. O

_ o Sy Nooy(riagifi™) n+1
Corollary 3 Let p, = oo and L = liminf, ., =L N (reay f) > (43

j=1

If S0 Ny (ra;: f177) < 0T (r, f{7), for some & with 0 < & < = <fg3> i
then f{"(2) = f{"(2).
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If we assume Eoo)(aj;fl(")) C Ey)(aj; 2(")), then A; = ¢ for j =1,2,...,k and
so we can choose § = 0. Choosing n = 0 we get Theorem 4.

Corollary 4 For k = 5, then Corollary 1 is reduced to Theorem 3.

Corollary 5 Let f1 # fo. Forn = 0 and E, (aj; f1) = Ep,(a;; f2) for j =
1,2,...,k, we have A; = ¢, therefore we can choose § = 0. We have from (11)
P1

(L+p)(k—2) = (L+p1) X5y 1 — (L+p1)

1<

bj < D1
= 1+p; — (1+p1)
hence Theorem 9 reduced to Theorem 2.
Example 1 Let f(z) = e*+a and g(z) = e*+b where a, b (a # b) are constants.
Then E(aj; f') = E(a;;9") so, Aj = ¢ for j =1,2,...,5, we can choose 6 = 0 and
5 e
lim inf E{;le(r’a“f) —1> 2
ree Z_j:l N (r,a5;9") 23
Therefore by Theorem 7 we have f/(z) = ¢'(2).
Example 2 Let f(z) = ezlﬁ and g(z) = ;Zfl Clearly, E(0; f) C E(0; f') and
E(0;9) C E(0;¢'). Since E(ay;; f') = E(a;;¢') so, Aj = ¢ for j =1,2,...,7, we can
choose § =0 and

+ 2.

2
lim inf ( =
rree (’f’, aj; g,) 3
Therefore by Theorem 9 we have f/(z) = ¢'(2).
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