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NEW OSCILLATION RESULTS TO THIRD ORDER DAMPED

DELAY DIFFERENCE EQUATIONS

M. MADHAN, S. SELVARANGAM AND E. THANDAPANI

Abstract. This paper deals with the oscillation of certain class of third order

nonlinear delay difference equations with damping. Some new criteria of os-
cillation of the third order equation in terms of oscillation of a related second
order linear difference equation without damping are obtained. Examples are
provided to illustrate the main results.

1. Introduction

Consider nonlinear third order delay difference equation of the form

∆(an∆(bn(∆yn)
α)) + pn(∆yn+1)

α + qnf(yn−k) = 0, n ≥ n0, (1)

where n0 ∈ N is a fixed integer, and α ≥ 1 is a ratio of odd positive integers. We
assume that
(H1) {an}, {bn}, {pn} and {qn} are real positive sequences for all n ≥ n0, and k
is a positive integer;

(H1) f : R → R is a continuous function such that uf(u) > 0, and f(u)
uβ ≥ M > 0,

for all u ̸= 0, where β ≤ α is a ratio of odd positive integers.
By a solution of equation (1), we mean a nontrivial sequence {yn} defined for
all n0 − k, and satisfies equation (1) for all n ≥ n0. Clearly, if yn = cn for
n = n0 − k, n0 − σ + 1, ..., n0 − 1 are given, then equation (1) has a unique so-
lution satisfying the above initial conditions. A solution of equation (1) is said
to be oscillatory if it is neither eventually positive nor eventually negative, and
nonoscillatory otherwise. A difference equation is called nonoscillatory if all its
solutions are nonoscillatory.
Recently, there has been a great interest in determining the oscillation criteria for
various types of second order difference equations, see for example [1] and the ref-
erences cited therein. However, the study of oscillatory behavior of third order
difference equations has considerably received less attention eventhough such equa-
tions have wide applications in the fields such as economics, mathematical biology,
and many other areas of mathematics in which discrete models are used, see for
example [5, 7, 11].
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The study of oscillation and asymptotic behavior of equation (1) in the continu-
ous case (third-order delay differential equations with damping) and on time scales
(third-order delay dynamic equations on time scales) has been investigated in the
following papers [12, 13, 26].
We note that the analog equation of (1) in the continuous case is the functional
differential equation

(a(t)(b(t)(y′(t))α)′)′ + p(t)(y′(t))α + q(t)f(y(t− k)) = 0

where a, b, p and q are positive real continuous functions, k is a positive constant
and f : R → R is continuous with uf(u) > 0 for u ̸= 0. For related works regarding
the oscillation of some special cases of equation (1), we refer to the papers [3, 6, 9],
and the references cited therein.
From the review of literature, one can see that most of the oscillation results are
for the third order difference equations without damping term, see for example
[1, 2, 8, 10, 14, 15], and the references cited therein and very few results available for
the equation with damping term [16, 18, 19]. Recently in [5], the authors considered
the equation (1) with α = β = 1, and established some sufficient conditions which
ensure that all solutions of equation (1) are either oscillatory or tend to zero as
n → ∞.
The purpose of this paper to improve and generalize the results in [2, 4, 8, 10, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24], and present some sufficient conditions which
ensure that any solution of equation (1) oscillates when the related second order
linear difference equation without delay

∆(an∆zn) +
pn
bn+1

zn+1 = 0 (2)

is nonoscillatory.
The paper is organized as follows. In Section 2, we present some preliminary
lemmas which are used to prove the main results, and in Section 3, we state and
prove oscillation theorems. Finally in Section 4, we provide some examples to
illustrate the main results.

2. Preliminary Results

For the sake of convenience, we denote L0(yn) = yn, L1(yn) = bn(∆(L0(yn)))
α,

L2(yn) = an∆(L1(yn)) and L3(yn) = ∆(L2(yn)) for all n ≥ n0. Hence, equation
(1) can be written as

L3(yn) +
pn
bn+1

L1(yn+1) + qnf(yn−k) = 0, n ≥ n0.

If {yn} is a solution of equation (1), then {zn} = {−yn} is a solution of the equation

L3(zn) +
pn
bn+1

L1(zn+1) + qnf
∗(zn−k) = 0, n ≥ n0

where f∗(zn−k) = −f(−zn−k) and uf∗(u) > 0 for u ̸= 0. Thus, concerning nonoscil-
latory solutions of equation (1) we can restrict our attention only to solutions which
are positive for all large n.
Define

R1(n,N) =
n−1∑
s=N

1

b
1/α
s

, R2(n,N) =
n−1∑
s=N

1

as
,
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and

R3(n,N) =

n−1∑
s=N

(
R2(s,N)

bs

) 1
α

, n ≥ N ≥ n0.

We assume that

R1(n,N) → ∞ as n → ∞, (3)

and

R2(n,N) → ∞ as n → ∞. (4)

We begin with the following lemma given in [5].
Lemma 1 Suppose that equation (2) is nonoscillatory. If {yn} is a nonoscillatory
solution of equation (1) for all n ≥ n0, then there exists an integer N ≥ n0 such
that either ynL1(yn) > 0 or ynL1(yn) < 0 for all n ≥ N.
Lemma 2 Let {yn} be a nonoscillatory solution of equation (1) with ynL1(yn) > 0
for n ≥ N ≥ n0. Then

L1(yn) ≥ R2(n,N)L2(yn), n ≥ N, (5)

and

yn ≥ R3(n,N)L
1/α
2 (yn), n ≥ N. (6)

Proof. Let {yn} be a nonoscillatory solution of equation (1), say yn > 0, yn−k > 0,
and L1(yn) > 0 for all n ≥ N. Since

∆(an∆(bn(∆yn)
α)) = − pn

bn+1
L1(yn+1)− qnf(yn−k) ≤ 0, n ≥ N,

we have that an∆(bn(∆yn)
α) is nonincreasing for all n ≥ N, and hence

L1(yn) = bn(∆yn)
α = bN (∆yN )α +

n−1∑
s=N

∆(L1(ys)) ≥
n−1∑
s=N

∆(L1(ys))

≥ an∆(bn(∆yn)
α)

n−1∑
s=N

1

as
= R2(n,N)L2(yn).

It follows from the last inequality that

∆yn ≥
(
R2(n,N)

bn

)1/α

L
1/α
2 (yn).

Now, summing this inequality from N to n−1, and then using the fact that L2(yn)
is nonincreasing, we obtain

yn = yN +
n−1∑
s=N

∆ys ≥
n−1∑
s=N

∆ys

≥
n−1∑
s=N

(
R2(s,N)

bs

)1/α

L
1/α
2 (ys)

≥ R3(n,N)L
1/α
2 (yn),

for all n ≥ N. This completes the proof.
Next, consider the second order delay difference equation

∆(an∆xn) = Qnxn−l (7)
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where {an} is same as in equation (1), {Qn} is a positive real sequence, and l is a
positive integer.
Lemma 3 If condition (3) and

lim
n→∞

sup

n−1∑
s=n−l

QsR2(n− l, s− l) > 1, (8)

are satisfied, then every bounded solution of equation (7) is oscillatory.
Proof. Let {xn} be a bounded nonoscillatory solution of equation (7), say xn > 0,
and xn−l > 0 for all n ≥ N ≥ n0. By (7), we have that {an∆xn} is strictly
increasing for all n ≥ N. Hence for any N1 ≥ N, we obtain

xn = xN1 +
n−1∑
s=N1

∆xs = xN1 +
n−1∑
s=N1

as∆xs

as

> xN1 + aN1∆xN1

n−1∑
s=N1

1

as

= xN1
+ aN1

∆xN1
R2(n,N1).

So ∆xN1 < 0, as otherwise (3) would imply that xn → ∞ as n → ∞, a contradiction
to the boundedness of {xn}. Therefore

xn > 0, ∆xn < 0, and ∆(an∆xn) > 0, n ≥ N. (9)

Now for j ≥ s ≥ N, we have

xs > xs − xj = −
j−1∑
t=s

∆xt = −
j−1∑
t=s

at∆xt

at

≥ −aj∆xj

j−1∑
t=s

1

at
= −R2(j, s)aj∆xj . (10)

For n ≥ t ≥ N1, setting s = i− l and j = n− l in (10), we obtain

xi−l > −R2(n− l, i− l)an−l∆xn−l.

Summing the equation (7) from n − l to n − 1, and then using the last inequality
we obtain

−an−l∆xn−l > an∆xn − an−l∆xn−l

=

n−1∑
s=n−l

Qsxs−l

> −

[
n−1∑

s=n−l

QsR2(n− l, s− l)

]
an−l∆xn−l.

That is,

1 >
n−1∑

s=n−l

QsR2(n− l, s− l). (11)

Taking limit supremum as n → ∞ on both sides of (11) yields a contradiction to
(8). This completes the proof.
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Lemma 4 If condition (3) and

lim
n→∞

sup
n−1∑

s=n−l

(
1

as

n−1∑
t=s

Qt

)
> 1, (12)

are satisfied, then every bounded solution of equation (7) is oscillatory.
Proof. Let {xn} be a bounded nonoscillatory solution of equation (7), say xn > 0,
and xn−l > 0 for all n ≥ N ≥ n0. As in Lemma 3, we obtain (9). Summing the
equation (7) from s to n− 1, we obtain

−as∆xs > an∆xn − as∆xs =
n−1∑
t=s

Qtxt−l

≥

[
n−1∑
t=s

Qt

]
xn−l.

That is,

−∆xs >

(
1

as

n−1∑
t=s

Qt

)
xn−l.

Summing the last inequality from n− l to n− 1, we have

xn−l > xn−l − xn >

[
n−1∑

s=n−l

(
1

as

n−1∑
t=s

Qt

)]
xn−l,

or

1 >
n−1∑

s=n−l

(
1

as

n−1∑
t=s

Qt

)
. (13)

Taking limit supremum as n → ∞ on both sides of (13) yields a contradiction with
(12), and the proof is completed.

3. Oscillation Results

Now, we begin to present the main results.
Theorem 1 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscil-
latory. If there exists a positive real sequence {ρn}, and a positive integer l such
that l ≤ k, and

lim
n→∞

sup
n−1∑
s=N1

[
Mρsqs −

αα

(α+ 1)α+1

Aα+1
s

Bα
s

]
= ∞ (14)

where

An =
∆ρn
ρn+1

− ρn
ρn+1

pn
bn+1

R2(n+ 1, N),

Bn = c∗β(R3(n+ 1− k,N))
β
α−1R

1/α
2 (n− k,N)

b
1/α
n−k+1

,

and (8) or (12) holds with

Qn =

[
cMqnR

β
1 (n− l, n− k)− pn

bn+1

]
≥ 0 for all n ≥ N1 ≥ N,
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and c, c∗ > 0, then every solution {yn} or {L2(yn)} of equation (1) is oscillatory.
Proof. Let {yn} be a nonoscillatory solution of equation (1). Without loss of
generality, we may assume that yn > 0, and yn−k > 0 for all n ≥ N ≥ n0. Then,
it follows from Lemma 1 that L1(yn) > 0 or L1(yn) < 0 for all n ≥ N. First we
assume that L1(yn) > 0 for all n ≥ N. From equation (1), we see that L2(yn) is
decreasing for all n ≥ N . Hence for any integer N1 ≥ N, we have

L1(yn) = L1(yN1) +

n−1∑
s=N1

∆(L1(ys)) = L1(yN1) +

n−1∑
s=N1

L2(ys)

as

≤ L1(yN1) + L2(yN1)R2(n,N1),

so L2(yN1) > 0, as otherwise (4) would imply that L1(yn) → −∞ as n → ∞, a
contradiction to the positivity of L1(yn). Therefore L2(yn) > 0 for all n ≥ N1.
Define

wn = ρn
an∆(bn(∆yn)

α)

yβn−k

, n ≥ N1. (15)

Then wn > 0 for all n ≥ N1, and

∆wn = ρn
∆(L2(yn))

yβn−k

+
∆ρn
ρn+1

wn+1 −
ρn

ρn+1

wn+1∆yβn−k

yβn−k

≤ −Mρnqn +
∆ρn
ρn+1

wn+1 −
ρn

ρn+1

∆yβn−k

yβn−k

wn+1

− ρn
ρn+1

pn
bn+1

R2(n+ 1, N)wn+1. (16)

Using Mean value theorem, we have

∆yβn−k

yβn−k

≥ β
∆yn−k

yn+1−k
, β > 0. (17)

In view of (17), (5), and the fact that L2(yn) is decreasing, and yn is increasing, we
have from (16) that

∆wn ≤ −Mρnqn +

(
∆ρn
ρn+1

− ρn
ρn+1

pn
bn+1

R2(n+ 1, N)

)
wn+1

−β
ρn

ρ
1+1/α
n+1

R
1/α
2 (n− k,N)

b
1/α
n−k+1

w
1+1/α
n+1 y

β/α−1
n+1−k. (18)

It follows from L3(yn) < 0 that 0 < L2(yn) ≤ c1 < ∞ for all n ≥ N1 ≥ N. Hence
for n ≥ N1, we have

bn(∆yn)
α = L1(yn) = L1(yN ) +

n−1∑
s=N

∆(L1(ys))

≤ L1(yN ) + c1R2(n,N)

=

[
L1(yN )

R2(n,N)
+ c1

]
R2(n,N) ≤ c2R2(n,N)
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holds where c2 = c1 +
L1(yN )

R2(N1,N) . Therefore, we have for all n ≥ N2 ≥ N1, that

yn = yN1 +
n−1∑
s=N1

∆ys ≤ yN1 +
n−1∑
s=N1

(
c2R2(s,N)

bs

)1/α

≤ yN1 + c
1/α
2 R3(n,N1)

=

[
yN1

R3(n,N1)
+ c

1/α
2

]
R3(n,N1) ≤ c3R3(n,N1)

holds where c3 = c
1/α
2 +

yN1

R3(N2,N1)
. Thus, we have

y
β/α−1
n+1−k ≥ c

β/α−1
3 (R3(n+ 1− k,N1))

β/α−1 for all n ≥ N2.

Thus from (18), we obtain

∆wn ≤ −Mρnqn +Anwn+1 −Bnw
1+1/α
n+1 , n ≥ N2. (19)

Using the inequality Cu−Du1+1/α ≤ αα

(α+1)α+1
Cα+1

Dα , for D > 0 in (19) with C = An

and D = Bn, we obtain

∆wn ≤ −Mρnqn +
αα

(α+ 1)α+1

Aα+1
n

Bα
n

, n ≥ N2.

Summing the last inequality from N2 to n− 1, we have

n−1∑
s=N2

(
Mρsqs −

αα

(α+ 1)α+1

Aα+1
s

Bα
s

)
≤ wN2 . (20)

Taking limit supremum as n → ∞ in (20), we obtain a contradiction to (14).
Next consider the function L2(yn). The case L2(yn) ≤ 0 cannot hold for all large
n, say n ≥ N2 ≥ N1, since by the summation of

∆yn =

(
L1(yn)

bn

)1/α

≤
(
L1(yN2)

bn

)1/α

, n ≥ N2,

we have from (3) that yn < 0 for large n, which is a contradiction. Thus, assume
yn > 0, L1(yn) < 0, and L2(yn) > 0 for all large n, say n ≥ N3 ≥ N2. Now for
j ≥ s ≥ N3, we obtain

ys − yj = −
j−1∑
t=s

(bt(∆yt)
α)1/α

b
1/α
t

≥ (−L1(yj))
1/α

(
j−1∑
t=s

1

b
1/α
t

)
= R1(j, s)(−L1(yj))

1/α.

Setting s = n− k and j = n− l, we obtain

yn−k ≥ R1(n− l, n− k)(−L1(yn−l))
1/α = R1(n− l, n− k)xn−l

for all n ≥ N3, where xn = (−L1(yn)) > 0 for n ≥ N3. From equation (1), and the
fact that {xn} is decreasing, and n− l ≤ n− k < n, we obtain

∆(an∆zn) +

(
pn
bn+1

)
zn+1−l ≥ Mqn(R1(n− l, n− k))βzn−lz

β/α−1
n−l

where zn = xα
n. Since {zn} is decreasing and α ≥ β, there exists a constant c4 > 0

such that z
β/α−1
n ≥ c4 for n ≥ N3. Thus

∆(an∆zn) ≥ Qnzn−l, n ≥ N3.
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Proceeding exactly as in the proof of Lemmas 3 and 4, we arrive at the desired
conclusion. This completes the proof.
From the above theorem, we obtain the following corollary.
Corollary 2 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscil-
latory, and An ≤ 0, for all n ≥ n0, where An is defined as in Theorem 1. If there
exists a positive function {ρn}, and a positive integer l such that l ≤ k, and

∞∑
n=N

ρnqn = ∞ (21)

for any N ≥ n0, and (8) or (12) holds with Qn as in Theorem 1, then every solution
{yn} or {L2(yn)} of equation (1) is oscillatory.
For n ≥ N ≥ n0, we set

Pn =
pn
bn+1

R2(n+ 1, N), Rn = MqnR
β
3 (n− l, N),

and

En =
n−1∏
s=N

(1 + Ps).

In the following, we present comparison results for the oscillation of equation (1).
Theorem 3 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscil-
latory. Further assume that there exists a positive integer l such that l ≤ k for
n ≥ n0, and (8) or (12) holds with Qn as in Theorem 1. If every solution of the
first order delay difference equation

∆un + E
1−β/α
n−k Rnu

β/α
n−k = 0 (22)

is oscillatory, then every solution {yn} or {L2(yn)} of equation (1) is oscillatory.
Proof. Let {yn} be a nonoscillatory solution of equation (1). Without loss of
generality, we may assume that yn > 0, and yn−k > 0 for all n ≥ N ≥ n0. Further,
it follows from Lemma 1 that L1(yn) > 0 or L1(yn) < 0 for all n ≥ N. First assume
L1(yn) > 0. Choose an integer N1 ≥ N such that n−k ≥ N for all n ≥ N1 ≥ N+k.
Using (5) and (6) in equation (1), we obtain

∆(L2(yn)) +
pn
bn+1

R2(n+ 1, N)L2(yn+1) +MqnR
β
3 (n− k,N)L

β/α
2 (yn−k) ≤ 0

for all n ≥ N1, which can be rewritten as

∆wn + Pnwn+1 +Rnw
β/α
n−k ≤ 0, n ≥ N1

where wn = L2(yn), that is,

∆(Enwn) + EnRnw
β/α
n−k ≤ 0, n ≥ N1.

Setting un = Enwn > 0 in the last inequality, and noting that En−k ≤ En, we
obtain

∆un + E
1−β/α
n−k Rnu

β/α
n−k ≤ 0.

This difference inequality has a positive solution, and by Lemma 2.7 of [25], the
corresponding difference equation (22) has a positive solution, which is a contra-
diction. The case L2(yn) < 0 for n ≥ N is similar to that of Theorem 1, and hence
is omitted. This completes the proof.
From the above theorem, we obtain the following corollary.
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Corollary 4 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscil-
latory. Further, assume that there exists a positive integer l such that l ≤ k for all
n ≥ n0, and (8) or (12) holds with Qn as in Theorem 1. If

lim
n→∞

inf
n−1∑

s=n−k

Rs >

(
k

k + 1

)k+1

when α = β,

or
∞∑

s=N

E
1−β/α
n−k Rs = ∞ when α > β,

holds, then every solution {yn} or {L2(yn)} of equation (1) is oscillatory.
Proof. The proof follows from Theorem 3 and Theorem 7.5.1 of [11] for α = β or
Theorem 1 of [22] for the case α > β.
For α = 1, we derive the following new oscillation criteria for equation (1).
Theorem 5 Let conditions (3), (4) and α = 1 hold. Suppose that equation (2) is
nonoscillatory. If there exists a positive real sequence {ρn} and a positive integer l
such that k ≥ l, and

lim
n→∞

sup

n−1∑
s=N

[
s−1∏
t=N

(1 + ρt −At)

]
(Mρsqs −

ρ2s
Bs

) = ∞ (23)

for every N ≥ n0. If (8) or (12) holds with Qn as in Theorem 1, then every solution
{yn} or {L2(yn)} of equation (1) is oscillatory.
Proof. Let {yn} be a nonoscillatory solution of equation (1). Without loss of
generality, we may assume that yn > 0, and yn−k > 0 for all n ≥ N ≥ n0.
Proceeding as in the proof of Theorem 1, we obtain (19), that is,

∆wn ≤ −Mρnqn +Anwn+1 −Bnw
2
n+1,

and so

∆wn ≤ −Mρnqn + (An − ρn)wn+1 + ρnwn+1 −Bnw
2
n+1,

or

∆wn + (ρn −An)wn+1 + (Mρnqn − ρ2n
Bn

) ≤ 0, n ≥ N.

It follows that

n∑
s=N

[
s−1∏
t=N

(1 + ρt −At)

]
(Mρsqs −

ρ2s
Bs

) ≤ wN .

Hence

lim
n→∞

sup
n∑

s=N

[
s−1∏
t=N

(1 + ρt −At)

]
(Mρsqs −

ρ2s
Bs

) ≤ wN ,

which contradicts (23). The rest of the proof is similar to that of Theorem 1, and
hence is omitted. This completes the proof.
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4. Examples

In this section, we provide some examples to illustrate the main results.
Example 1 Consider the delay difference equation

∆2((∆yn)
3) +

1

5n2
(∆yn+1)

3 + (8− 2

5n2
)yn−2 = 0, n ≥ 1. (24)

Here an = bn = 1, pn = 1
5n2 , qn = 8− 2

5n2 , α = 3, β = 1 and k = 2. Note that the

corresponding second order difference equation ∆2zn+
1

5n2 zn+1 = 0 is nonoscillatory

by [1, Theorem 1.14.2]. Taking l = 1 and ρn = 1, we have An = −1
5n < 0 for all

n ≥ 1, and
∞∑

n=N

ρnqn =
∞∑

n=1

(8− 2

5n2
) = ∞.

Further

Qn = c(8− 2

5n2
)− 1

5n2
> 0 for n ≥ 1,

and

lim
n→∞

sup
n−1∑

s=n−l

QsR2(n− l, s− 1) = lim
n→∞

sup
n−1∑

s=n−1

[c(8− 2

5s2
)− 1

5s2
](n− s+ 1)

= lim
n→∞

sup[c(8− 2

5(n− 1)2
)− 1

5(n− 1)2
]2

= 16c > 1

for c > 1
16 > 0. Thus, all conditions of Corollary 2 are satisfied, and hence every

solution of equation (24) is oscillatory. In fact {yn} = { (−1)n

2 } is one such oscillatory
solution of equation (24).
Example 2 Consider the third order delay difference equation

∆2((∆yn)
3) +

9

2n+1
(∆yn+1)

3 +

(
32− 36

2n

)
y3n−2 = 0, n ≥ 1. (25)

Here an = bn = 1, pn = 9
2n+1 , qn = 32 − 36

2n , α = β = 3, and k = 2. Note

that the corresponding second order difference equation ∆2zn + 9
2n+1 zn+1 = 0 is

nonoscillatory by [1, Theorem 1.14.2]. The other conditions of Corollary 4 are
satisfied, and hence every solution of equation (25) is oscillatory. In fact {yn} =
{(−1)n} is one such oscillatory solution of equation (25).
Example 3 Consider the third order delay difference equation

∆3yn +
1

6n2
∆yn+1 + (8− 1

3n2
)y

1/3
n−2 = 0, n ≥ 1. (26)

Here an = bn = 1, pn = 1
6n2 , qn = 8 − 1

3n2 , α = 1, β = 1
3 , and k = 2. Note

that the corresponding second order difference equation ∆2zn + 1
6n2 zn+1 = 0 is

nonoscillatory by [1, Theorem 1.14.2]. With ρn = 1 it is easy to see that all
conditions of Theorem 5 are satisfied, and hence every solution of equation (26) is
oscillatory. One oscillatory solution of equation (26) is {yn} = {(−1)n}.
we conclude this paper with the following remark.
Remark 1 The results presented in this paper are new and high degree of generality.
We note that the results in [1, 2, 4, 18, 19] are applicable only when α = β = 1, and
therefore the results obtained in this paper are complement and generalize to that
of in [2, 4, 8, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. It would be interesting
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to consider equation (1) and try to obtain some oscillation criteria if pn < 0 and
qn < 0 for all n ≥ n0. This has been left to future research.
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