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EXACT SOLUTIONS FOR COUPLED NONLINEAR PARTIAL

DIFFERENTIAL EQUATIONS USING G′/G METHOD

U. M. ABDELSALAM

Abstract. (G′/G)-expansion method is examined to solve the Boiti-Leon-

Pempinelli (BLP) system and the (2 + 1)-dimensional breaking soliton system.

The results show that this method is a powerful tool for solving systems of
nonlinear PDEs., it presents exact travelling wave solutions. The obtained

solutions include rational, periodical, singular, shocklike wave and solitary

wave solutions.

1. Introduction

Nonlinear PDEs are widely used to describe complex phenomena in various
fields of sciences, such as fluid mechanics, plasma physics, astrophysics, optical
fibers, solid state physics, chemical kinematics, chemical physics and geochemistry,
etc., [[1]-[19]]. Studying the nonlinear waves such as soliton, breather, compacton,
etc., is one of the most important problems in mathematical physics and engi-
neering. Various mathematical methods for finding exact solutions of NLEEs have
been proposed, such as tanh method [12], extended tanh method [20, 21], the
symmetry method [22], sine-cosine method [23], the improved (G′/G)- expansion
method [24],the (G′/G, 1/G)-expansion method [25], homogeneous balance [26],
F-expansion method [27], generalized expansion method [28] and (G′/G) method
[[29]-[31]] . Recently, In [31] (G′/G)-expansion method is applied to solve ZK and
CKP equations in multicomponent plasma. (G′/G)-expansion is a direct, effective
and powerful method for finding analytical solutions of nonlinear partial differ-
ential equations. In [29] Wang et al. proposed the method, while Zhang et al.
[30] proposed a generalized (G′/G)-expansion method to improve and extend G′/G
method to solve variable coefficient and high dimensional equations. In this work
the (G′/G)-expansion method with computations are performed with computer al-
gebra system such as Mathematica to deduce many exact breather-type solutions
containing rational, periodical, singular and solitary wave solutions. In this article,
many exact travelling solutions are obtained for the Boiti-Leon-Pempinelli (BLP)
equation and the (2 + 1)-dimensional breaking soliton equation.
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The manuscript is organised in the following fashion; In Section II, The ex-
tended (G′/G)-expansion method is described. In section III we apply extended
(G′/G)-expansion method to solve the (BLP) equation and the (2 + 1)-dimensional
breaking soliton equation systems. conclusions are given in section V.

2. Description of the method

For the general NLEE

P (u, ux, ut, uy, uxx, ...) = 0 (1)

where u = u(x, y, t) and P is a polynomial in u and its derivatives. We seek its
solutions in the form

u(ζ) =

n∑
i=0

ai

(
G′(ζ)

G(ζ)

)i
, (2)

where ai are real constants with ai 6= 0 to be determined, n is a positive integer to
be determined. The function G(ζ) is the solution of the auxiliary linear ordinary
differential equation

AGG′′ −BGG′ − C(G′)2 − E(G)2 = 0, (3)

where A,B,C and E are real constants to be determined, and

ζ = x+ y − λt (4)

where λ is the speed of the travelling wave.
step 1. Using transformation (4) we obtain an ordinary differential equation

(ODE) for u = u(ζ):

E(u, u′, u′′, u′′′, ...) = 0 (5)

step 2. By balancing the highest nonlinear terms and the highest-order partial
differential terms in the given NLEE we can determine n.

step 3. Substituting Eq. (2) and (3) into Eq. (5) and collecting coefficients of

polynomial of
(
G′(ζ)
G(ζ)

)
, then setting each coefficient to zero yields a set of algebraic

equations for ai (i=0,1,2,...,n), A,B,C,E and λ.
step 4. Solving the system of algebraic equations in step 2 for ai,A,B,C,E

and λ using Maple or Mathematica.
step 5. As Eq. (3) possesses the general solutions:
Case 1. If B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, then(

G′(ζ)

G(ζ)

)
=

B

2Ψ
+

√
Ω

2Ψ

(
c1 sinh(

√
Ω

2Ψ ζ) + c2 cosh(
√

Ω
2Ψ ζ)

c1 cosh(
√

Ω
2Ψ ζ) + c2 sinh(

√
Ω

2Ψ ζ)

)
, (6)

Case 2. If B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, then(
G′(ζ)

G(ζ)

)
=

B

2Ψ
+

√
−Ω

2Ψ

(
−c1 sin(

√
−Ω

2Ψ ζ) + c2 cos(
√
−Ω

2Ψ ζ)

c1 cos(
√
−Ω

2Ψ ζ) + c2 sin(
√
−Ω

2Ψ ζ)

)
, (7)

Case 3. If B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, then(
G′(ζ)

G(ζ)

)
=

B

2Ψ
+

√
−Ω

2Ψ

(
c2

c1 + c2ζ

)
, (8)
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Case 4. If B = 0,Ψ = A− C and ∆ = ΨE > 0, then(
G′(ζ)

G(ζ)

)
=

√
∆

2Ψ

(
c1 sinh(

√
∆

2Ψ ζ) + c2 cosh(
√

∆
2Ψ ζ)

c1 cosh(
√

∆
2Ψ ζ) + c2 sinh(

√
∆

2Ψ ζ)

)
, (9)

Case 5. If B = 0,Ψ = A− C and ∆ = ΨE < 0, then(
G′(ζ)

G(ζ)

)
=

√
−∆

2Ψ

(
−c1 sin(

√
−∆
2Ψ ζ) + c2 cos(

√
−∆
2Ψ ζ)

c1 cos(
√
−∆
2Ψ ζ) + c2 sin(

√
−∆
2Ψ ζ)

)
, (10)

3. Application of the method

3.1. Boiti-Leon-Pempinelli (BLP) system. Let us consider the (2+1)-dimensional
coupled Boiti-Leon-Pempinelli (BLP) system,

uty = (u2 − ux)xy + 2vxx,

vt = vxx + 2(uv)x (11)

Balancing the highest derivative term with non-linear terms, hence we may assume
that

u(x, y, t) = k0 + k1φ(ζ)

v(x, y, t) = µ0 + µ1φ(ζ) + µ2φ
2(ζ) (12)

where ζ = x+ y − λt. Substituting Eq. (12) into Eq. (11) with aide of Eq. (3)
and collecting coefficients of polynomial of φi and equating them to zero, we get a
system of algebraic equations for k0, k1, µ0, µ1 and µ2

− 2Ek1µ0

A
− BEµ1

A2
− λEµ1

A
− 2Ek0µ1

A
− 2E2µ2

A2
= 0 (13)

−2Bk1µ0

A
−B

2µ1

A2
−Bλµ0

A
+

2Eµ0

A
−2CEµ1

A2
−2Bk0µ1

A
−4Ek1µ1

A
−6BEµ2

A2
−2λEµ2

A
−4Ek0µ2

A
= 0

(14)

2k1µ0 −
2Ck1µ0

A
+

3Bµ1

A
+ λµ1 −

3Bλµ1

A2
− λCµ1

A
+ 2k0µ1 −

2λk0µ1

A
− 4Bk1µ1

A
−

4B2µ2

A2
− 2Bλµ2

A
+

8Eµ2

A
− 8λEµ2

A2
− 4Bk0µ2

A
− 6Ek1µ2

A
= 0 (15)

− 2µ1 +
4Cµ1

A
− 2C2µ1

A2
+ 4k1µ1 −

4Ck1µ1

A
+

10Bµ2

A
+ 2λµ2 −

10BCµ2

A2
−

2λCµ2

A
+ 4k0µ2 −

4Ck0µ2

A
− 6Bk1µ2

A
= 0 (16)

− 6µ2 +
12Cµ2

A
− 6C2µ2

A2
+ 6k1µ2 −

6Ck1µ2

A
= 0 (17)

Solving the last system of equations we get

k0 =
−B −Ac

2A
, k1 =

A− C
A

, µ2 = −k2
1, µ0 = − ek3

1

−A+ C + Ck1
, µ2 = −ck1 − 2k0k1

(18)
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Thus we obtain the following solutions of Eq. (12):
For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, we get

u1(ζ) =
B + 2Ak0

√
ΩTanh

[
ζ
√

Ω
2ψ

]
2A

v1(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B +A(c+ 2k0))

√
ΩTanh

[
ζ
√

Ω
2ψ

]
+ ΩTanh

[
ζ
√

Ω
2ψ

]2
4A2

(19)

and

u2(ζ) =
B + 2Ak0

√
ΩCoth

[
ζ
√

Ω
2ψ

]
2A

v2(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B +A(c+ 2k0))

√
ΩCoth

[
ζ
√

Ω
2ψ

]
+ ΩCoth

[
ζ
√

Ω
2ψ

]2
4A2

(20)

However for B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, we obtain periodic
solutions

u3(ζ) =
B + 2Ak0

√
−ΩTan

[
ζ
√

Ω
2ψ

]
2A

v3(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B +A(c+ 2k0))

√
−ΩTan

[
ζ
√

Ω
2ψ

]
− ΩTan

[
ζ
√

Ω
2ψ

]2
4A2

(21)

u4(ζ) =
B + 2Ak0

√
−ΩCot

[
ζ
√

Ω
2ψ

]
2A

v4(ζ) = −
B2 + 2AB(c+ 2k0)− 4A2µ0 + 2(B +A(c+ 2k0))

√
−ΩCot

[
ζ
√

Ω
2ψ

]
− ΩCot

[
ζ
√

Ω
2ψ

]2
4A2

(22)

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, we obtain rational solutions

u5(ζ) = k0 +

B
2 + ψ

ζ

A

v5(ζ) = µ0 −
(c+ 2k0)(Bζ + 2ψ)

2Aζ
− (Bζ + 2ψ)2

4A2ζ2
(23)

For B = 0,Ψ = A− C and ∆ = ΨE > 0, we get

u6(ζ) =
λ

2
+

√
∆Tanh

[
Eζ√

∆

]
A

v6(ζ) =

∆

[
1− Tanh

[
Eζ√

∆

]2]
A2

(24)
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u7(ζ) =
λ

2
+

√
∆Coth

[
Eζ√

∆

]
A

v7(ζ) =

−∆

[
−1 + Coth

[
Eζ√

∆

]2]
A2

(25)

For B = 0,Ψ = A− C and ∆ = ΨE < 0, the periodic solutions

u8(ζ) =
−λ
2
−

√
−∆Tan

[
Eζ√
−∆

]
A

v8(ζ) =

∆

[
−1 + Tan

[
Eζ√
−∆

]2]
A2

(26)

u9(ζ) =
−λ
2
−

√
∆Cot

[
Eζ√
−∆

]
A

v9(ζ) =

∆

[
−1 + Cot

[
Eζ√
−∆

]2]
A2

(27)

3.2. The (2 + 1)-dimensional breaking soliton system. We consider the (2
+ 1)-dimensional breaking soliton system,

ut + αuxxy + 4α(uv)x = 0,

uy = vx (28)

Balancing the highest derivative term with non-linear terms, hence we may assume
that

u(x, y, t) = k0 + k1φ(ζ) + k2φ
2(ζ)

v(x, y, t) = µ0 + µ1φ(ζ) + µ2φ
2(ζ) (29)

where ζ = x + y − λt. By the same way we Substitute Eq. (29) into Eq. (28)
and collecting coefficients of polynomial of φi and equating them to zero, we get a
system of algebraic equations for k0, k1, k2, µ0, µ1 and µ2, by solving this system
of equations we get the first set,

k1 =
3B(A− C)

2A2
, k2 =

3(A− C)2

2A2
, µ1 = k1, µ2 = k2 (30)

and the second set,

k1 = 0, k2 = −
3
(
A2 − 2AC + C2

)
2A2

, µ2 = k2, µ0 =
−3Ak0 + 3Ck0 − 4ek2

3(A− C)
, µ1 = 0

(31)
Thus for the first set, we obtain the follwing solutions of Eq. (6):
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For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, we get

u1(ζ) = k0 +
3ΩTanh

[
ζ
√

Ω
2ψ

]2
8A2

v1(ζ) = µ0 +
3ΩTanh

[
ζ
√

Ω
2ψ

]2
8A2

(32)

and

u2(ζ) = k0 +
3ΩCoth

[
ζ
√

Ω
2ψ

]2
8A2

v2(ζ) = µ0 +
3ΩCoth

[
ζ
√

Ω
2ψ

]2
8A2

(33)

However for B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, we obtain periodic
solutions

u3(ζ) = k0 −
3ΩTan

[
ζ
√

Ω
2ψ

]2
8A2

v3(ζ) = µ0 −
3ΩTan

[
ζ
√

Ω
2ψ

]2
8A2

(34)

u4(ζ) = k0 −
3ΩCot

[
ζ
√

Ω
2ψ

]2
8A2

v4(ζ) = µ0 −
3ΩCot

[
ζ
√

Ω
2ψ

]2
8A2

(35)

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, we obtain rational solutions

u5(ζ) = k0 +
3
(
3B2ζ2 + 8Bζψ + 4ψ2

)
8A2ζ2

v5(ζ) = µ0 +
3
(
3B2ζ2 + 8Bζψ + 4ψ2

)
8A2ζ2

(36)

For B = 0,Ψ = A− C and ∆ = ΨE > 0, we get

u6(ζ) = k0 +
3∆Tanh

[
Eζ√

∆

]2
2A2

v6(ζ) = µ0 +
3∆Tanh

[
Eζ√

∆

]2
2A2

(37)
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u7(ζ) = k0 +
3∆Coth

[
Eζ√

∆

]2
2A2

v7(ζ) = µ0 +
3∆Coth

[
Eζ√

∆

]2
2A2

(38)

For B = 0,Ψ = A− C and ∆ = ΨE < 0, the periodic solutions

u8(ζ) = k0 −
3∆Tan

[√
−∆ζ
Ψ

]2
2A2

v8(ζ) = µ0 −
3∆Tan

[√
−∆ζ
Ψ

]2
2A2

(39)

u9(ζ) = k0 −
3∆Cot

[√
−∆ζ
Ψ

]2
2A2

v9(ζ) = µ0 −
3∆Cot

[√
−∆ζ
Ψ

]2
2A2

(40)

For the second set,
For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) > 0, we get

u1(ζ) = k0 −
3ΩTanh

[
ζ
√

Ω
2Ψ

]2
8A2

v1(ζ) = −k0 +
2∆

A2
−

3ΩTanh
[
ζ
√

Ω
2Ψ

]2
8A2

(41)

and

u2(ζ) = k0 −
3ΩCoth

[
ζ
√

Ω
2Ψ

]2
8A2

v2(ζ) = −k0 +
2∆

A2
−

3ΩCoth
[
ζ
√

Ω
2Ψ

]2
8A2

(42)

However for B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) < 0, we obtain periodic
solutions

u3(ζ) = k0 +
3ΩTan

[
ζ
√

Ω
2ψ

]2
8A2

v3(ζ) = −k0 +
2eψ

A2
+

3ΩTan
[
ζ
√

Ω
2ψ

]2
8A2

(43)
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u4(ζ) = k0 +
3ΩCot

[
ζ
√

Ω
2Ψ

]2
8A2

v4(ζ) = −k0 +
2∆

A2
+

3ΩCot
[
ζ
√

Ω
2Ψ

]2
8A2

(44)

For B 6= 0,Ψ = A− C and Ω = B2 + 4E(A− C) = 0, we obtain rational solutions

u5(ζ) = k0

v5(ζ) =
2E

A
− 2CE

A2
− k0 (45)

For B = 0,Ψ = A− C and ∆ = ΨE > 0, we get

u6(ζ) = k0 −
3∆Tanh

[
Eζ√

∆

]2
2A2

v6(ζ) = −
−4∆ + 2A2k0 + 3∆Tanh

[
Eζ√

∆

]2
2A2

(46)

u7(ζ) = k0 −
3∆Coth

[
Eζ√

∆

]2
2A2

v7(ζ) = −
−4∆ + 2A2k0 + 3∆Coth

[
Eζ√

∆

]2
2A2

(47)

For B = 0,Ψ = A− C and ∆ = ΨE < 0, the periodic solutions

u8(ζ) = k0 +
3∆Tan

[√
−∆ζ
Ψ

]2
2A2

v8(ζ) = −
−4∆ + 2A2k0 + 3∆Tan

[√
−∆ζ
Ψ

]2
2A2

(48)

u9(ζ) = k0 +
3∆Cot

[√
−∆ζ
Ψ

]2
2A2

v9(ζ) = −
−4∆ + 2A2k0 + 3∆Cot

[√
−∆ζ
Ψ

]2
2A2

(49)

4. Conclusion

In this article, (G′/G)-expansion method was applied to give the traveling wave
solutions of two Coupled (2 + 1)-Dimensional Equations, the Boiti-Leon-Pempinelli
(BLP) equation and the (2 + 1)-dimensional breaking soliton equation, The (G′/G)-
expansion method examined for investigating the rogue wave solutions for (2+1)
dimensional real field NLEEs.

(G′/G)-expansion method gives different classes of solutions. These solutions
include many types like rational, periodical, soliton solutions, etc. For example,
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Figure 1. Three-dimensional profile of the periodic solution.
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Figure 2. Three-dimensional profile of the explosive/blowup
pulse.

FigureH3L
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Figure 3. Three-dimensional profile of the soliton solution..

solutions (26) and (34) are examples exhibiting the sinusoidal-type periodical solu-
tions, which develop a singularity at a finite point, i.e., for any fixed t = t0 there
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FigureH4L
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Figure 4. Three-dimensional profile of the shocklike wave solu-
tion.

exists a value of a0 at which these solutions blow up (see figure 1). Solution u7 in
(25) is in the form of explosive/blow-up solutions as depicted in figure 2 where we
can see that the potential u goes to infinity at a finite point. The explosive excita-
tion clear that there is an instability in the system, this instability can be produced
due to the effect of the nonlinearity which depend on some physical parameters in
the system.

Solution (23) represents the rational-type solutions, the rational solution may
be a discrete joint union of manifolds. The solutions v6 in (24) is a soliton wave
solution (see figure 3), the soliton wave solution produced from the balance between
weak nonlinearity and dispersion and depends on the physical parameters, these
physical parameters can decrease and increase the nonlinearity or the dispersion
which effect on the hight and width of the soliton waves, while we obtained shocklike
wave solutions like u6 in (24) as depicted in figure 4. The shocklike wave profile
may change according to a variety of physical parameters. Solitons and shocklike
wave solutions are very important in studying fluids and plasma physics
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