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MODELLING THE INTERACTIONS OF SICKLE CELL GENE

ON MALARIA TRANSMISSION DYNAMICS

R. I. GWERYINA, O. ABAH AND F. S. KADUNA

Abstract. This article proposes a deterministic three-dimensional system for
the transmission dynamics of malaria in a mosquito and genetically stratified

human populations. To assess the impact of intervention measures, we derive

a formula for the basic reproduction number, Ri of infection and examine
the existence of infection endemic equilibria. The model is found to exhibit

backward bifurcation (where the infection-free and infection endemic equilibria

co-exist), with this situation, the usual epidemiological condition of malaria
elimination among each genotype population, Ri < 1 , is no longer sufficient,

even though necessary. The model is also shown to undergo a Hopf bifurcation

under certain conditions. Further, the infection-free equilibrium is shown to
stable globally in the instance Ri < 1 and on the condition that there are no

persisting mosquito bites in the population. The global stability of infection
endemic equilibrium is also studied when the basic reproduction number is

greater than unity. Finally, we provide numerical simulations to illustrate our

analytical findings with brief discussion.

1. Introduction

Malaria, an evolutionary driving force behind sickle cell anaemia, is a mosquito-
borne disease caused by a parasite of the genus plasmodium from the protozoa
group. Its transmission to humans is initiated through bites from infected female
Aneopheles mosquitoes. Plasmodium falciparum as a leading cause of malaria is
estimated to account for half a billion episodes of the disease each year [2]. More
than 7 million infants are the sufferers of sickle cell disease each year globally [20]
with 200,000 and above cases in Africa. Nigeria alone has about 150,000 children
born annually with sickle cell anaemia [26].

Apart from children under the age of 5 years and the pregnant women with the
normal haemoglobin, the sickle cell carriers are the next most vulnerable candi-
dates to malaria related deaths. Even though, many sufferers of sickle cell disease
die before the age of 20, modern treatment regimens can now prolong their life
cycle up to 40 or more years [8, 21, 23]. Treatment of sickle cell anaemia is usually
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aimed at avoiding crisis, relieving symptoms and preventing further complications
[26]. With the outbreak of Corona virus disease 2019, screening and treatment of
malaria in sickle cell carriers has become a matter of complexity since both diseases
shared similar symptoms [3, 16].

The genetic content of every child has two copies of haemoglobin one from the
mother and the other from the father. When both copies are normal, and mutated
genes, then the child is homozygous for HbAA (AA genotype) and HbSS (S-allele)
respectively.The latter usually suffers for Sickle cell anemia and unfortunately dies
before reaching the adulthood. However, when an inherited gene is mutated and
singleton, such person is heterozygous for HbAS (AS genotype), which is formally
regarded as the sickle cell carriers. Based on biological analysis, carriers parents
has 50% chance to produce a generation with the same trait (AS), a 25% chance of
reproducing a generation with both normal haemoglobin (AA) and of course 25%
probability of giving out a generation with both S-alleles (SS genotype)[22]. The
comparative advantage of S allele individuals is that they acquired more immunity
against plasm-odium malaria and plasm-odium faclciparum. As a result, malarial
induced death is less in them than those with AS genotype [26]. An elaborate re-
view on these two infections can be traced in [13].

Modelling malaria now is not a novelty in the epidemiological world as this has
being done in the early 1911 by Ross Donald. All recent mathematical models on
malaria transmission are built on the Ross’s foundation, notably[4, 9, 24, 27]. How-
ever,examining the malaria and sickle cell gene interactions mathematically is not
popularized. Few works actually consider this situation as in [5]-[7] and[12, 18]. [18]
modelled the dynamical behaviour of sickle cell anaemia and malaria, but neglected
the SS genotype individuals in the formulation on the assumption that the calibre
of individuals do not grow up to the reproductive age due to malaria related deaths.

The author recommends the inclusion of such individuals in complex models;
and that recommendation gave rise to the present study. We disclaim the earlier
assumption and extend the model by incorporating individuals of S-allele since they
can survive up to the reproductive stage, and this is the main factor excluded in
the past works.

The paper is organized as follows: In the next section, we introduce the model
construction and equations in section 2. Stability analysis of the proposed model is
done in section 3 while section 4 presented numerical results and discussion. Finally,
we conclude the paper in section 5.

2. Model Derivation

2.1. Model description. The extended model is rooted wholly on the Nakakawa
model [18] assumptions except that the present study introduces the population of
sickle cell carriers; who in contemporary society can survive up to the reproductive
age.The total human population at time t, denoted by Nh(t), is stratified into three
classes (based on AA (i=1), AS (i=2) and SS (i=3) genotypes), namely: Suscepti-
ble humans (Si), Infected humans (Ii) and Recovered humans(Ri). Similarly, the
total mosquito population at time t, denoted by (Nm(t)), is also divided into two
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compartments: Susceptible mosquitoes (Sm)and Infected mosquitoes (Im).
Thus,

Nh =

3∑
i=1

(Si + Ii +Ri),

Nm = Sm + Im.

The susceptible population (for both humans and mosquitoes) are recruited into
the population at a rate ∆i and ∆m for the human and mosquito population,
respectively. Susceptible humans acquire malaria infection and become infected,
following effective contact with infected mosquitoes, at a rate λh, given by

λh = (1− p)θia(Im)

Nh
. (1)

Similarly, susceptible mosquitoes acquire malaria following effective bite with in-
fected humans at a rate λm, given by

λm = aφi

∑3
i=1(Ii + εRi)

Nh
. (2)

From (1) and (2), a refers to the biting rate per human per mosquito, p, 0 ≤
p ≤ 1 is the human modification parameter that accounts for the protection offered
against mosquito bite, θi and φi are the probabilities of transmitting malaria from
mosquito-to-human and human-to-mosquito, respectively. ε on the other hand is
the transmitting rate of malaria to mosquitoes (at reduced factor) by recovered hu-
mans. We assume that malaria infected humans gain partial immunity against the
disease at a rate γi for each i genotype (such that γ1 < γ2 < γ3); and recovers at a
rate ηi as a result of treatment. Meanwhile, the recovered humans loss immunity
at κi rate for i genotype. In addition, µ1 and µ2 are the natural mortality rates for
the human and mosquito population, respectively. Malaria induced death occurs
in humans at a rate δ1 while mosquito mortality rate δ2 is as a result of human
intervention.

To this effect, we also make use of the flow diagram in Figure 1 to derive the
couple-system of differential equations

Figure 1. Flow diagram for transmission dynamics of malaria
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2.2. The Model. Putting the above formulation and assumptions together gives
the following autonomous system of differential equations

dSi
dt

= ∆i − (µ1 + λh)Si + γiIi + κiRi

dIi
dt

= λhSi − (µ1 + δ1 + γi + ηi)Ii

dRi
dt

= ηiIi − (µ1 + κi)Ri


(3)

for i = 1, 2, 3 represents the equations for AA, AS and SS genotype classes respec-
tively. Note that the basic model [18] is obtained at i = 1, 2 only
In terms of the mosquito population, we get

dSm
dt

= ∆m − (µ2 + λm)Sm

dIi
dt

= λmSm − (µ2 + δ2)Im

 (4)

From the systems (3) and (4), we have

dNh
dt

= ∆i − µiNh − δ1Ii
dNm
dt

= ∆m − µ2Nm − δ2Im

 (5)

where the meaning of the parameters is summarized in the Table 1.

The mathematical well-posedness of the three-dimensional system (3) and (4) can
be proved within the domain

Ω = Ωh × Ωm, (6)

where
Ωh = {(Si, Ii, Ri) ∈ R3

+ : Nh ≤ ∆i

µ1
} for each i.

Ωm = {(Sm, Im) ∈ R2
+ : Nm ≤ ∆m

µ2
}
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Table 1. Variables and parameters of the extended model

Variables Definition

i = 1 Individuals of AA genotype
i = 2 Individuals of AS genotype
i = 3 Individuals of SS genotype
Si(t) Number of individuals of i genotype susceptible to

malaria at time t
Ii(t) Number of individuals of i genotype infected by

malaria at time t
Ri(t) Number of individuals of i genotype recovered from

malaria at time t
Sm(t) Number of mosquitoes susceptible to the infectious plasm-odium

parasite at time t
Im(t) Number of mosquitoes infected by plasm-odium parasite at time t

Parameters Definition

∆i Recruitment rate of susceptible humans of i genotype
∆m Recruitment rate of susceptible mosquitoes
γi Partial immunity of individuals of i genotype against malaria(γ1 < γ2 < γ3)
ηi Recovery rate of individuals of i genotype from

malaria due to treatment
κi Rate of immunity loss in individuals of i genotype
µ1 Human natural mortality rate
µ2 osquito natural mortality rate
δ1 Human mortality rate due to malaria
δ2 Mosquito mortality rate due to human intervention
λh Force of infection in human population
λm Force of infection in mosquito population
a Biting rate per human per mosquito
θi Probability that an individual of type i (θ1 > θ2 > θ3)

acquires plasmodium per bite
φi Probability that a mosquito acquires plasmodium from biting

an infected individual of genotype i (φ1 > φ2 > φ3)
ε Reduced transmission factor of recovered individuals (0 < ε < 1)
p Human protection parameter against mosquito bite
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3. Analysis of the extended model

3.1. Existence of the equilibria. Let E∗
i = (S∗

i , I
∗
i , R

∗
i ) be the infection endemic

equilibria for the i genotype population of the three-dimensional system (3). Then
solving the system at the steady state yields

S∗
i =

qi∆iψ̂i

µ1qiψ̂i +Qiλ∗h

I∗i =
qi∆iλ

∗
h

µ1qiψ̂i +Qiλ∗h

R∗
i =

ηi∆iλ
∗
h

µ1qiψ̂i +Qiλ∗h


(7)

such that

N∗
h =

qi∆iψ̂i + λ∗h∆i(qi + ηi)

µ1qiψ̂i +Qiλ∗h
(8)

where ψ̂i =γi + ηi + µ1 + δ1, qi=µ1 + κi, Qi=µ1(µ1 + δ1 + ηi) + κi(µ1 + δ1).
The same procedure yielded E∗

m = (S∗
m, I

∗
m) for the mosquito population as given

S∗
m =

∆m

µ2 + λ∗m

I∗m = φm
λ∗m

µ2 + λ∗m
, φm =

∆m

µ2 + δ2

 (9)

But, the forces of infection at this point defines

λ∗m = aφi∆i
(qi + εηi)λ

∗
h

N∗
h(µ1qiψ̂i +Qiλ∗h)

(10)

and

λ∗h = (1− p)aθiφm
N∗
h

(
λ∗m

µ2 + λ∗m
) (11)

Thus, using equations (10) and (11), we have

λ∗h(a2(λ∗h)2 + a1λ
∗
h + a0) = 0 (12)

Clearly, λ∗h = 0 and the infection-free equilibrium (IFE) is

E0
i = (S0

i , I
0
i , R

0
i )

E0
m = (S0

m, I
0
m)

}
(13)

where
S0
i =∆i

µ1
, I0
i =R0

i=0 for each i

and
S0
m =∆m

µ2
with Im=0.

However, the disease persists when λ∗h 6= 0 in (12) to derive the infection endemic
equilibrium (IEE) which means that

a2(λ∗h)2 + a1λ
∗
h + a0 = 0, (14)

where
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a2=µ2∆i(qi + ηi)
2 + aφi∆i(qi + ηi)(qi + εηi)

a1 = µ2qiψ̂i∆i(qi + ηi)(2−R2
i

Qi
µ1(qi + ηi)

) + aqiφiψ̂i∆i(qi + εηi)

and

a0 = µ2∆iq
2
i ψ̂i

2
(1−R2

i ), (15)

where

Ri = ρ(FV −1) =

√
(1− p)a2θiφiφmµ1

∆iµ2ψ̂i
(1 + ε(

ηi
qi

)) (16)

is being derived from the famous next generation operator as explored in [25]. In
equation (16) i = 1, 2, 3 refers to the basic reproduction ratios in a population of
only AA, AS and SS individuals respectively. Note that F and V are

F =

 0 0 (1− p)aθi( S
0
i

N0
h

)

0 0 0

aφi(
S0
m

N0
h

) aε(
S0
m

N0
h

) 0

 and V =

 ψ̂i 0 0
−ηi qi 0
0 0 µ2 + δ2


with

S0
m

N0
h

=
S0
m

S0
i

= µ1

µ2
(∆m

∆i
).

From equation (14) we can observed that the model has:
(a) a unique disease equilibrium if a0 < 0⇐⇒ Ri > 1
(b) a unique disease equilibrium if a1 < 0 and a0 < 0 or a2

1 − 4a2a0 = 0
(c) a dual disease equilibria if a1 < 0, a0 > 0 and a2

1 − 4a2a0 = 0
(d) no disease equilibrium in case the above conditions fail.

The situation in (c) shows the indices of backward bifurcation by quadratic equa-
tion method [14] for the system (3) when Ri < 1. The phenomenon is demonstrated
using the parameter set of values in Table 2, with the result given in Figure 2.

3.2. Local dynamics of the three-dimensional system 3 at the unique in-
fection endemic equilibrium.
Prop. 1 The unique endemic equilibrium E∗

i for the three-dimensional system 3
is locally stable if Ri > 1 for each i.

Proof. The Jacobian matrix of the three-dimensional system 3 at the infection
endemic equilibrium is

Df i =

−(µ+ (1−p)aθiIm
Nh

) γi + Si(
(1−p)aθiIm

N2
h

) κi + Si(
(1−p)aθiIm

N2
h

)
(1−p)aθiIm

Nh
−(µ1 + δ1 + γi + ηi + Si(

(1−p)aθiIm
N2

h
)) −( (1−p)aθiIm

N2
h

)Si

0 ηi −(µ1 + κi)


(17)

with the associated second additive compound matrix denoted by Df i[2] as given
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Figure 2. backward bifurcation diagram of the three-dimensional
system 3. Parameter values used are: ηi = 0.022, γi = 0.0005, κi =
0.7, ε = 0.000005;µ2 = 0.04; δ1 = 0.02,∆i = 7; ∆m = 269, p = 0.0
such that Ri = 0.8712536993. All other parameters as in Table 2

Df i[2] =


−(ξi + (1−p)aθiIm

Nh
(1 + Si

Nh
)) −Si( (1−p)aθiIm

N2
h

) −(κi + Si(
(1−p)aθiIm

N2
h

))

ηi −(2µ1 + κi) γi + Si(
(1−p)aθiIm

N2
h

)

0 (1−p)aθiIm
Nh

−(ξi + Si(
(1−p)aθiIm

N2
h

))


(18)

with ξi = 2µ1 + δ1 + γi + ηi.
Therefore, it is clear that the trace and determinant of (17) are respectively define
as
tra(Df i(E∗

i )) = −(3µ1 + δ1 + γi + ηi + κi + (1−p)aθiIm
Nh

(1 + Si

Nh
)) < 0

and

det(Df i(E∗
i )) = − (1− p)aθiIm

Nh
(µ+ κi)[ηiµ1(1 +

Si
Nh

) + µ1 + δ1 + γi + ηi]

= µ1[ηiµ1 + (µ1 + δ1)(µ+ κi)]− (1− µ1)[ηiκi + γi(µ+ κi)] < 0

since µ1 < 1
Similarly

det(Df i[2](E
∗
i )) = −(ξi +

(1− p)aθiIm
Nh

(1 +
Si
Nh

))[(2µ1 + κi)(ξi +
(1− p)aθiIm

Nh
Si)

+
(1− p)aθiIm

Nh
(µ1 + δ1 + γi + ηi)]− ηi[ξiSi(

(1− p)aθiIm
N2
h

) + [Si(
(1− p)aθiIm

N2
h

)]2

+
(1− p)aθiIm

Nh
(κi + Si(

(1− p)aθiIm
N2
h

))] < 0

It is evident from lemma 3 of [17] that the result in prop.1 holds
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3.3. Existence of Hopf bifurcation for the three-dimensional system 3 at
the infection endemic equilibrium. Hopf bifurcation occurs generally, when
the Jacobian of the system evaluated at IEE has a pair of pure imaginary eigenval-
ues. This is investigated in the following theorem.

Theorem 1: Let Ri > 1. Then the infection endemic equilibrium can become
unstable through a Hopf bifurcation resulting to an oscillatory solution of the sys-
tem(3) if

p = p∗ = 1− (
−β ±

√
β2 − 4τα

2τ
), (19)

where

α = (2µ1 + δ1 + γi + ηi + κi)[µ1(3µ1 + δ1 + γi + ηi + κi) + (µ1 + κi)(µ1 + δ1 + γi + ηi)],

β = aθi
Im
Nh

[δ1(2µ1 + δ1 + γi + ηi) + (1 +
Si
Nh

)[(µ1 + κi)(µ1 + δ1 + γi + ηi)

+ µ1(µ1 + δ1 + γi) + (3µ1 + δ1 + γi + ηi + κi)(2µ1 + ηi + κi)]],

τ = (aθi
Im
Nh

)2(1 +
Si
Nh

)[δ1 + (2µ1 + ηi + κi)(1 +
Si
Nh

)].

Proof. In (17), the resulting characteristic polynomial at IEE is given by

λ3 + a2λ
2 + a1λ+ a0 = 0, (20)

where

a2 = 3µ1 + δ1 + γi + ηi + κi + (1− p)aθi
Im
Nh

(1 +
Si
Nh

),

a1 = (µ1 + κi)(µ1 + δ1 + γi + ηi) + µ1(2µ1 + δ1 + γi + ηi + κi)

+ (1− p)aθi
Im
Nh

[δ1 + (2µ1 + ηi + κi)(1 +
Si
Nh

)],

a0 = µ1(µ1 + κi)(µ1 + δ1 + γi + ηi) + (1− p)aθi
Im
Nh

[δ1(µ1 + κi) + µ1(µ1 + ηi + κi)(1 +
Si
Nh

)].

We adopt Theorem 7.4 [15] to show the presence of purely imaginary roots in (20).
For Ri > 1, we observe that the determinant ∆1 = a2 > 0, a1 > 0 and a0 > 0 since
all the parameters are positive. Now, ∆2 can become zero from

∆2 = a2a1 − a0 = α+ β(1− p) + τ(1− p)2. (21)

Let p = p∗ be a Hopf bifurcation parameter (and all other parameters of system(3)
are fixed). Thus, ∆2(p) = 0 if and only if p = p∗. Hence,

∂∆2(p)

∂p
|p=p∗= −β − 2τ(1− p∗) < 0.

Furthermore, it suffices to verify the transversality condition by showing that
λ = ϕ(p) + iω(p) is a solution to the cubic equation (20), and ϕ(p) = 0, then
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∂ϕ(p)

∂p
|p=p∗ 6= 0.

To observe this, from (20) for p = p∗ and ω = ω(p), we have

−iω3 − a2ω
2 + ia1ω + a0 = 0.

Isolating the real from the imaginary parts and equating each to zero gives

ω2 = a1.

Differentiating the cubic equation(20) with respect to p at p = p∗ and λ = iω, we
have

(−3ω2 + 2a2iω + a1)
dλ

dp
− ∂a2

∂p
ω2 +

∂a1

∂p
iω +

∂a0

∂p
= 0.

Evaluating for dλ
dp using ω2 = a1, we get

dλ

dp
|p=p∗=

−a1
∂a2
∂p + ∂a0

∂p + i
√
a1

∂a1
∂p

2(a1 − ia2
√
a1)

. (22)

Rationalizing the denominator in (22) and collecting the real parts after cancelling
a1, we have

dλ

dp
|p=p∗=

−(∂a2a1∂p −
∂a0
∂p )

2(a1 + a2
2)

=
−∂∆2

∂p

2(a1 + a2
2)
> 0.

Hence the proof. This is graphically given in Figure (3) below.

Next step of analysis focuses on the global dynamics of the model equilibria.

3.4. Global dynamics of the three-dimensional system 3.
Prop. 2. Assume that p = 1 and Ri < 1 . Then the Infection-free equilibrium of
the multi-system 1 is globally asymptotically stable.
Proof. Even though, construction of Lyapunov fuction does not follow any uni-
fied pattern, we took queue from the work of [28] to come up with a similar function

L0
i = S0

i (
Si
S0
i

− ln
Si
S0
i

) + Ii +Ri

such that the time derivative gives

 L0′

i (t) =
dLi
dt
− Si
S0
i

dLi
dt

+
dIi
dt

+
dRi
dt

= 2∆i − µ1Si −
∆2
i

µ1Si
+ (1− p)aθi

Im∆i

Nhµ1
− (

γi∆i

µ1Si
+ µ1 + δ1)Ii

− (
κi∆i

µ1Si
+ µ1)Ri

= ∆i(2−
µ1Si
∆i
− ∆i

µ1Si
)− (

γi∆i

µ1Si
+ µ1 + δ1)Ii − (

κi∆i

µ1Si
+ µ1)Ri

(since p = 1).
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Figure 3. Simulation of the system(3) showing the total num-
ber of humans as a function of time. Parameter values used are:
a = 0.2; θi = 1.5;φi = 0.05; γi = 0.01; δi = 0.7; ε = 0.00005;κi =
1/(2 × 365); ηi = 0.2;µ1 = 0.002;µ2 = 1/15; δ1 = 0.005; δ2 =
0.0005; ∆m = 500; p = p∗ = 0.005; such that Ri = 4.734771277.
All other parameters as in Table 2

Clearly, L0′

i (t) < 0 provided the geometric-arithmetic mean 2 − µ1Si

∆i
− ∆i

µ1Si
≤ 0.

This shows that the infection-free equilibria E0
i are globally stable in the presence

of maximum protection. The converse of the just concluded result explains that
the persistence of mosquito bites for any kind of genotype possessed in human pop-
ulation may make the global eradication of malaria unrealistic.

Prop. 3. The unique infection endemic equilibrium of the three-dimensional
system 3 is globally stable when Ri > 1 for each i.

Proof. Taking motivation from the work of [1], we adopt the famous quadratic
Lyapunov function of the kind

V (x1, x2, ..., xn) =

n∑
j=1

cj
2

(xj − x∗j ). (23)

from which the following main lyapunov function for the study is constructed

Li(Si, Ii, Ri) =
1

2
[(Si − S∗

i ) + (Ii − I∗i ) + (Ri −R∗
i )]

2. (24)

The directional derivative of (24) alongside the solution curve of system (3) yields

 L
′

i(t) = [(Si − S∗
i ) + (Ii − I∗i ) + (Ri −R∗

i )]
d

dt

3∑
i=1

(Si + Li +Ri).
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Using system (3), we obtain

L
′

i(t) = [(Si − S∗
i ) + (Ii − I∗i ) + (Ri −R∗

i )][∆i − µi
3∑
i=1

(Si + Li +Ri)− δ1Ii].

and consequently, assuming that ∆i = µi
∑3
i=1(S∗

i + L∗
i +R∗

i ) shows

 L
′

i(t) = [(Si−S∗
i )+(Ii−I∗i )+(Ri−R∗

i )][µ1(Si−S∗
i )+(µ1+δ1)(Ii−I∗i )+µ1(Ri−R∗

i )].

Further simplification results to

 L
′

i(t) = −µi[(Si − S∗
i )2 + (Ri −R∗

i )
2]− (µ1 + δ1)(Ii − I∗i )2

− 2µ1(Si − S∗
i )(Ri −R∗

i )− (2µ1 + δ1)(Ii − I∗i )[(Si − S∗
i ) + (Ri −R∗

i )].

This illustrates that L
′

i(t) < 0 and L
′

i(t) = 0 provided Si = S∗
i , Ii = I∗i andRi = R∗

i .
Thus, every solution of the system (3) approaches to the singleton set E∗

i as t 7−→ ∞
which by La Salle invariance principle [11], the proof of the prop. 3 is concluded.

3.5. Global behaviour of the mosquito dynamics. The Lyapunov function
used by [29] attracts our attention to investigate the global stability of the mosquito
system 4 as so presented

L0
m = Sm + Im

with the derivative defined by

 L0′

m(t) =
dSm
dt

+
dIm
dt

= (µ2 + δ2)(
∆m

µ2 + δ2
− 1)Im − µ2Sm

= (µ2 + δ2)(Φm − 1)Im − µ2Sm

Indeed, L0′

m(t) < 0, if only if Φm ≤ 1 and Im = 0. Thus, by the same principle as
done in props. above, we can arrive at the next result.
Prop. 4 The infection-free equilibrium of the system 4 is globally asymptotically
stable provided that R0

i < 1 and Φm ≤ 1.

Epidemiologically this implies that the control of malaria among the i genotype
at the global level could be possible within the attraction zone assuming that the
influx of mosquito population into the the community of humans is less than or
equal to the sum of their death rates both natural and human induced.

3.6. Global behaviour of the model 4 at the infection endemic equilib-
rium. Despite many global methods at our disposal, we make use of Dulac’s sta-
bility criterion to examine the global interior equilibrium at the infection endemic
equilibrium of the model 4.
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Prop.5 The global interior equilibrium of the model 4 has no closed orbits.
Proof. As done in [30], we choose D = 1

Im
to be the Dulac’s function and applying

on
fm = ∆m − (µ2 + λm)Sm,

gm = λmSm − (µ2 + δ2)Im,

}
(25)

we see from (25) that

∂Dfm
∂Sm

+
∂Dgm
∂Im

=
µ2

Im
− λm
Im
− λm

§m
I2
m

= −(
µ2 + (1 + Sm

Im
)λm

Im
) < 0,

for Sm ≥ 0, Im > 0
which shows that there is no closed orbit within the sub-domain Ωm according to
the Bendixon -Dulac’s theory.

4. Numerical results and discussions

Numerical simulations of the model (3) are carried out using a set of reasonable
parameter values given in Table 2. We adopt a fourth-order Runge Kulta numerical
scheme coded in Matlab for the numerical simulations.

Table 2. Parameter values of the extended model

Parameter Value Source

a 0.2 [18]
ε 0.00005 [18]
(θ1, θ2, θ3) (0.05, 0.006, 0.0007) [18]
(φ1, φ2, φ3) (0.05, 0.009, 0.0009) [18]
(γ1, γ2, γ3) (0.033, 0.066, 0.132) [18]
(µ1, µ2) (0.02, 1

15 ) [18]
(δ1, δ2) 0.005, 0.0005 [18]
∆i(i = 1, 2, 3) 0.2 [18]
ηi(i = 1, 2, 3) 0.2 [18]
κi(i = 1, 2, 3) 1

730 [18]
∆m 500 [18]
p [0, 1] [variable]
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Figure 4. Simulation of the model 3 displaying the total number
of infected individuals as a function of time for Ri < 1. Parameter
values are as given in Table 2 with ∆i = 0.7, γi = 0.2, ηi = 0, φi =
θi = 0.05, p = 0.005

Figure 5. Simulation of the model 3 displaying the total number
of infected individuals of i genotype as a function of time forRi > 1.
Parameter values are as given in Table 2 with ∆i = 0.7, γi =
0.01, ηi = 0, φi = θi = 0.05, p = 0.005
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Figure 6. Simulation of the model 3 displaying the behaviour of
susceptible dynamics as a function of time using parameter values
in Table 2 with ηi = 0, p = 0.005

Figure 7. Simulation of the model 3 displaying the dynamics of
AA (i = 1), AS (i = 2), and SS (i = 3)of infected individuals as a
function of time using parameter values in Table 2 with ηi 6= 0, p =
0.005

Figure 4 describes the behaviour of the dynamics of malaria infected individuals
of i genotype in the presence of treatment. The behaviour conforms to the analyt-
ical result globally since it converges to the infected free equilibrium. This means
that AA, AS and SS individuals infected with malaria can be cured irrespective of
initial conditions/ genetic status provided effective drugs are available and accessi-
ble for use.

Figure 5 illustrates the global convergence of the infected AA, AS and SS indi-
viduals at the infection endemic equilibrium when the basic reproduction number
exceeds unity for the cases of no treatment. That means malaria infection can
persists in both individuals of i genotype groups for a long time and thus both
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Figure 8. Simulation of the model 3 displaying the dynamics of
recovered individuals as a function of time using parameter values
in Table 2 with ηi 6= 0, p = 0.005

contribute to the endemicity of the disease

In Figure 6 the susceptibility behaviour of AA, AS and SS individuals in the pres-
ence of partial Immunity against malaria shows that SS genotype has the strongest
immunity against malaria compare to AS and AA individuals. By implication AA
genotype individuals are more vulnerable to malaria with AS being the second in
order of contracting the disease. In literature, this result coincides with that of [19]
that says S-allele inherited people are less candidates of plasmodium malaria.

In Figure 7: Here we observed that with proper treatment, the population of
malaria-infected individuals of any genotype can be reduce adequately in numbers.
However, SS infected population decreases in fewer days than those of AA and AS.
This might be as a result of quick response to effective drugs and probably the early
massive deaths related to malaria.

Figure 8 is a clear demonstration that all individuals irrespective of genetic sta-
tus, who are infected of malaria recover from it. As notably observed AA (i=1), AS
(i=2) recovers faster than the carrier (i=3) who are the least on the malaria recov-
ery chart/figure. This outcome agrees with the work of [8] that says SS genotype
individuals can survive to adulthood in high-income nations and even in malaria
endemic settings as reported in [19]. Resistance to anti malaria drugs might have
imbibe the recovery capacity of the sickle cell carriers. This particular outcome is
in line with the earlier report of [10] on population genetics of malaria resistance
in humans.

To study the effect of memory on the proposed model, the need to transform the
system (3) into its fractional derivatives in the future becomes necessary and left
open for incoming researchers.
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5. Conclusion

A deterministic three-dimensional system for the transmission dynamics of malaria
in a genetically stratified human population is designed and qualitatively studied.
The basic model [18] is extended to incorporate a category of sickle cell carriers in-
fected with malaria and also survived to adulthood. The extended model is shown
to exhibit similar dynamics as the basic model except that it undergoes backward
bifurcation, when the infection free equilibrium and infection endemic equilibrium
co exist. By implication, the classical epidemiological requirement for the eradica-
tion of malaria when the basic reproduction number Ri < 1 is no longer sufficient,
even though necessary. Quadratic equation method was used for the backward bi-
furcation analysis and the result represented graphically. The existence of a Hopf
bifurcation is also investigated in the study. Furthermore, we derived conditions
for the local and global stability of the infection-free equilibrium at Ri < 1 and the
unique infection endemic equilibrium at Ri > 1 of the model. The case Ri < 1
shows that the malaria infection will be extinct gradually. The converse case will
guarantee the persistence of the disease in the population. More so, a series of
numerical simulations have been presented to show that the model agrees with the
analytical results. Various numerical examples in the study reiterated that effective
treatment can lead to malaria elimination in the community for any population ir-
respective of their genetic status. Our study also shows that even though sickle cell
carriers are less candidates of malaria infection, their presence in the transmission
dynamics has caused a significant effect even though little on the prevalence of
the disease. This study importantly disclaimed the assertion that individuals with
sickle cell gene do not recover from malaria and die before the reproduction age.
We therefore, recommend that for complete malaria free society, individuals with
double S-allele should equally be given attention in the control and treatment of
the disease.
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