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A MODERN APPROACH FOR SOLVING NONLINEAR

VOLTERRA INTEGRAL EQUATIONS USING FIBONACCI

WAVELETS

S. C. SHIRALASHETTI AND LATA LAMANI

Abstract. This article provides an effective technique to solve nonlinear-
Volterra integral equations using Fibonacci wavelets. These equations can

be reduced to a system of nonlinear algebraic equations with unknown Fi-

bonacci coefficients, by using Fibonacci wavelets, and their operational matrix
of integration and these equations can be solved by numerical methods such as

Newton’s method. Error estimate of the proposed method is given. Moreover,

the results obtained by the method proposed are compared to exact solution
with number of numerical examples to show that the method described is

precise and accurate.

1. Introduction

Wavelets are mathematical functions that separate the data into various fre-
quency components and then analyze each component with its corresponding reso-
lution. Wavelets can be used as a mathematical device to extract information from
the number of data types, which may include earthquakes, seismic waves, signal
processing, music, image processing, nuclear engineering, acoustics, and astronomy.

In this article, we use Fibonacci wavelets introduced by Sedigheh Sabermahani et
al. [1] in 2019. These are specific kind of wavelets which are not based on orthogonal
functions. They, however, have a derivative, operational matrix of integration and
so on.

Integral equations have been one of the essential tools in different areas of applied
mathematics. Integral equations are extensively involved in several problems in
science and technology [2, 3]. In several physical models and fields of engineering,
such as, radiography, spectroscopy, image processing, cosmic radiation, etc., integral
equations exist. However, analytic solutions of integral equations either do not
exist or are difficult to find. Precisely because of this, several numerical methods
for solutions of integral equations have been developed. Some of them are found in
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
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In this article, an attempt is made for solving nonlinear Volterra integral equa-
tions [20] using Fibonacci wavelets. We consider the nonlinear Volterra integral
equations of the form:

y(x) = f(x) +

∫ x

0

k(x, t)µ(y(t))dt, (1)

where x, t ∈ [0, 1), k(x, t), the function of x and t, and µ(y(x)) are the known
functions, and y(x) is the unknown that is to be determined.

This article is structured in the following way: Properties of Fibonacci poly-
nomials, wavelets, and Fibonacci wavelets are studied in section 2. In section 3,
Fibonacci wavelets operational matrix of integration is given. In section 4, a new
Fibonacci wavelets operational matrix method for solving nonlinear Volterra in-
tegral equations is proposed. Error estimate of the proposed method is given in
section 5. In section 6, numerical examples are presented in order to justify the
efficiency of the proposed method. Ultimately, the conclusion is drawn in section
7.

2. Properties of Fibonacci polynomials, wavelets, and Fibonacci
wavelets

2.1. Fibonacci polynomials. Fibonacci polynomials [1] are defined in general as:

F̄m(x) =


1, m = 0,

x, m = 1,

xF̄m−1(x) + F̄m−2(x), m > 1.

(2)

Furthermore, these polynomials [1] can be represented in the power form as follows:

F̄m =

bm2 c∑
i=0

(
m− i
i

)
xm−2i, m > 0. (3)

Lemma 2.1. If F̄m(x), m = 0, 1, ...,M − 1 are Fibonacci polynomials [1], then∫ 1

0

F̄m(x)F̄n(x)dx =

bm2 c∑
i=0

bn2 c∑
j=0

(
m− i
i

)(
n− j
j

)
1

m+ n− 2i− 2j + 1
. (4)

2.2. Fibonacci wavelets. Fibonacci wavelets [1] are defined as follows:

ψn,m(x) =

{
2

k−1
2 F̂m(2k−1x− n+ 1), n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise,
(5)

in which

F̂m(x) =
1
√
wm

F̄m(x),

with

wm =

∫ 1

0

F̄ 2
m(x)dx,

where, wm, for m = 0, 1, ...,M −1 are obtained by equation (4), and m denotes the
order of the Fibonacci polynomials and n = 1, 2, ..., 2k−1, k ∈ N. For instance, for
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k = 2 and M = 3, we get

ψ1,0(x) =
√

2

ψ1,1(x) = 2
√

6x

ψ1,2(x) =
√

15
14 (1 + 4x2)

 0 ≤ x < 1

2
,

ψ2,0(x) =
√

2

ψ2,1(x) =
√

6(2x− 1)

ψ2,2(x) =
√

30
7 (2x2 − 2x+ 1)


1

2
≤ x < 1.

2.3. Function approximation. Suppose f(x) ∈ L2[0, 1) is expanded in terms of
the Fibonacci wavelets as:

f(x) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(x). (6)

Truncating the above infinite series, we get

f(x) =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = CTψ(x) = fm̂(x), (7)

where, C and ψ(x) are m̂× 1 (m̂ = 2k−1M) matrices given by

C =
[
c1,0, c1,1, ..., c1,M−1, c2,0, c2,1, ..., c2,M−1, c2k−1,0, c2k−1,1, ..., c2k−1,M−1

]
, (8)

and

ψ(x) = [ψ1,0(x), ψ1,1(x), ..., ψ1,M−1(x), ψ2,0(x), ψ2,1(x), ..., ψ2,M−1(x),

ψ2k−1,0(x), ψ2k−1,1(x), ..., ψ2k−1,M−1(x)]. (9)

Remark 2.2. If F is a m̂-vector, then

ψ(x)ψT (x)F = F̃ψ(x), (10)

where, ψ(x) is the Fibonacci wavelet coefficient matrix and F̃ is an m̂× m̂ matrix
given by

F̃ = ψ(x)F̄ψ−1(x), (11)

where F̄ = diag(ψ−1(x)F ). Also, for a m̂× m̂ matrix C,

ψT (x)Cψ(x) = ĈTψ(x), (12)

in which X = diag(ψT (x)Cψ(x)) is a m̂-vector and ĈT = Xψ−1(x).

Remark 2.3. If µ is a analytic function on R and CTψ(x) be the the expansion
of f(x) in terms of Fibonacci wavelets, where C is given in equation (8), then

µ(f(x)) ' µ(CT )ψ(x), (13)

where, µ(CT ) = [µ(C1), µ(C2), ..., µ(Cm̂)].
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Remark 2.4. If µ is a analytic function on R and CTψ(x) be the the expansion
of f(x) in terms of Fibonacci wavelets, where C is given in equation (8), then

µ(f(x)) ' µ(C̃T )ψ−1(x)ψ(x), (14)

where, C̃T = CTψ(x), ψ(x) is the Fibonacci wavelets coefficient matrix given in
(9) and µ(CT ) is given in Remark 2.3.

3. Fibonacci wavelets operational matrix of integration

The Fibonacci wavelets vector is given in 9. The operational matrix of integration
of Fibonacci wavelets P [1] is defined as follows:∫ x

0

ψ(t)dt = Pψ(x), (15)

where P is given in general in [1]. For instance, for k = 2 and M = 3, we get P as:

P =



0 1
2
√
3

0 1
2 0 0

−
√
3
4 0 1

2

√
7
5

√
3
4 0 0

− 29
16
√
105

1√
35

1
4

√
5
21 0 0

0 0 0 0 1
2
√
3

0

0 0 0 −
√
3
4 0 1

2

√
7
5

0 0 0 − 29
16
√
105

1√
35

1
4


6×6

.

4. Fibonacci wavelets operational matrix method for solving
nonlinear Volterra integral equations

Let us consider equation (1). Approximating f(x), y(x), and k(x, t) with respect
to Fibonacci wavelets as follows:

y(x) ' CTψ(x) = CψT (x), (16)

where C is given in equation (8) and is the unknown to be determined.

f(x) ' FTψ(x) = FψT (x), (17)

k(x, t) ' FTψ(x) = ψT (t)Kψ(x), (18)

where C and F are Fibonacci wavelet coefficient vectors, and K is the Fibonacci
wavelet matrix. Substituting equations (16), (17), and (18) in equation (1), we get

CTψ(x) ' FTψ(x) + ψT (x)K

(∫ x

0

ψ(t)µ
(
CTψ(t)

)
dt

)
. (19)

Now, by using Remark 2.4, equation (19) can be rewritten as,

CTψ(x) ' FTψ(x) + ψT (x)K

(∫ x

0

ψ(t)ψT (t)Xdt

)
, (20)

where, XT = µ(C̃T )ψ−1(x), where C̃T = CTψ(x). Using equation (20) and Remark
2.2, we get

CTψ(x) ' FTψ(x) + ψT (x)K

(∫ x

0

X̃ψ(t)dt

)
, (21)
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where, X̃ is a m̂ × m̂ matrix described in Remark 2.2. Applying the OMI of
Fibonacci wavelets [1] described in section 2, equation (21) reduces to:

CTψ(x) ' FTψ(x) + ψT (x)KX̃Pψ(x). (22)

Let us assume that δ = KX̃P . Again using Remark 2.2, equation (22) reduces to:

CTψ(x)− δ̂ψ(x) ' FTψ(x), (23)

where, δ̂ is a m̂-vector containing a nonlinear combination of elements of C. Equa-
tion (23) holds for all x ∈ [0, 1), and hence replacing equation ' by =, equation

(23) reduces to a nonlinear system of equations CT − δ̂ ' FT . Solving this non-
linear system, we get the unknown vector C. Substituting this obtained vector in
equation (16), we obtain the solution of equation (1).

5. Error estimate

We compare the approximate solution and exact solution of equation (1) at the
some selected points via the definition of absolute error defined as,

e(x) = |y(x)− y∗(x)|, (24)

where, y(x) and y∗(x) denote the exact and approximate solution of equation (1).

6. Computational Experiments

Test problem 6.1. Let us consider the nonlinear Volterra integral equation [20]:

y(x) =
1

2
(x− x2) + cos(x)− sin(x)− 1

4
sin(2x) +

∫ x

0

(x− t)y2(t)dt. (25)

Exact solution of (25) is found to be y(x) = cos(x) − sin(x). Table 1 shows the
comparison of exact, approximate solutions, and absolute errors of test problem 6.1
obtained by using the method described in section 4 for m̂ = 6 and figure 1 shows
the graph of exact and approximate solutions of test problem 6.1 for m̂ = 6.

Table 1. Comparison of exact and approximate for test problem
6.1 for m̂ = 6.

x Exact Approximate Absolute error

0.5/6 0.913293 0.912235 1.0577e-03

1.5/6 0.721508 0.721473 3.5367e-05

2.5/6 0.509729 0.510515 7.8662e-04

3.5/6 0.283822 0.283276 5.4614e-04

4.5/6 0.0500501 0.0497601 2.8998e-04

5.5/6 -0.185109 -0.18555 4.4093e-04
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Figure 1. Graph of exact and approximate solutions of test prob-
lem 6.1 for m̂ = 6.

Test problem 6.2. Let us consider the nonlinear Volterra integral equation [20]:

y(x) = 1 +
1

2
x2 − 1

6
x4 − 1

30
x6 +

∫ x

0

(x− t)y2(t)dt. (26)

Exact solution of (26) is found to be y(x) = 1 + x2. Table 2 shows the comparison
of exact, approximate solutions, and absolute errors of test problem 6.2 obtained by
using the method described in section 4 for m̂ = 6 and figure 2 shows the graph of
exact and approximate solutions of test problem 6.2 for m̂ = 6.

Table 2. Comparison of exact and approximate for test problem
6.2 for m̂ = 6.

x Exact Approximate Absolute error

0.5/6 1.0069 1.007 7.8382e-05

1.5/6 1.0625 1.0622 2.6965e-04

2.5/6 1.1736 1.1725 1.1290e-03

3.5/6 1.3403 1.3419 1.5883e-03

4.5/6 1.5625 1.5622 2.9861e-04

5.5/6 1.8403 1.837 3.3179e-03
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Figure 2. Graph of exact and approximate solutions of test prob-
lem 6.2 for m̂ = 6.

Test problem 6.3. Let us consider the nonlinear Volterra integral equation [20]:

y(x) = 1 + 3x− 1

2
x2 − x3 − 3

4
x4 +

∫ x

0

(x− t)y2(t)dt. (27)

Exact solution of (27) is found to be y(x) = 1 + 3x. Table 3 shows the comparison
of exact, approximate solutions, and absolute errors of test problem 6.3 obtained by
using the method described in section 4 for m̂ = 6 and figure 3 shows the graph of
exact and approximate solutions of test problem 6.3 for m̂ = 6.

Table 3. Comparison of exact and approximate for test problem
6.3 for m̂ = 6.

x Exact Approximate Absolute error

0.5/6 1.25 1.2538 3.8310e-03

1.5/6 1.75 1.7494 6.4548e-04

2.5/6 2.25 2.243 7.0081e-03

3.5/6 2.75 2.7585 8.4652e-03

4.5/6 3.25 3.2495 5.2499e-04

5.5/6 3.75 3.7386 1.1424e-02
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Figure 3. Graph of exact and approximate solutions of test prob-
lem 6.3 for m̂ = 6.

Test problem 6.4. Let us consider the nonlinear Volterra integral equation [20]:

y(x) =
1

9
+

3

4
x+ exp(x)− 1

9
exp(3x) +

∫ x

0

(x− t)y3(t)dt. (28)

Exact solution of (28) is found to be y(x) = exp(x). Table 3 shows the comparison
of exact, approximate solutions, and absolute errors of test problem 6.4 obtained by
using the method described in section 4 for m̂ = 6 and figure 4 shows the graph of
exact and approximate solutions of test problem 6.4 for m̂ = 6.

Table 4. Comparison of exact and approximate for test problem
6.4 for m̂ = 6.

x Exact Approximate Absolute error

0.5/6 1.0869 1.0885 1.6078e-03

1.5/6 1.284 1.2835 5.3428e-04

2.5/6 1.5169 1.5122 4.7052e-03

3.5/6 1.792 1.8 8.0140e-03

4.5/6 2.117 2.1157 1.2998e-03

5.5/6 2.5009 2.4813 1.9641e-02
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Figure 4. Graph of exact and approximate solutions of test prob-
lem 6.4 for m̂ = 6.

Test problem 6.5. Let us consider the nonlinear Volterra integral equation [21]:

y(x) = x+
1

5
x5 −

∫ x

0

ty3(t)dt. (29)

Exact solution of (29) is found to be y(x) = x. Table 3 shows the comparison of
exact, approximate solutions, and absolute errors of test problem 6.5 obtained by
using the method described in section 4 for m̂ = 6 and figure 5 shows the graph of
exact and approximate solutions of test problem 6.5 for m̂ = 6.

Table 5. Comparison of exact and approximate for test problem
6.5 for m̂ = 6.

x Exact Approximate Absolute error

0.5/6 0.083333 0.08334 6.9153e-06

1.5/6 0.25 0.24995 5.4236e-05

2.5/6 0.41667 0.41618 4.8342e-04

3.5/6 0.58333 0.58436 1.0284e-03

4.5/6 0.75 0.74969 3.1162e-04

5.5/6 0.91667 0.91435 2.3187e-03
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Figure 5. Graph of exact and approximate solutions of test prob-
lem 6.5 for m̂ = 6.

7. Conclusion

In this article we have provided an effective technique to solve nonlinear Volterra
integral equations using Fibonacci wavelets. Nonlinear-Volterra integral equations
are reduced to a system of nonlinear algebraic equations with unknown Fibonacci
coefficients, by using Fibonacci wavelets, and their operational matrix of integration
and these equations are solved by Newton’s method. Error estimate of the proposed
method is given. Moreover, the results obtained are in good agreement with that
of exact solution and hence we conclude that the method described is precise and
accurate.
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