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ON THE ROUGH CONVERGENCE OF A SEQUENCE OF SETS

ÖZNUR ÖLMEZ, FATMA GECİT AKÇAY AND SALİH AYTAR

Abstract. In the present paper, we give an alternative expression of rough
Wijsman convergence of a sequence of sets. Defining the concept of rough
Wijsman limit set of a sequence, we prove some inclusion relations related
to this limit set. Finally, we examine the relation between rough Wijsman

convergence and rough Hausdorff convergence.

1. Introduction

Set convergence theory was pioneered by Painleve in 1902. In fact, this the-
ory was originally developed by Kuratowski [8]. Therefore, this convergence is
called the Kuratowski convergence by many authors. On the other hand, Hausdorff
defined the concept of “Hausdorff convergence” which corresponds to the uniform
convergence of a sequence of distance functions. Wijsman ([16], [17]) introduced the
concept of “Wijsman convergence”, by using the pointwise convergence of distance
functions. In the 2000’s, Nuray and Rhoades [9] applied the statistical convergence
theory to a sequence of sets. They also gave the definitions of boundedness and
Wijsman Cauchy for a sequence of sets. Kişi and Nuray [7] extended the concept
of Wijsman convergence to Wijsman I-convergence and Wijsman I∗-convergence.
Hazarika and Esi [6] defined the idea of asymptotically equivalent sequences of
sets in the sense of ideal Wijsman convergence. Recently, Dündar and Pancaroğlu
[4] have introduced the concepts of Wijsman lacunary invariant convergence and
Wijsman lacunary invariant statistical convergence.

Rough convergence grew out of Phu [11] investigations of a sequence which is not
convergent in the usual sense in a finite dimensional normed space. He introduced
this sequence might be convergent to a point with a certain degree of roughness.
He gave some basic properties of the rough limit set. Then Aytar [2] obtained the
relation between core and rough limit set of a sequence.

Recently, theory of rough convergence has begun to be applied to sequences of
sets. In this context, the concept of rough Wijsman convergence was first defined
by Ölmez and Aytar [10]. They explored the effect of the asymptotic cone of the
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limit set of a sequence that is rough Wijsman convergent. Subramanian and Esi
[14, 15] introduced the notions of rough Wijsman convergence and rough Wijsman
statistical convergence for a triple sequence of sets. Defining rough Wijsman limit
set for triple sequences of sets, they obtained some convergence criteria. Later,
Esi et al. [5] studied on rough Wijsman statistical convergence. They stated the
analogous definitions and results for rough Wijsman statistical convergence of a
triple sequence.

In this article, an equivalent definitions of rough Wijsman convergence and of
rough Hausdorff convergence are given (see Propositions 2.2 and 3.1). Defining
the concept of the set of rough Wijsman limit, some inclusion relations related to
this limit set are proved (see Propositions 2.1, 2.3 and 2.4). Finally, the relation
between rough Wijsman convergence and rough Hausdorff convergence is examined
(see Theorem 3.1).

2. Rough Wijsman Convergence

Throughout this paper, we assume that X is a nonempty set and ρX is a metric
on X and A, An are nonempty closed subsets of X for each n ∈ N.

Let {xn} be a sequence in the metric space X, and r be a nonnegative real
number. The sequence {xn} is said to be rough convergent to x with the roughness

degree r, denoted by xn
r→ x, if for each ε > 0 there exists an n (ε) ∈ N such that

ρX(xn, x) < r + ε for each n ≥ n (ε) [11].
The distance function d(·, A) : X → [0,∞) is defined by the formula

d(x,A) = inf{ρX(x, y) : y ∈ A} [1, 16].

We say that the sequence {An} is Wijsman convergent to the set A if

lim
n→∞

d(x,An) = d(x,A) for all x ∈ X.

In this case, we write An
W→ A, as n → ∞ [16].

The set A is called Wijsman cluster point of the sequence {An} provided that
there is a subsequence that Wijsman converges to A. In this case L{An} denotes
the set of all cluster points of the sequence {An}.

Throughout the paper we suppose that r ≥ 0.
In 2016, the concept of rough Wijsman convergence was first defined by Ölmez

and Aytar [10] as follows:

Definition 2.1. A sequence {An} is said to be r−Wijsman convergent to the set
A if for every ε > 0 and each x ∈ X there is an N(ε, x) ∈ N such that

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(ε, x)

and we write d(x,An)
r→ d(x,A) or An

r−W→ A as n → ∞ [10].

Now define

1− LIMrAn = {A ⊂ X : An
r−W→ A}. (2.1)

If a sequence is Wijsman convergent, then this sequence r−Wijsman converges
to the same set for each r. However, there are some sequences of sets which are
r−Wijsman convergent, but not Wijsman convergent as can be seen in the following
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Example 2.1 ([1]). Let X = R2 and define a sequence {An} as follows:

An =:

{ {
1
n

}
× [−1, 0] , if n is an odd integer{

1
n

}
× [0, 1] , if n is an even integer

.

This sequence is not Wijsman convergent to the set A = {(0, 0)}. But, this sequence
is r−Wijsman convergent to the set A for r ≥ 1.
If we take x = (0, 1), then we have d((0, 1), A) = 1 and

d((0, 1), An) =

{ √
1 + 1

n2 , if n is an odd integer
1
n , if n is an even integer

.

Since

lim sup
n→∞

d((0, 1), An) = 1 and lim inf
n→∞

d((0, 1), An) = 0,

we have that lim
n→∞

d(x,An) does not exist. Therefore, this sequence is not Wijsman

convergent to the set A, but this sequence is r−Wijsman convergent to the set A
for r ≥ 1.

Remark 2.1. In the Example 2.1, if we take A ∈ 1− LIMrAn, then we have

A ⊆ B ((0, 0) , r) (2.2)

where B ((0, 0) , r) =
{
x ∈ R2 : ρ((0, 0), x) ≤ r

}
. Now let us prove the inclusion

(2.2). On the contrary, suppose that A * B ((0, 0) , r). For the sake of generality
let us choose x = (x1, x2) ∈ R2 such that x1 > 0 and x2 > 1. Then, there exists an

x = (x1, x2) ∈ A such that
√

x2
1 + x2

2 > r. Since d(x,A) = 0, we have

d(x,An) =


√(

x1 − 1
n

)2
+ x2

2 , if n is an odd integer√(
x1 − 1

n

)2
+ (x2 − 1)

2
, if n is an even integer

.

As n → ∞, we get

|d(x,An)− d(x,A)| = |d(x,An)− 0|

=

{ √
x2
1 + x2

2 , if n is an odd integer√
x2
1 + (x2 − 1)

2
, if n is an even integer

.

If n is an odd integer, then we have |d(x,An)− d(x,A)| > r. Thus we have A /∈
1− LIMrAn. This contradiction completes the proof.
If the origin is an element of the set A and A is contained in the r−closed ball,
then we have A ∈ 1− LIMrAn.

Remark 2.2. In the Example 2.1, if we take A =
{(

1
2 , 0

)}
then the sequence {An}

is not r−Wijsman convergent to the set A for r = 1. Since r = sup
c∈L{An}

∥∥( 1
2 , 0

)
− c

∥∥ =

√
5
2 , the sequence {An} is r−Wijsman convergent to the set A =

{(
1
2 , 0

)}
for

r =
√
5
2 . Moreover this sequence is not r−Wijsman convergent to the set A for

all r <
√
5
2 .

Now define

2− LIMrAn =
∩

c∈L{An}

B(c, r) = {A ∈ X : L{An} ⊆ B(A, r)}. (2.3)
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Then, for the usual rough convergence of a sequence of elements in any metric
space, the sets defined by the equalities (2.1) and (2.3) coincide with each other.
But these sets are not equal for an arbitrary sequence of sets. The following example
compares the sets 1− LIMrAn and 2− LIMrAn.

Example 2.2. Let X = R2 and define a sequence {An} as follows:

An :=

{ {
− 1

n

}
×

[
0, 2 + 1

n

]
, if n is an odd integer{

1
n

}
×
[
−2− 1

n , 0
]

, if n is an even integer
.

This sequence is not Wijsman convergent to the set A = {(0, 0)} × [−2, 2]. If we

take x = (9, 10), then we have d(x,A) =
√
145 and

d(x,An) =

{ √
145 , if n is an odd integer√
181 , if n is an even integer

.

Since

|d(x,An)− d(x,A)| =
{

0 , if n is an odd integer√
181−

√
145 , if n is an even integer

,

this sequence is not Wijsman convergent to the set A. But, this sequence is r−Wijsman
convergent to the set A for r ≥ 2. Moreover, we have A ∈ 1− LIMrAn and

2− LIMrAn = B ({(0, 0)} × [0, 2], 2) ∩B ({(0, 0)} × [−2, 0], 2) = B ((0, 0), 2)

for r = 2. Hence, the definition of 1 − LIMrAn does not coincide with that of
2− LIMrAn.

We are ready to give following inclusion.

Proposition 2.1. If A ∈ 1− LIMrAn, then A ⊆ 2− LIMrAn.

Proof. Let A ∈ 1 − LIMrAn. On the contrary, assume that A * 2 − LIMrAn.
Then we have there exists y ∈ A such that y /∈ 2− LIMrAn. Thus we get

y /∈ 2− LIMrAn ⇒ y /∈
∩

c∈L{An}

B(c, r)

⇒ ∃c ∈ L{An} ∴ y /∈ B(c, r)
⇒ ρ(y, c) > r
⇒ inf

y∈A
ρ(y, c) > r

⇒ d(c, A) ≥ r.

Since A ∈ 1−LIMrAn, for every ε > 0 and each x ∈ X there exists an N(ε, x) ∈ N
such that |d(x,An)− d(x,A)| < r + ε for all n ≥ N(ε, x). If we take x = c which
is a cluster point, then d(c, An) < ε for all n ≥ N(ε, x). Because of d(c, A) ≥ r
and d(c, An) < ε, we have |d(c, An)− d(c, A)| ≥ r as n → ∞. This inequality
contradicts to the fact that A ∈ 1−LIMrAn. Thus we obtain A ⊆ 2−LIMrAn. �

Now we will consider a sequence which is r−Wijsman convergent and has infin-
itely many cluster points.

Example 2.3. Let X = R and define a sequence {An} as follows:

An :=

(
{0} , {0} , {1} , {0} ,

{
1

2

}
, {1} , {0} ,

{
1

3

}
,

{
2

3

}
, {1} , . . .

)
.
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It is clear that, for each c ∈ [0, 1], the singleton {c} is a cluster point of {An}. Thus
we have

2− LIMrAn =
∩

c∈[0,1]

B (c, 1) =
∩

c∈[0,1]

[c− 1, c+ 1] = [0, 1].

Moreover, if we take A = [0, 1], then we have A ∈ 1− LIMrAn for r = 1.

The following proposition characterizes r−Wijsman convergence by means of the
upper limit.

Proposition 2.2. For every ε > 0 and each x ∈ X there exists an N(ε, x) ∈ N
such that

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(ε, x)

if and only if

lim sup
n→∞

|d(x,An)− d(x,A)| ≤ r.

Proof. (Necessity) Suppose that d(x,An)
r→ d(x,A). Then, for every ε > 0 and each

x ∈ X there exists an N(ε, x) ∈ N such that fn(x) := |d(x,An)− d(x,A)| < r + ε
for all n ≥ N(ε, x). On the contrary, suppose that

lim sup
n→∞

fn(x) > r.

Take

δ(x) =

lim sup
n→∞

fn(x)− r

3
.

By definition of lim sup, we have

fn(x) > lim sup
n→∞

fn(x)− δ(x) for infinitely many n.

Take ε = δ(x), then there exists an N(ε, x) ∈ N such that

fn(x) < r + δ(x) for all n ≥ N(ε, x).

This inequality contradicts to the definition of lim sup. Thus, we obtain lim sup
n→∞

fn(x) ≤ r for all x ∈ X.
(Sufficiency) Let lim sup

n→∞
fn(x) ≤ r for every x ∈ X. Assume on the contrary that

there exists an ε̃ > 0 and an x ∈ X and infinitely many n such that fn(x) ≥ r + ε̃.
Now, by the assumption, there exists an N(ε̃, x) ∈ N such that

fn(x) ≤
[
lim sup

n→∞
fn(x)

]
+ ε̃ for all n ≥ N(ε̃, x).

This inequality contradicts to the fact that fn(x) ≥ r + ε̃, hence the proof is
complete. �

Proposition 2.3. If {Akn} is a subsequence of {An}, then

1− LIMrAn ⊆ 1− LIMrAkn .

Proof. Let A ∈ 1−LIMrAn. That is, for every ε > 0 and each x ∈ X there exists
an N(ε, x) ∈ N such that

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(ε, x).
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Since {Akn} is a subsequence of {An}, we have

|d(x,Akn)− d(x,A)| < r + ε for all kn ≥ N(ε, x).

Thus we have A ∈ 1− LIMrAkn . �

Proposition 2.4. If r1 ≤ r2, then we have

1− LIMr1An ⊆ 1− LIMr2An and 2− LIMr1An ⊆ 2− LIMr2An.

Proof. Let r1 ≤ r2 and A ∈ 1− LIMr1An. Hence, for every ε > 0 and each x ∈ X
there exists an N(ε, x) ∈ N such that

|d(x,An)− d(x,A)| < r1 + ε

≤ r2 + ε for all n ≥ N(ε, x).

Thus we have A ∈ 1− LIMr2An.
If r1 ≤ r2 and c ∈ L{An} then

B(c, r1) ⊆ B(c, r2)∩
c∈L{An}

B(c, r1) ⊆
∩

c∈L{An}

B(c, r2).

Thus we get 2− LIMr1An ⊆ 2− LIMr2An. �

3. Rough Hausdorff Convergence

The Hausdorff distance between A and B, denoted by H(A,B), is defined as

H(A,B) := sup
x∈X

|d(x,A)− d(x,B)| [12].

We say that a sequence {An} isHausdorff convergent to the setA if lim
n→∞

H(An, A) =

0, and we denote An
H→ A, as n → ∞. That is, we have An

H→ A provided that, for
every ε > 0 there exists an N(ε) ∈ N such that

H(An, A) = sup
x∈X

|d(x,An)− d(x,A)| < ε for all n ≥ N(ε) [12].

Example 3.1 ([13]). Define a sequence {An} by

An :=

(
−∞,−1− 1

n

]
∪
[
2 +

1

n
,∞

)
.

This sequence is Hausdorff convergent to the set A = (−∞,−1] ∪ [2,∞).

Now we will define a new type of Hausdorff convergence for a sequence of closed
sets. The concept of rough convergence in a metric space was first introduced by
Debnath and Rakshit [3]. Since the set of all closed sets is a metric space with the
Hausdorff metric, following definition is a special case of Debnath and Rakshit’s [3]
definition.

Definition 3.1. The sequence {An} is said to be r−Hausdorff convergent to the
set A if for every ε > 0 there exists an N(ε) ∈ N such that

H(An, A) = sup
x∈X

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(ε).

In this case, we write An
r−H→ A as n → ∞.
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Now let us define

H − LIMrAn =
{
A ⊂ X : An

r−H→ A
}
.

If a sequence is Hausdorff convergent, then this sequence is r−Hausdorff conver-
gent to the same set for each r. However, the converse of this claim does not hold
in general, as can be seen following

Example 3.2. Let us consider the sequence {An} defined in Example 3.1. This
sequence is r−Hausdorff convergent to the set R for each r ≥ 3

2 .

The following proposition characterizes the concept of r−Hausdorff convergence
by means of the upper limit. Its proof is similar to that of Proposition 2.1, hence
we omit it.

Proposition 3.1. For every ε > 0 there exists an N(ε) ∈ N such that

H(An, A) = sup
x∈X

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(ε)

if and only if
lim sup
n→∞

sup
x∈X

|d(x,An)− d(x,A)| ≤ r.

Finally, giving the relation between the concepts of rough Wijsman convergence
and rough Hausdorff convergence, we will end our work.

Theorem 3.1. If the sequence {An} is r−Hausdorff convergent to the set A, then
it is r−Wijsman convergent to the same set.

Proof. Suppose that the sequence {An} is r−Hausdorff convergent to the set A.
Then, for every ε > 0 there exists an N(ε) ∈ N such that

H(An, A) = sup
x∈X

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(ε).

Hence we have

|d(x∗, An)− d(x∗, A)| < sup
x∈X

|d(x,An)− d(x,A)| < r + ε

for all n ≥ N(ε). Since x∗ is an arbitrary point, we say that the sequence {An} is
r−Wijsman convergent to the set A. �

The converse of the above theorem does not hold in general as can be seen in
the following

Example 3.3. Let X = R2 and define a sequence {An} as follows:

An := {(x, y) ∈ R2 : x2 + y2 + 2ny = 0}.
This sequence is r−Wijsman convergent to the set A = R × [0, 1], but it is not
r−Hausdorff convergent to the set A for each r.

4. Conclusion

This paper is an application of the rough convergence theory to the sequences of
sets in the sense of Wijsman convergence and Hausdorff convergence. We proved
some inclusion relations related to rough limit set of a sequence of sets. Similarly
these inclusion relations can be extended to the double or multiple sequences of sets.
Moreover the relation between rough Wijsman convergence and rough Hausdorff
convergence of these types of sequences can be examined.
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sequences. Int. J. Anal. Appl. 16(5), 643–653 (2018).
[16] Wijsman, R.A.: Convergence of sequences of convex sets, cones and functions. Bulletin of

the American Mathematical Society 70(1), 186–188 (1964).
[17] Wijsman, R.A.: Convergence of sequences of convex sets, cones and functions II. Trans.

Amer. Math. Soc. 123, 32–45 (1966).
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