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KRASNOSELSKII-TYPE APPROXIMATION SOLVABILITY OF A

GENERALIZED CAYLEY INCLUSION PROBLEM IN

SEMI-INNER PRODUCT SPACE

MOHD IQBAL BHAT, MUDASIR A. MALIK AND BISMA ZAHOOR

Abstract. In this paper, we introduce and study a generalized Yosida ap-
proximation operator and generalized Cayley operator associated to H(·, ·)-
monotone operator and discuss some of their properties in semi-inner product
spaces. An example is constructed in support of the various results proved. As
an application we consider a generalized Cayley inclusion problem in semi-inner

product spaces which is more general than the variational inclusion problem.
Using the generalized resolvent operator, generalized Yosida approximation
operator and generalized Cayley operator we develop an iterative algorithm
to approximate the solution of generalized Cayley inclusion problem. Further-

more, an existence and convergence result is proved.

1. Introduction

Variational inclusions are useful and important extensions and generalizations of
the variational inequalities with a wide range of applications in industry, mathemat-
ical finance, economics, decisions sciences, ecology, mathematical and engineering
sciences. One of the important aspects in the theory of variational inequalities is
the approximation solvability of the solution. In the recent past several researchers
studied the approximation solvability of some important classes of variational in-
equalities. Among several other methods, the method based on the resolvent op-
erator technique has been widely used to solve variational inclusions. It is known
that the monotonicity of the underlying operator plays a prominent role in solv-
ing variational inclusion problems. In 2003, Fang and Huang [9] introduced and
studied a new class of variational inclusions involving H-monotone operators in a
Hilbert space. Using resolvent operator, they proposed an algorithm for solving the
associated class of variational inclusions. Since then a number of researchers inves-
tigated variant forms of H-monotone operators for solving variational inclusions in
different spaces, see for example [25, 19, 31, 14, 4, 20, 22, 35, 8, 10, 30, 33, 34, 6].

In 2014, Sahu et al. [29] proved the existence of solutions for a class of nonlinear
implicit variational inclusion problems in semi-inner product spaces. Moreover,
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they constructed an iterative algorithm for approximating the solution for this
class of problems involving A-monotone and H-monotone operators by using the
generalized resolvent operator technique. In the sequel, Kim and Bhat [16] and Bhat
and Zahoor [5] considered and studied systems of variational inclusions in semi-inner
product spaces using several classes ofH-monotone operators. Recently, Kazmi and
Furkan [15] considered and studied a system of split variational inequality problems
in semi-inner product spaces.

It is also known that the monotone operators in abstract spaces can be regu-
larized into single-valued Lipschitzian monotone operator through a process known
as Yosida approximation, see [18, 27, 2, 7]. The Yosida approximation operators
and the Cayley operators are advantageous to estimate the solution of variational
inclusion problems using resolvent operators. In the recent past, many authors ap-
plied Yosida approximation operators and the Cayley operators to solve variational
inclusions and system of variational inclusion problems, see [1, 7, 13, 18, 23, 26, 3]
and the related references therein.

Motivated and inspired by the above works, in this paper we introduce and
study a generalized Yosida approximation operator and generalized Cayley opera-
tor associated with H(·, ·)-monotone operator and discuss some of their properties
in semi-inner product spaces. Further, we construct an example in support of the
various results proved for these classes of operators. As an application we consider
a generalized Cayley inclusion problem in semi-inner product spaces which is more
general than the variational inclusion problem. Using the generalized resolvent op-
erator, generalized Yosida approximation operator and generalized Cayley operator
we develop an iterative algorithm to approximate the solution of generalized Cayley
inclusion problem. Furthermore, we give the existence and convergence analysis of
the class of generalized Cayley inclusion problems.

2. Preliminaries

Throughout the paper, unless otherwise stated, X denotes a 2-uniformly smooth
space equipped with norm ∥ · ∥ and semi-inner product [·, ·]. 2X denotes the power
set of a nonempty set X and CB(X) denotes the the family of all nonempty closed
and bounded subsets of X. The metric induced by the norm is denoted by d and
the Hausdörff metric on CB(X) by D(·, ·).

First, we recall some known definitions and results which are important to
achieve the goal of this paper.

Definition 2.1 [21]. Let X be a vector space over the field F of real or complex
numbers. A functional [·, ·] : X×X → F is called a semi-inner product if it satisfies
the following conditions:

(i) [x+ y, z] = [x, z] + [y, z], ∀ x, y, z ∈ X;
(ii) [λx, y] = λ[x, y], ∀ λ ∈ F and x, y ∈ X;
(iii) [x, x] > 0, for x ̸= 0;

(iv)
∣∣[x, y]∣∣2 ≤ [x, x][y, y].

The pair (X, [·, ·]) is said to be a semi-inner product space.

It can be seen that ∥x∥ = [x, x]
1
2 is a norm onX. Hence every semi-inner product

space is a normed linear space. On the other hand, in a normed linear space, one
can define semi-inner product in infinitely many ways. Giles [11] had proved that
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if the underlying space X is a uniformly convex smooth Banach space, then it is
possible to define a unique semi-inner product. Also the unique semi-inner product
has the following nice properties:

(i) y is orthogonal to x if and only if [x, y] = 0, that is if and only if ∥y∥ ≤
∥y + λx∥, for all scalers λ.

(ii) Generalized Riesz representation theorem: If f is a continuous linear
functional on X then there is a unique vector y ∈ X such that f(x) = [x, y],
for all x ∈ X.

(iii) The semi-inner product is continuous, that is for each x, y ∈ X, we have
Re[y, x+ λy] → Re[y, x] as λ → 0.

Since the sequence space ℓp, p > 1 and the function space Lp, p > 1 are uniformly
convex smooth Banach spaces, we can define a semi-inner product on these spaces,
uniquely.

Example 2.1 [29]. The real Banach space ℓp for 1 < p < ∞ is a semi-inner product
space with the semi-inner product defined by

[x, y] =
1

∥y∥p−2
p

∑
i

xiyi|yi|p−2, x, y ∈ ℓp.

Example 2.2 [11]. The real Banach space Lp(X,µ) for 1 < p < ∞ is a semi-inner
product space with the semi-inner product defined by

[f, g] =
1

∥g∥p−2
p

∫
X

f(x)|g(x)|p−1sgn (g(x)) dµ, f, g ∈ Lp.

Definition 2.2 [32]. Let X be a real Banach space. Then

(i) The modulus of smoothness of X is the function ρX : [0,+∞) → [0,+∞)
defined by

ρX(t) = sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : x, y ∈ X, ∥x∥ = 1, ∥y∥ = t, t > 0

}
;

(ii) X is said to be uniformly smooth, if lim
t→0

ρX(t)

t
= 0;

(iii) X is said to be q-uniformly smooth, if there exists a positive real constant
c such that ρX(t) ≤ ctq, q > 1.

(iv) X is said to be 2-uniformly smooth, if there exists a positive real constant
c such that ρX(t) ≤ ct2.

Lemma 2.3 [32]. Let q > 1 be a real number. Then the following statements are
equivalent:

(i) X is 2-uniformly smooth;
(ii) There is a constant c > 0 such that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, fx⟩+ c∥y∥2, ∀ x, y ∈ X, (1)

where fx ∈ J(x) and J(x) =
{
x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥2 and ∥x∗∥ = ∥x∥

}
,

is the normalized duality mapping.

Remark 2.4. Every normed linear space X is a semi-inner product space [21]. In
fact, by Hahn-Banach theorem, for each x ∈ X, there exists atleast one functional
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fx ∈ X∗ such that ⟨x, fx⟩ = ∥x∥2. Given any such mapping f from X into X∗, we
can show that [y, x] = ⟨y, fx⟩ defines a semi-inner product. Hence inequality (1)
can be written as

∥x+ y∥2 ≤ ∥x∥2 + 2[y, x] + c∥y∥2, ∀x, y ∈ X. (2)

The constant c is called constant of smoothness of X and is chosen with best
possible minimum value.

Example 2.3. The function space Lp is 2-uniformly smooth for p ≥ 2 and it is
p-uniformly smooth for 1 < p < 2. If 2 ≤ p < ∞, then we have for all x, y ∈ Lp,

∥x+ y∥2 ≤ ∥x∥2 + 2[y, x] + (p− 1)∥y∥2,

where (p− 1) is the constant of smoothness of Lp.

Definition 2.5 [24]. The Hausdorff metric D(·, ·) on CB(X) is defined by

D(P,Q) = max

{
sup
u∈P

inf
v∈Q

d(u, v), sup
v∈Q

inf
u∈P

d(u, v)

}
, P,Q ∈ CB(X),

where d(·, ·) is the induced metric on X.

Definition 2.6 [24]. A set-valued mapping P : X → CB(X) is said to be µ-D-
Lipschitz continuous, if there exists a constant µ > 0 such that

D
(
P (x), P (y)

)
≤ µ∥x− y∥, ∀ x, y ∈ X.

Definition 2.7. Let X be a 2-uniformly smooth Banach space. Let A,B, T : X →
X and H : X ×X → X be single-valued mappings. Then

(i) T is said to be monotone, if

[Tx− Ty, x− y] ≥ 0, ∀x, y ∈ X;

(ii) T is said to be strictly monotone, if it is monotone and equality holds if
and only if x = y;

(iii) T is said to be r-strongly monotone, if there exists a constant r > 0 such
that

[Tx− Ty, x− y] ≥ r∥x− y∥2, ∀ x, y ∈ X;

(iv) T is said to be m-relaxed monotone, if there exists a constant m > 0 such
that

[Tx− Ty, x− y] ≥ (−m)∥x− y∥2, ∀ x, y ∈ X;

(v) T is said to be s-Lipschitz continuous, if there exists a constant s > 0 such
that

∥Tx− Ty∥ ≤ s∥x− y∥, ∀ x, y ∈ X;

(vi) H(A, ·) is said to be α-strongly monotone, if there exists a constant α > 0
such that

[H(Ax, u)−H(Ay, u), x− y] ≥ α∥x− y∥2, ∀ x, y, u ∈ X;

(vii) H(·, B) is said to be β-relaxed monotone, if there exists a constant β > 0
such that

[H(u,Bx)−H(u,By), x− y] ≥ −β∥x− y∥2, ∀ x, y, u ∈ X;
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(viii) H(A,B) is said to be αβ-symmetric monotone, if H(A, ·) is α-strongly
monotone and H(·, B) is β-relaxed monotone with α ≥ β and α = β if and
only if x = y, ∀ x, y ∈ X;

(ix) H(A, ·) is said to be τ1-Lipschitz continuous, if there exists a constant τ1 > 0
such that

∥H(Ax, u)−H(Ay, u)∥ ≤ τ1∥x− y∥, ∀ x, y, u ∈ X;

(x) H(·, B) is said to be τ2-Lipschitz continuous, if there exists a constant
τ2 > 0 such that

∥H(u,Bx)−H(u,By)∥ ≤ τ2∥x− y∥, ∀ x, y, u ∈ X.

Definition 2.8. Let X be a real 2-uniformly smooth Banach space. A set-valued
mapping M : X → 2X is said to be

(i) monotone, if

[u− v, x− y] ≥ 0, ∀ x, y ∈ X,u ∈ M(x), v ∈ M(y);

(ii) r-strongly monotone, if there exists a constant r > 0 such that

[u− v, x− y] ≥ r∥x− y∥2, ∀ x, y ∈ X,u ∈ M(x), v ∈ M(y);

(iii) m-relaxed monotone, if there exists a constant m > 0 such that

[u− v, x− y] ≥ (−m)∥x− y∥2, ∀ x, y ∈ X,u ∈ M(x), v ∈ M(y).

Definition 2.9. Let A,B : X → X,H : X ×X → X be single-valued mappings.
A set-valued mapping M : X → 2X is said to be H(·, ·)-monotone with respect
to A and B (or simply H(·, ·)-monotone in the sequel), if M is monotone and
(H(A,B) + λM) (X) = X, for all λ > 0.

Theorem 2.10. Let A,B : X → X,H : X ×X → X be single-valued mappings
such that H(A,B) is αβ-symmetric monotone and M : X → 2X be an H(·, ·)-
monotone operator. Then the operator (H(A,B) + λM)

−1
is single-valued.

Proof. For any given u ∈ X, let x, y ∈ (H(A,B) + λM)
−1

. It follows that

vx =
1

λ

(
u−H(Ax,Bx)

)
∈ M(x) and vy =

1

λ

(
u−H(Ay,By)

)
∈ M(y).

Using the monotonicity of M and H, we have

0 ≤ [vx − vy, x− y] =
1

λ

[
H(Ay,By)−H(Ax,Bx), x− y

]
= − 1

λ

[
H(Ax,Bx)−H(Ay,By), x− y

]
= − 1

λ

{[
H(Ax,Bx)−H(Ay,Bx), x− y

]
+
[
H(Ay,Bx)−H(Ay,By), x− y

]}
≤ − 1

λ

{
α∥x− y∥2 − β∥x− y∥2

}
= − 1

λ
(α− β)∥x− y∥2

≤ 0, for α > β.
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Thus, we have x = y and so (H(A,B) + λM)
−1

is single-valued. This completes
the proof.

Based on Theorem 2.10, we define the generalized resolvent operator for H(·, ·)-
monotone operator M as follows:

Definition 2.11. Let A,B : X → X,H : X ×X → X be single-valued mappings
such that H(A,B) is αβ-symmetric monotone and M : X → 2X be an H(·, ·)-
monotone operator. Then the generalized resolvent operator RH(·,·)

M,λ : X → X is
defined by

RH(·,·)
M,λ (x) =

(
H(A,B) + λM

)−1
(x), ∀ x ∈ X. (3)

Theorem 2.12. The generalized resolvent operator RH(·,·)
M,λ : X → X is 1

α−β -

Lipschitz continuous, that is∥∥∥RH(·,·)
M,λ (x)−RH(·,·)

M,λ (y)
∥∥∥ ≤ 1

α− β
∥x− y∥, ∀ x, y ∈ X.

Proof. For any x, y ∈ X. It follows from (3) that

RH(·,·)
M,λ (x) = (H(A,B) + λM)

−1
(x) and RH(·,·)

M,λ (y) = (H(A,B) + λM)
−1

(y).

This implies that

v∗x =
1

λ

[
x−H

(
A(RH(·,·)

M,λ (x)), B(RH(·,·)
M,λ (x))

)]
∈ M

(
RH(·,·)

M,λ (x)
)

and

v∗y =
1

λ

[
y −H

(
A(RH(·,·)

M,λ (y)), B(RH(·,·)
M,λ (y))

)]
∈ M

(
RH(·,·)

M,λ (y)
)
.

For the sake of brevity, let

Ux = RH(·,·)
M,λ (x) and Uy = RH(·,·)

M,λ (y).

Since M is monotone,[
v∗x − v∗y , Ux− Uy

]
=

1

λ
[(x−H (A(Ux), B(Ux)))− (y −H (A(Uy), B(Uy))) , Ux− Uy]

=
1

λ
[x− y − {H (A(Ux), B(Ux))−H (A(Uy), B(Uy))} , Ux− Uy] ≥ 0.

Therefore, we have

[x− y, Ux− Uy] ≥ [H (A(Ux), B(Ux))−H (A(Uy), B(Uy)) , Ux− Uy] .

Since H(A,B) is αβ-symmetric monotone, it follows that

∥x− y∥ · ∥Ux− Uy∥ ≥ [x− y, Ux− Uy]

≥ [H (A(Ux), B(Ux))−H (A(Uy), B(Ux)) , Ux− Uy]

+ [H (A(Uy), B(Ux))−H (A(Uy), B(Uy)) , Ux− Uy]

≥ α∥Ux− Uy∥2 − β∥Ux− Uy∥2

= (α− β)∥Ux− Uy∥2,
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and so ∥∥∥RH(·,·)
M,λ (x)−RH(·,·)

M,λ (y)
∥∥∥ ≤ 1

α− β
∥x− y∥, ∀ x, y ∈ X.

This completes the proof.

Definition 2.13. The generalised Yosida approximation operator JH(·,·)
M,λ : X → X

associated with H(·, ·)-monotone operator M is defined as:

JH(·,·)
M,λ (x) =

1

λ

(
H(A,B)−RH(·,·)

M,λ

)
(x), ∀ x ∈ X and λ > 0, (4)

where RH(·,·)
M,λ is defined by (3).

Definition 2.14. The generalised Cayley operator CH(·,·)
M,λ : X → X associated

with H(·, ·)-monotone operator M is defined as:

CH(·,·)
M,λ (x) =

(
2RH(·,·)

M,λ −H(A,B)
)
(x), ∀ x ∈ X and λ > 0, (5)

where RH(·,·)
M,λ is defined by (3).

In view of Theorem 2.10, JH(·,·)
M,λ and CH(·,·)

M,λ are both sinlge-valued.

Theorem 2.15. LetH(A, ·) be τ1-Lipschitz continuous andH(·, B) be τ2-Lipschitz
continuous. Then the generalised Yosida approximation operator defined by (4) is

η-Lipschitz continuous, where η =
1

λ

(
τ1 + τ2 +

1

α− β

)
.

Proof. Let x, y ∈ X, then using the fact that H(A, ·) is τ1-Lipschitz continuous
and H(·, B) is τ2-Lipschitz continuous and Theorem 2.12, we have∥∥∥JH(·,·)

M,λ (x)− JH(·,·)
M,λ (y)

∥∥∥
=

1

λ

∥∥∥{H(Ax,Bx)−RH(·,·)
M,λ (x)

}
−

{
H(Ay,B(y))−RH(·,·)

M,λ (y)
}∥∥∥

≤ 1

λ

{
∥H(Ax,Bx)−H(Ay,B(y))∥+

∥∥∥RH(·,·)
M,λ (x)−RH(·,·)

M,λ (y)
∥∥∥}

≤ 1

λ

{
∥H(Ax,Bx)−H(Ay,Bx)∥

+ ∥H(Ay,Bx)−H(Ay,B(y))∥+ 1

α− β
∥x− y∥

}
≤ 1

λ

(
τ1 + τ2 +

1

α− β

)
∥x− y∥

= η∥x− y∥,

that is, ∥∥∥JH(·,·)
M,λ (x)− JH(·,·)

M,λ (y)
∥∥∥ ≤ η∥x− y∥, ∀ x, y ∈ X.

Thus, the generalized Yosida approximation operator JH(·,·)
M,λ is Lipschitz continu-

ous.



EJMAA-2022/10(2) GENERALIZED CAYLEY VARIATIONAL INCLUSION PROBLEM 53

Theorem 2.16. Let H(A,B) be αβ-symmetric monotone. Then the general-

ized Yosida approximation operator JH(·,·)
M,λ is δ-strongly monotone, where δ =

(α− β)2 − 1

λ(α− β)
.

Proof. For any x, y ∈ X, using Theorem 2.12 and αβ-symmetric monotonicity of
H(A,B), we have[
JH(·,·)
M,λ (x)− JH(·,·)

M,λ (y), x− y
]

=
1

λ

[(
H(Ax,Bx)−RH(·,·)

M,λ (x)
)
−

(
H(Ay,By)−RH(·,·)

M,λ (y)
)
, x− y

]
=

1

λ

{[
H(Ax,Bx)−H(Ay,By), x− y

]
−
[
RH(·,·)

M,λ (x)−RH(·,·)
M,λ (y), x− y

]}
≥ 1

λ

{[
H(Ax,Bx)−H(Ay,Bx), x− y

]
+
[
H(Ay,Bx)−H(Ay,By), x− y

]
−
∥∥∥RH(·,·)

M,λ (x)−RH(·,·)
M,λ (y)

∥∥∥ ∥x− y∥
}

≥ 1

λ

{
α∥x− y∥2 − β∥x− y∥2 − 1

α− β
∥x− y∥2

}
=

(
(α− β)2 − 1

λ(α− β)

)
∥x− y∥2,

that is, [
JH(·,·)
M,λ (x)− JH(·,·)

M,λ (y), x− y
]
≥ δ∥x− y∥2.

Thus, the generalized Yosida approximation operator JH(·,·)
M,λ is δ-strongly mono-

tone.

Theorem 2.17. LetH(A, ·) be τ1-Lipschitz continuous andH(·, B) be τ2-Lipschitz
continuous. Then the generalized Cayley operator defined by (5) is γ-Lipschitz

continuous, where γ =
2 + (τ1 + τ2)(α− β)

α− β
.

Proof. In view of (5) and Theorem 2.12, we have for any x, y ∈ X∥∥∥CH(·,·)
M,λ (x)− CH(·,·)

M,λ (y)
∥∥∥ =

∥∥∥(2RH(·,·)
M,λ (x)−H(Ax,Bx)

)
−
(
2RH(·,·)

M,λ (y)−H(Ay,By)
)∥∥∥

=
∥∥∥2(RH(·,·)

M,λ (x)−RH(·,·)
M,λ (y)

)
− (H(Ax,Bx)−H(Ay,By))

∥∥∥
≤ 2

∥∥∥RH(·,·)
M,λ (x)−RH(·,·)

M,λ (y)
∥∥∥+ ∥(H(Ax,Bx)−H(Ay,By)∥

≤ 2
∥∥∥RH(·,·)

M,λ (x)−RH(·,·)
M,λ (y)

∥∥∥+ ∥H(Ax,Bx)−H(Ay,Bx)∥

+ ∥H(Ay,Bx)−H(Ay,By)∥

≤ 2

α− β
∥x− y∥+ τ1∥x− y∥+ τ2∥x− y∥

=

(
2 + (τ1 + τ2)(α− β)

α− β

)
∥x− y∥,
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that is, ∥∥∥CH(·,·)
M,λ (x)− CH(·,·)

M,λ (y)
∥∥∥ ≤ γ∥x− y∥.

Thus, the generalized Cayley operator CH(·,·)
M,λ is γ-Lipschitz continuous.

Corresponding to the above concepts and results, we generate the following ex-
amples.

Example 2.4. Let X = R and A,B : R → R be single-valued mappings defined
by

A(x) = 4x+ 5 and B(x) = 3x− 2, ∀ x ∈ R.
Let H : R × R → R be a mapping defined by H(A(x), B(x)) = A(x) + B(x) =
7x+ 3, ∀ x ∈ R. Then for any u ∈ R, we have

[H(A(x), u)−H(A(y), u), x− y] = [A(x)−A(y), x− y]

= 4∥x− y∥2 ≥ 3∥x− y∥2.
Hence, H(A, ·) is 3-strongly monotone and

[H(u,B(x))−H(u,B(y)), x− y] = [B(x)−B(y), x− y]

= 3∥x− y∥2 ≥ −1∥x− y∥2.
Hence, H(·, B) is 1-relaxed monotone. Thus, H(A,B) is αβ-symmetric monotone
with α = 3 and β = 1. Also,

∥H(A(x), u)−H(A(y), u)∥ = ∥A(x)−A(y)∥
= 4∥x− y∥ ≤ 5∥x− y∥

and ∥H(u,B(x))−H(u,B(y))∥ = ∥B(x)−B(y)∥
= 3∥x− y∥ ≤ 4∥x− y∥.

Thus, H(A, ·) is τ1-Lipschitz continuous and H(·, B) is τ2-Lipschitz continuous with
τ1 = 4 and τ2 = 4.

Let M : R → 2R be a set-valued mapping defined by M(x) = {5x+2}, ∀ x ∈ R.
It can be easily verified that M is monotone. Also, for any x ∈ R and λ = 1, we
have

(H(A,B) + λM) (x) = H(A(x), B(x)) +M(x) = 12x+ 5.

Clearly the right hand side of above equation generates the whole space R, i.e.,
(H(A,B) + λM) (R) = R.

Hence, M is H(·, ·)-monotone.
Now, for λ = 1, the resolvent operator, the Yosida approximation operator and

the Cayley operator defined by (3), (4) and (5), respectively are given by

RH(·,·)
M,λ (x) =

1

12
(x− 5), JH(·,·)

M,λ (x) =
1

12
(83x+ 41), CH(·,·)

M,λ (x) = −1

6
(41x+ 23).

Further, ∥∥∥RH(·,·)
M,λ (x)−RH(·,·)

M,λ (y)
∥∥∥ =

1

12
∥x− y∥

≤ 1

2
∥x− y∥, where

1

α− β
=

1

2
.
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This shows that the generalized resolvent operator is 1
2 -Lipschitz continuous. Also,∥∥∥JH(·,·)

M,λ (x)− JH(·,·)
M,λ (y)

∥∥∥ =
83

12
∥x− y∥

≤ 19

2
∥x− y∥, where η =

(
τ1 + τ2 +

1

α− β

)
=

19

2
.

This shows that the generalized Yosida approximation operator is 19
2 -Lipschitz con-

tinuous and[
JH(·,·)
M,λ (x)− JH(·,·)

M,λ (y), x− y
]
=

83

12
∥x− y∥2

≥ 3

2
∥x− y∥2, where δ =

(α− β)2 − 1

(α− β)
=

3

2
.

Thus the generalized Yosida approximation operator is 3
2 -strongly monotone. Fi-

nally,∥∥∥CH(·,·)
M,λ (x)− CH(·,·)

M,λ (y)
∥∥∥ =

41

6
∥x− y∥

≤ 10∥x− y∥, where γ =
2 + (τ1 + τ2)(α− β)

α− β
= 10.

This shows that the generalized Cayley operator is 10-Lipschitz continuous.

3. Formulation of problem

Let A,B : X → X,H,F : X × X → X be single valued mappings and P :

X → CB(X),M : X → 2X be set-valued mappings. Let CH(·,·)
M,λ be the generalized

Cayley operator. We consider the following generalized Cayley variational inclusion
problem (in short, GCVIP):

Find x ∈ X,u ∈ P (x) such that

0 ∈ F (x, u) + CH(·,·)
M,λ (x) +M(x); (6)

(1) By taking F ≡ 0 and A-monotonicity of the set-valued mapping M instead
of H(·, ·)-monotonicity, GCVIP (6) reduces to the problem of finding x ∈ X
such that

0 ∈ CA
M,λ(x) +M(x).

This problem was considered and studied by Rais et al. [28] in the setting
of uniformly smooth Banach spaces.

(2) In case F ≡ 0 and CH(·,·)
M,λ ≡ 0, then GCVIP (6) reduces to the problem of

finding x ∈ X such that

0 ∈ M(x),

which is a fundamental and celebrated problem in the theory of optimiza-
tion and variational inequalities.

We remark that for suitable choices of different mappings and the underlying
space of GCVIP (6) includes, as special cases, various classes of variational in-
clusions and variational inequalities, see for example [12, 16, 29] and the related
references therein.



56 MOHD IQBAL BHAT AND MUDASIR A. MALIK EJMAA-2022/10(2)

4. Existence of solution, iterative algorithm and convergence
analysis

The following lemma is a fixed point formulation GCVIP (6) involving general-
ized resolvent operator, generalized Yosida approximation operator and generalized
Cayley operator defined by (3), (4) and (5), respectively.

Lemma 4.1. Let x ∈ X and u ∈ P (x), then (x, u) is a solution of GCVIP (6) if
and only if it satisfies the following equation:

x = RH(·,·)
M,λ

{
λ
(
JH(·,·)
M,λ (x)− CH(·,·)

M,λ (x)− F (x, u)
)
+RH(·,·)

M,λ (x)
}
, (7)

where λ, ρ > 0 is a constant.

Proof. Suppose (7) hold, then using the definitions of resolvent, Yosida and
Cayley operators, we have

x = RH(·,·)
M,λ

{
λ
(
JH(·,·)
M,λ (x)− CH(·,·)

M,λ (x)− F (x, u)
)
+RH(·,·)

M,λ (x)
}

⇐⇒ x = (H(A,B) + λM)
−1

{
λ
(
JH(·,·)
M,λ (x)− CH(·,·)

M,λ (x)− F (x, u)
)
+RH(·,·)

M,λ (x)
}

⇐⇒ H(Ax,Bx) + λM(x) ∋ H(Ax,Bx)−RH(·,·)
M,λ (x)− λ

(
CH(·,·)
M,λ (x) + F (x, u)

)
+RH(·,·)

M,λ (x)

⇐⇒ 0 ∈ F (x, u) + CH(·,·)
M,λ (x) +M(x).

Lemma 4.1 along with Nadler [24] allow us to suggest the following Krasnoselskii-
type iterative algorithm for finding the approximate solution of GCVIP (6).

Iterative Algorithm 4.2. Given x0 ∈ X,u0 ∈ P (x0), compute the sequences
{xn}, {un} by the iterative scheme:

xn+1 = (1− κ)xn + κRH(·,·)
M,λ

[
λ
(
JH(·,·)
M,λ (xn)− CH(·,·)

M,λ (xn)− F (xn, un)
)
+RH(·,·)

M,λ (xn)
]
;

such that

un ∈ P (xn) : ∥un+1 − un∥ ≤
(
1 + (1 + n)−1

)
D (P (xn+1), P (xn)) .

for n = 0, 1, 2, ... and κ ∈ (0, 1).
Now we prove the following existence and convergence result for GCVIP (6).

Theorem 4.3. Let A,B : X → X,H,F : X ×X → X be single valued mappings
such that H(A,B) be αβ-symmetric monotone; H(A, ·) be τ1-Lipschitz continuous
and H(·, B) be τ2-Lipschitz continuous; F be σ1-Lipschitz continuous in the first
argument and σ2-Lipschitz continuous in the second argument. Let M : X → 2X

be an be an H(·, ·)-monotone set-valued mapping and P : X → CB(X) be µ-D-
Lipschitz continuous set-valued mapping. If the following condition is satisfied

0 < φ = (1− κ) +
κλ(α− β)

[
1 + γ +

√
1− 2δ + cη2 + (σ1 + µσ2)

]
+ κ

(α− β)2
< 1, (8)

with 1+cη2 > 2δ, where γ = 2+(τ1+τ2)(α−β)
α−β , δ = (α−β)2−1

λ(α−β) , η = 1
λ

(
τ1 + τ2 +

1
α−β

)
and c is the constant of smoothness of 2-uniformly smooth Banach space X. Then
(x, u) is a solution of GCVIP (6) and the sequences {xn}, {un} generated by the
Iterative Algorithm 4.2 converge strongly to (x, u).
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Proof. From Algorithm 4.2 and Theorem 2.12, we have

∥xn+1 − xn∥

=
∥∥∥{(1− κ)xn + κRH(·,·)

M,λ

[
λ
(
JH(·,·)
M,λ (xn)− CH(·,·)

M,λ (xn)− F (xn, un)
)
+RH(·,·)

M,λ (xn)
]}

−
{
(1− κ)xn−1 + κRH(·,·)

M,λ

[
λ
(
JH(·,·)
M,λ (xn−1)− CH(·,·)

M,λ (xn−1)− F (xn−1, un−1)
)

+RH(·,·)
M,λ (xn−1)

]}∥∥∥
≤ (1− κ)∥xn − xn−1∥+

κ

α− β

∥∥∥λ(
JH(·,·)
M,λ (xn)− CH(·,·)

M,λ (xn)− F (xn, un)
)

−λ
(
JH(·,·)
M,λ (xn−1)− CH(·,·)

M,λ (xn−1)− F (xn−1, un−1)
)
+RH(·,·)

M,λ (xn)−RH(·,·)
M,λ (xn−1)

∥∥∥
≤ (1− κ)∥xn − xn−1∥+

κλ

α− β

∥∥∥[JH(·,·)
M,λ (xn)− JH(·,·)

M,λ (xn−1)
]

−
[
CH(·,·)
M,λ (xn)− CH(·,·)

M,λ (xn−1)
]∥∥∥+

κλ

α− β
∥F (xn, un)− F (xn−1, un−1)∥

+
κ

(α− β)2
∥xn − xn−1∥

= (1− κ)∥xn − xn−1∥+
κλ

α− β

∥∥∥[(xn − xn−1)−
(
CH(·,·)
M,λ (xn)− CH(·,·)

M,λ (xn−1)
)]

−
[
(xn − xn−1)−

(
JH(·,·)
M,λ (xn)− JH(·,·)

M,λ (xn−1)
)]∥∥∥

+
κλ

α− β
∥F (xn, un)− F (xn−1, un−1)∥+

κ

(α− β)2
∥xn − xn−1∥

≤ (1− κ)∥xn − xn−1∥+
κλ

α− β

∥∥∥[(xn − xn−1)−
(
CH(·,·)
M,λ (xn)− CH(·,·)

M,λ (xn−1)
)]∥∥∥

+
κλ

α− β

∥∥∥(xn − xn−1)−
(
JH(·,·)
M,λ (xn)− JH(·,·)

M,λ (xn−1)
)∥∥∥

+
κλ

α− β
∥F (xn, un)− F (xn−1, un−1)∥+

κ

(α− β)2
∥xn − xn−1∥ . (9)

Since the Yosida operator JH(·,·)
M,λ is δ-strongly monotone and η-Lipschitz continu-

ous, therefore using (2), we have∥∥∥(xn − xn−1)−
(
JH(·,·)
M,λ (xn)− JH(·,·)

M,λ (xn−1)
)∥∥∥2

≤ ∥xn − xn−1∥2 − 2
[
JH(·,·)
M,λ (xn)− JH(·,·)

M,λ (xn−1), xn − xn−1

]
+ c

∥∥∥JH(·,·)
M,λ (xn)− JH(·,·)

M,λ (xn−1)
∥∥∥2

≤ ∥xn − xn−1∥2 − 2δ∥xn − xn−1∥2 + cη2∥xn − xn−1∥2

=
(
1− 2δ + cη2

)
∥xn − xn−1∥2.

This implies∥∥∥(xn − xn−1)−
(
JH(·,·)
M,λ (xn)− JH(·,·)

M,λ (xn−1)
)∥∥∥ ≤

√
1− 2δ + cη2 ∥xn − xn−1∥,

(10)

where δ = (α−β)2−1
λ(α−β) and η = 1

λ

(
τ1 + τ2 +

1
α−β

)
.
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Also, since CH(·,·)
M,λ is γ-Lipschitz continuous, therefore we have∥∥∥(xn − xn−1)−

(
CH(·,·)
M,λ (xn)− CH(·,·)

M,λ (xn−1)
)∥∥∥

≤ ∥xn − xn−1∥+
∥∥∥JH(·,·)

M,λ (xn)− JH(·,·)
M,λ (xn−1)

∥∥∥
≤ ∥xn − xn−1∥+ γ ∥xn − xn−1∥
= (1 + γ) ∥xn − xn−1∥ , (11)

where γ = 2+(τ1+τ2)(α−β)
α−β .

Further, since F is σ1-Lipschitz continuous in the first argument and σ2-Lipschitz
continuous in the second argument, therefore we have

∥F (xn, un)− F (xn−1, un−1)∥
= ∥F (xn, un)− F (xn−1, un) + F (xn−1, un)− F (xn−1, un−1)∥
≤ ∥F (xn, un)− F (xn−1, un)∥+ ∥F (xn−1, un)− F (xn−1, un−1)∥
≤ σ1 ∥xn − xn−1∥+ σ2 ∥un − un−1∥
≤ σ1 ∥xn − xn−1∥+ σ2

(
1 + n−1

)
D (P (yn+1), P (yn))

≤
(
σ1 + µσ2

(
1 + n−1

))
∥xn − xn−1∥ (12)

Using (10)-(12) in (9), we have

∥xn+1 − xn∥

≤
{
(1− κ) +

κλ

α− β

[
(1 + γ) +

√
1− 2δ + cη2 +

(
σ1 + µσ2

(
1 + n−1

))]
+

κ

(α− β)2

}
∥xn − xn−1∥

=

(1− κ) +
κλ(α− β)

[
1 + γ +

√
1− 2δ + cη2 +

(
σ1 + µσ2

(
1 + n−1

))]
+ κ

(α− β)2


× ∥xn − xn−1∥ .

This implies

∥xn+1 − xn∥ ≤ φn ∥xn − xn−1∥ , (13)

where φn = (1− κ) +
κλ(α−β)

[
1+γ+

√
1−2δ+cη2+(σ1+µσ2(1+n−1))

]
+κ

(α−β)2 .

Let φ = (1− κ) +
κλ(α−β)

[
1+γ+

√
1−2δ+cη2+(σ1+µσ2)

]
+κ

(α−β)2 .

It is clear that φn → φ as n → ∞ and by Condition (8), we have 0 < φ < 1.
Thus it follows from (13) that {xn} is a Cauchy sequence and consequently there
exists x ∈ X such that xn → x as n → ∞, thanks to the completeness of X.

By Algorithm 4.2 and µ-D-Lipschitz continuity of P , we have

∥un+1 − un∥ ≤ µ
(
1 + (1 + n)−1

)
∥xn+1 − xn∥.

It follows that {un} is also a Cauchy sequence in X and consequently there exists
u ∈ X such that un → u as n → ∞.

Next, we claim u ∈ P (x). Since un ∈ P (xn), we have

d(u, P (x)) ≤ ∥u− un∥+ d(un, P (x)) ≤ ∥u− un∥+D (P (xn), P (x))
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≤ ∥u− un∥+ µ∥xn − x∥ −→ 0 as n → ∞.

Since P (x) is closed, it follows that u ∈ P (x).

Now by continuity of mappings F,RH(·,·)
M,λ ,JH(·,·)

M,λ , CH(·,·)
M,λ and Ierative Algorithm

4.2, we have

x = RH(·,·)
M,λ

{
λ
(
JH(·,·)
M,λ (x)− CH(·,·)

M,λ (x)− F (x, u)
)
+RH(·,·)

M,λ (x)
}
.

Thus in view of Lemma 4.1 we conclude that (x, u), where x ∈ X,u ∈ P (x), is a
solution of GCVIP (6). This completes the proof.

5. Conclusion

The results presented in this paper generalize many known results in the liter-
ature. The class of operators considered in this paper can be further exploited for
other classes of varional inclusions problems under different setings. The techniques
presented in this paper can be further exploited to study various classes of problems
via Cayley operators, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17,
19, 20, 22, 23, 25, 27, 28, 29, 30, 31, 33, 34, 35].

References

[1] R. P. Agarwal and R. U. Verma, Generalized system of (A, η)-maximal relaxed monotone
variational inclusion problems based on generalized hybrid algorithms, Commun. Nonlinear
Sci. Numer. Simul., 15(2), 238-251, 2010.

[2] R. Ahmad, M. Ishtyak, M. Rahaman and I. Ahmad, Graph convergence and generalized
Yosida approximation operator with an application, Math. Sci., 11, 155-163, 2017.

[3] M. Akram, J. W. Chen and M. Dilshad, Generalized Yosida approximation operator with an
application to a system of Yosida inclusions, J. Nonlinear Funct., Anal., Article ID 17, 1-20,

2018.
[4] M. I. Bhat and B. Zahoor, H(·, ·)-η-monotone operators with an application to a system of

set-valued variational-like inclusions in Banach spaces, Nonlinear Funct. Anal. Appl., 22(3),
673-692, 2017.

[5] M. I. Bhat and B. Zahoor, Existence of solution and iterative approximation of a system of
generalized variational-like inclusion problems in semi-inner product spaces, Filomat, 31(19),
6051-6070, 2017.

[6] M. I. Bhat, S. Shafi and M. A. Malik, H-mixed accretive mapping and proximal point method
for solving a system of generalized set-Valued variational inclusions, Numer. Funct. Anal.
Optim., 42(8), 955-972, 2021. URL: https://doi.org/10.1080/01630563.2021.1933527.

[7] H. W. Cao, Yosida approximation equations technique for system of generalized set-valued

variational inclusions, J. Inequal. Appl., 2013:455, 2013.
[8] Y. P. Fang and N. J. Huang, Approximate solutions for nonlinear operator inclusions with

(H, η)-monotone operator, Research Report, Sichuan University, 2003.
[9] Y. P. Fang and N.P. Huang, H-monotone operator and resolvent operator technique for

variational inclusions, Appl. Math. and Comput., 145, (2003), 795-803.
[10] Y.P. Fang, N. J. Huang and H.B. Thompson, A new system of variational inclusions with

(H, η)-monotone operators in Hilbert spaces, Comput. Math. Appl., 49, 365-374, 2005.
[11] J. R. Giles, Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 129, 436-446,

1967.
[12] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal.

Appl., 183(3), 706-712, 1994.
[13] R. Ikehata and N. Okozawa, Yosida approximation and Nonlinear Hybrid Equation, Nonlinear

Anal., 15(5), 479-495, 1990.
[14] R. N. Kalia and R. U. Verma, H-monotone nonlinear variational inclusion systems, Nonlinear

Funct. Anal. Appl., 11(2), 195-200, 2006.

[15] K. R. Kazmi and M. Furkan, System of split variational inequality problems in semi-inner
product spaces, 2017. URL: arXiv:1701.05304v1[math.FA].



60 MOHD IQBAL BHAT AND MUDASIR A. MALIK EJMAA-2022/10(2)

[16] J. K. Kim and M.I. Bhat, Approximation solvability for a system of implicit nonlinear vari-

ational inclusions with H-monotone operators, Demonstr. Math., 51, 241-254, 2018.
[17] J. K. Kim, M. I. Bhat and S. Shafi, Convergence and Stability of a Perturbed Mann Iterative

Algorithm with Errors for a System of Generalized Variational-Like Inclusion Problems in
q-uniformly smooth Banach Spaces, Comm. Math, and App., 12(1), 29-50, 2021.

[18] H. Y. Lan, Generalized Yosida approximations based on relatively A-maximal m-relaxed
monotonicity frameworks, Abstr. Appl. Anal., article ID 157190, 2013.

[19] H. Y. Lan, J. H. Kim and Y. J. Cho, On a new system of nonlinear A-monotone multivalued
variational inclusions, J. Math. Anal. Appl., 327, 481-493, 2007.

[20] X. Li and N.J. Huang, Graph convergence for the H(·, ·)-accretive operators in Banach spaces
with an application, Appl. Math. Comput., 217(22), 9053-9061, 2011.

[21] G. Lumer, Semi-inner product spaces, Trans. Amer. Math. Soc., 100, 29-43, 1961.
[22] X. P. Luo and N. J. Huang, (H,ϕ)-η-monotone operators in Banach spaces with an application

to variational inclusions, Appl. Math. Comput., 216, 1131-1139, 2010.
[23] A. Moudafi, A Duality algorithm for solving general variational inclusions, Adv. Model.

Optim., 13(2), 213-220, 2011.
[24] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30, 475-488, 1969.

[25] J. W. Peng and D. L. Zhu, A new system of generalized mixed quasi-variational inclusions
with (H, η)-monotone operators, J. Math. Anal. Appl., 327, 175-187, 2007.

[26] J. P. Penot and R. Ratsimahalo, On the Yosida approximaton of operators, Proc. R. Soc.

Edinb. Math., 131A, 945-966, 2001.
[27] X. Qin, S. Y. Cho and L. Wang, A regularization method for treating zero points of the sum

of two monotone operators, Fixed Point Theory Appl., Article ID 75, 2014.
[28] R. Ahmad, I, Ali, M. Rehman, M. Ishtyaq and J. C. Yao, Cayley inclusion problem with its

corresponding generalized resolvent equation problem in uniformly smooth Banach spaces,
Applicable Analysis. URL: https://doi.org/10.1080/00036811.2020.1781822.

[29] N. K. Sahu, R. N. Mohapatra, C. Nahak and S. Nanda, Approximation solvability of a class
of A-monotone implicit variational inclusion problems in semi-inner product spaces, Appl.

Math. Comput., 236, 109-117, 2014.
[30] G. J. Tang and X. Wang, A perturbed algorithm for a system of variational inclusions involv-

ing H(·, ·)-accretive operators in Banach spaces, J. Comput. Appl. Math., 272, 1-7, 2014.
[31] R. U. Verma, General nonlinear variational inclusion problems involving A-monotone map-

pings, Appl. Math. Lett., 19, 960-963, 2006.
[32] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. Theory Methods

Appl., 16, 1127-1138, 1991.
[33] Z. H. Xu and Z. B. Wang, A generalized mixed variational inclusion involving

(
H(·, ·)-η

)
-

monotone operators in Banach spaces, J. Math. Research., 2, 47-56, 2010.
[34] W. Y. Yan, Y. P. Fang and N. J. Huang, A new system of set-valued variational inclusions

with H-monotone operators, Math. Inequal. Appl., 8, 537-546, 2005.

[35] Y. Z. Zou and N. J. Huang, A new system of variational inclusions involving H(·, ·)-accretive
operators in Banach spaces, Appl. Math. Comput., 212, 135-144, 2009.

Mohd Iqbal Bhat
Department of Mathematics, South Campus University of Kashmir, Anantnag-192101,
India

E-mail address: iqbal92@gmail.com

Mudasir A. Malik
Department of Mathematics, South Campus University of Kashmir, Anantnag-192101,

India
E-mail address: mudasirmts09@gmail.com

Bisma Zahoor
Cluster University Srinagar-190008, India

E-mail address: bzbtamanna@gmail.comm


