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STEPANOV AND WEYL CLASSES OF MULTI-DIMENSIONAL
p~-ALMOST PERIODIC TYPE FUNCTIONS

M. KOSTIC

ABSTRACT. In this paper, we analyze Stepanov and Weyl classes of multi-
dimensional p-almost periodic type functions F' : I X X — Y, where n € N,
0 #1CR" X and Y are complex Banach spaces and p is a binary relation on
Y, working in the general setting of Lebesgue spaces with variable exponents.
We provide the main structural characterizations for the introduced classes
of functions and apply our results to the abstract Volterra integro-differential
equations.

1. INTRODUCTION AND PRELIMINARIES

The notion of an almost periodic function was introduced by H. Bohr [6] around
1925 and later generalized by many others. Let I be either R or [0, 00), let ¢ € C\{0}
satisfy |¢] = 1, and let f : I — X be a given continuous function, where X is a
complex Banach space equipped with the norm || -||. If € > 0, then a number 7 > 0
is called a (e, ¢)-period for f(-) if and only if || f(t +7) — cf(t)]| < e, t € I. The set
of all (g,c)-periods for f(-) is denoted by ¥.(f, ). The function f(-) is said to be
c-almost periodic if and only if for each € > 0 the set U.(f,¢) is relatively dense
in [0,00), i.e., there exists > 0 such that any subinterval of [0,00) of length I
meets J.(f,e). The usual notion of almost periodicity (almost anti-periodicity) is
obtained by plugging ¢ = 1 (¢ = —1). For further information concerning almost
periodic functions, we refer the reader to the research monographs [5], [7], [13]-[14],
[T7]-[19], [25], [27] and [29].

The notion of (w, T)-periodicity for a continuous function f : [0,00) — X, where
w>0and T : X — X is a linear isomorphism, has recently been introduced
by M. Feckan, K. Liu and J. Wang in [I1} Definition 2.2]: a continuous function
f:]0,00) = X is called (w, T)-periodic if and only if f(¢t+w) = Tf(¢) for all t > 0.
The authors have analyzed the existence and uniqueness of (w, T)-periodic solutions
for various classes of impulsive evolution equations using the strongly continuous
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semigroups, the Fredholm alternative type theorems and the fixed point theorems.
In a joint research article [12] with M. Feckan, M. T. Khalladi and A. Rahmani,
the author of this paper has investigated the basic properties of multi-dimensional
p-almost periodic type functions with values in complex Banach spaces.

On the other hand, in [2], A. Chévez, K. Khalil, M. Kosti¢ and M. Pinto have
analyzed multi-dimensional almost periodic functions of form F': I x X — Y, where
(Y, || - |ly) is a complex Banach spaces and (§ # I C R"; the multi-dimensional c¢-
almost periodic type functions have recently been investigated in [16]. For more
details about multi-dimensional Stepanov (Weyl) (c¢-)almost periodic type func-
tions, multi-dimensional almost automorphic type functions and their applications,
we refer the reader to the forthcoming research monograph [19] by M. Kostié; see
also the research articles [I], [3]-[4], and [22]-[24].

The organization and main ideas of this paper can be briefly described as follows.
After giving some preliminaries about multi-dimensional p-almost periodic func-
tions (Subsection , the basic results and definitions about the Lebesgue spaces
with variable exponent (Subsection, the multi-dimensional Bochner transform,
the Stepanov distance and the Stepanov norm (Subsection , we introduce and
analyze the multi-dimensional Stepanov p-almost periodic functions in Section
The main purpose of Section [3]is to introduce and analyze several various classes
of the multi-dimensional Weyl p-almost periodic functions. In the final section of
paper, we provide certain applications of our theoretical results to the abstract
Volterra integro-differential equations. We feel it is our duty to emphasize that
we do not present proofs for many structural results clarified below since these
proofs can be obtained by insignificant modifications of already known proofs of
corresponding results from our former research studies. Notation and terminol-
ogy. Suppose that X, Y, Z and T are given non-empty sets. Let us recall that
a binary relation between X and Y is any subset p C X x Y. If p C X x Y and
0 CZxTwithYNZ+#(, then we define p! CY x X ando-p=0c0opC X xT
by p7! == {(y,z) € Y x X : (z,y) € p} and 6 op = {(x,t) € X xT : Jy €
Y N Z such that (z,y) € p and (y,t) € o}, respectively. As is well known, the do-
main and range of p are defined by D(p) := {x € X : Jy € Y such that (z,y) €
X xY} and R(p) := {y € Y : 3z € X such that (x,y) € X x Y}, respectively;
plx) ={y eY : (x,y) € p} (x € X), z py < (x,y) € p. If p is a binary
relation on X and n € N, then we define p™ inductively; p=™ := (p")~1. Set
p(X') :={y:y € p(x) for some z € X'} (X' C X)and N,, :={1,---,n} (n €N).

We assume henceforth that (X, |- ||), (Y, |- |ly) and (Z, || -||z) are three complex
Banach spaces, n € N, B is a certain collection of subsets of X satisfying that for
each € X there exists B € B such that z € B. By L(X,Y") we denote the Banach
space of all linear continuous functions from X into YV; L(X) = L(X, X). We will
always use the principal branch of the exponential function to take the powers of
complex numbers. If to € R™ and € > 0, then we set B(tg,€) := {t e R" : [t —to| <
€}, where | - | denotes the Euclidean norm in R™. Set Ip; := {t € I : [t| > M}
(I CR™; M > 0). Generally, if F(-) is a function, then we set F(-) := F(—-).

We will use the following definition from [2]:

Definition 1 Suppose that D C I C R™ and the set D is unbounded. By Cy p,5(I x
X :Y) we denote the vector space consisting of all continuous functions @ : I x X —
Y such that, for every B € B, we have limcp, 1| 400 @(t; ) = 0, uniformly for
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xz € B. If X = {0}, then we abbreviate Copg(I x X : Y) to Copg(I : Y);
furthermore, if D = I, then we omit the term “D” from the notation.

1.1. Multi-dimensional p-almost periodic type functions. In [I2], we have
recently introduced and analyzed the following notion:

Definition 2 Suppose that ) # ' CR*", ) # T CR*", F: I x X - Y is a
continuous function, p is a binary relation on Y and I + I’ C I. Then we say that:

(i) F(+-) is Bohr (B,I’, p)-almost periodic if and only if for every B € B
and € > 0 there exists { > 0 such that for each tg € I’ there exists 7 €
B(to,1) N I' such that, for every t € I and x € B, there exists an element
Ytz € p(F(t;2)) such that

[Ft+752) = yeally <e

(ii) F(+-)is (B, I, p)-uniformly recurrent if and only if for every B € B there
exists a sequence (7%) in I’ such that limg_, 1 |7| = +00 and that, for
every t € I and = € B, there exists an element y¢., € p(F(t;x)) such that

o sup JIFE+752) = peselly = 0

It is clear that the Bohr (B, I’, p)-almost periodicity of F(-;-) implies the (B,I’, p)-
uniform recurrence of F'(-;-); the converse statement is not true in general ([19]).
In the case that p =T : Y — Y is a single-valued function (not necessarily linear or
continuous), then we obtain the most important case for our further investigations,
when the function F(-;-) is (B,I’,T)-almost periodic, resp. (B, I’,T)-uniformly
recurrent. In the case that X = {0} (I’ = I), we omit the term “B” (“I'”) from the
notation; furthermore, if T' = ¢l for some complex number ¢ € C\ {0}, then we also
say that the function F(-;-) is (B, I’,¢)-almost periodic, resp. (B,I’,c)-uniformly
recurrent. Further on, we say that the function F(-;-) is almost periodic (uniformly
recurrent) if and only if F(-;-) is (B, I’, ¢)-almost periodic, resp. (B, I’, ¢)-uniformly
recurrent with I’ = I and ¢ = 1; the corresponding notion of almost anti-periodicity
(uniform anti-recurrence) is obtained by plugging I’ = I and ¢ = —1. We will use
the following results from [12]:

Lemma 1

(i) Suppose that ) # I’ CR™ () # I CR™ I+ I' C I, and the function F :
IxX — Y is Bohr (B, I, p)-almost periodic ((B, I’, p)-uniformly recurrent),
where p is a binary relation on Y satisfying R(F) C D(p) and p(y) is
a singleton for any y € R(F). If for each 7 € I’ we have 7 + I = I, then
I+(I'—T") C I and the function F'(+;-) is Bohr (B, I’ — I’ I)-almost periodic
((B,I' = I T)-uniformly recurrent).

(ii) Suppose that @ # I’ C R™, and the function F' : R® x X — Y is Bohr
(B, I, p)-almost periodic ((B,I’, p)-uniformly recurrent), where p is a bi-
nary relation on Y satisfying R(F') C D(p) and p(y) is a singleton for any
y € R(F'). Then the function F(-;-) is Bohr (B,I’ — I',I)-almost periodic
((B,I' = I T)-uniformly recurrent).

(iii) Suppose that p =T € L(Y') is a linear isomorphism.

(a) Suppose that ) # T CR", I+ 1 C I, ITisclosed, F:IxX — Y is
Bohr (B, T)-almost periodic and B is any family of compact subsets of
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X If

(VI >0)(Jto € I)(Fk > 0) (Vt € I)(Fty € 1)
(Vtg € B(tg,l)NI)t —tg € B(to, k)N I, (1)

then for each B € B we have that the set {F(t;x) :t € I, € B} is
relatively compact in Y in particular, supye;..ep [|[F(t;2)[|y < oc.

(b) Suppose that ) T CR™ I+ 1 C1I, ITisclosedand F: I x X =Y
is Bohr (B, T)-almost periodic, where B is a family consisting of some
compact subsets of X. If the following condition holds

(Fto € I) (Ve > 0)(VI > 0) (T > 0) (Vt', t" € 1)
B(to,l)NI C B(to —t',I') N B(te — t", 1),
(2)

then for each B € B the function F(;-) is uniformly continuous on
I xB.
(iv) Suppose that 0 ZI' CR", 0 AT CR" I+ I'CTand F: I x X =Y
is a (B, I’, p)-uniformly recurrent function, where p =T € L(Y') is a linear
isomorphism. Then for each real number a > 0 we have:

Ft; < TF(t;
teSII,lw%BH to)lly 7tel+1/?|lt1\p2a,;ceBH (e

and for each x € X we have

) < —1 g
swl|F o)y < sup [TTFE D),
so that the function F(-;z) is identically equal to zero provided that the
function F'(-;-) is (B, I’, p)-uniformly recurrent and
hm|t|—>+oo,t6]+1’ F(t; CC) =0.
We will use the following definitions, as well ([12]):
Definition 3 Suppose that D C I C R”, the set D is unbounded, () # I’ C R",
f#£TCR" F:IxX — Y is a continuous function, p is a binary relation on Y and
I+1I' C I. Then we say that the function F(+;-) is (strongly) D-asymptotically Bohr
(B, I, p)-almost periodic, resp. (strongly) D-asymptotically (B, I’ p)-uniformly re-
current, if and only if there exists a Bohr (B, I’, p)-almost periodic function, resp.
(B, I, p)-uniformly recurrent function, (Fp : R" x X - Y) Fp: I x X — Y and a
function @ € Cop (I x X : Y) such that F(t;z) = Fo(t;2) +Q(t;z), t € I, z € X.
The functions Fy(+;-) and Q(+;-) are usually called the principal part of F(-;-)
and the corrective (ergodic) part of F(+;-), respectively.
Definition 4 Suppose that D C I C R™ and the set I is unbounded, as well as
DA CR*", )££I CR" F:IxX —Y is a continuous function, I + I’ C I and
p is a binary relation on X. Then we say that:

(i) F(;-) is D-asymptotically Bohr (B, I’ p)-almost periodic of type 1 if and
only if for every B € B and € > 0 there exist [ > 0 and M > 0 such that
for each to € I’ there exists 7 € B(tg,!) NI’ such that, for every t € I and
x € B with t, t + 7 € Dy, there exists an element y; , € p(F(t;x)) such
that

HF(t + 1) — ytw”y <e.
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(ii) F(-;-) is D-asymptotically (B, I’, p)-uniformly recurrent of type 1 if and
only if for every B € B there exist a sequence (%) in I’ and a sequence
(My) in (0,00) such that limg_ 40 |7%| = limg—y oo M = 400 and that,
for every t € I and = € B, there exists an element yt., € p(F(t;x)) such
that

lim sup Ft+1;2) —y =0.
kﬁ+00t,t+rkeDMk;xeBH ( @) t’mHY

In the case that X = {0} (I’ = 1), we omit the term “B” (“I'”) from the notation,
as before.

1.2. Lebesgue spaces with variable exponents LP(*), Let (§ # Q C R" be
a nonempty Lebesgue measurable subset and let M (€2 : X) denote the collection
of all measurable functions f : Q@ — X; M(Q) := M(Q : R). Furthermore, P(2)
denotes the vector space of all Lebesgue measurable functions p : Q@ — [1, 00]. For
any p € P(Q) and f € M(Q: X), we define

tP@) >0, 1<p()< oo,

and
o(f) = /Q ooy (I @)]) e

We define the Lebesgue space LP(*)(Q : X) with variable exponent by

LP@(Q: X) = {f e M(Q:X): lim p(\f) = o}.

A—0+
Equivalently
LP@(Q: X) = {f € M(2: X) : there exists A > 0 such that p(A\f) < oo};

see, e.g., [9, p. 73]. For every u € LP®)(Q : X), we introduce the Luxemburg norm
of u(-) by

ey 1= Nl ooy o= inf{A > 0 pu/A) < 1},

Equipped with the above norm, the space Lp(g”)(Q : X) becomes a Banach space
(see e.g. [9 Theorem 3.2.7] for the scalar-valued case), coinciding with the usual
Lebesgue space LP(Q : X) in the case that p(z) = p > 1 is a constant function.
Further on, for any p € M(Q), we define

p~ :=essinfyeqp(z) and pt = esssup,cop(7).
Set
Dy(Q):={peM®):1<p <p(x)<p" <ooforaec zec}.

For p € D, ([0,1]), the space LP®)(Q : X) behaves nicely, with almost all funda-
mental properties of the Lebesgue space with constant exponent LP(Q) : X) being
retained; in this case, we know that

r@(Q: X) = {f € M(Q: X); for all A > 0 we have p(Af) < oo}.

We will use the following lemma (cf. [9] for the scalar-valued case):
Lemma 2
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(i) (The Holder inequality) Let p, g, r € P(2) such that
1 1 1
= + , T e
q(x)  plx)  r(z)
Then, for every u € LP(*)(Q: X) and v € L"®)(Q), we have uv € LI®)(Q :
X) and

[uv]lg(a) < 2llullp@)llvllr@)-
(ii) Let Q be of a finite Lebesgue’s measure and let p, ¢ € P(2) such ¢ < p a.e.
on Q. Then LP®)(Q : X) is continuously embedded in L) (Q : X), and
the constant of embedding is less than or equal to 2(1 + m(2)).
(iii) Let f € LP@(Q: X), g€ M(2: X) and 0 < ||g|| < ||f|| a.e. on . Then
g€ Lp(x)(Q : X) and Hgllp(z) < ”pr(x)'
We will use the following simple lemma, whose proof can be omitted:
Lemma 3 Suppose that f € LP(®)(Q: X) and A € L(X,Y). Then Af € LP®)(Q :
Y) and ||Af||Lp<x)(Q:Y) < [|Afl- Hf”Lp(w)(Q:X)-
For further information concerning the Lebesgue spaces with variable exponents
LP®) | we refer the reader to [9], [10] and [26].

1.3. Stepanov multi-dimensional Bochner transform, Stepanov distance
and Stepanov norm. In this subsection and the subsequent section, we will al-
ways assume that  is a fixed compact subset of R with positive Lebesgue measure
and p € P(2). Further on, A denotes a general non-empty subset of R" satisfying
A+Q C A (in [2] and the Subsection 1.1, this region has been denoted by I). Recall
that the multi-dimensional Bochner transform Fg : A x X — Y is defined by

[Fg(t,a:)](u) =Ft+wz), teA ueQ zeX.

The notion of Stepanov (2, p(u))-boundedness on B is introduced in [4] as follows:
Definition 5 Suppose that ) # A C R” satisfies A+ QCAand F: Ax X =Y
satisfies that for each t € A and z € X, the function F(t + u;x) belongs to the
space LP(W(Q : Y)). Then we say that F(;-) is Stepanov (€2, p(u))-bounded on B if
and only if for each B € B we have

[Fat: )] (u)|

= sup “F(t‘f'u?x)‘
Lr(w)(Q:Y) teA;z€B

sup ’
teAzeB

Denote by Lg”g(u) (A x X :Y) the set consisting of all Stepanov (€2, p(u))-bounded

functions on B.

Ifn=1, X ={0}, 2=1[0,1] and A = [0,00) or A =R, then the notion introduced
above reduces to the notion introduced recently in [8] Definition 4.1]. If X = {0},
then we abbreviate Lgy’g(u) (AxX :Y)to Lg’p(u) (A :Y); in this case, we say that the
function F(-) is Stepanov (£, p(u))-bounded and define || F'|| go.pu) := supgep ||F(t+
u)|| rw (0:y); in the usually considered case €2 = [0, 1]", then we also say that the
function F'(-;-) is Stepanov p(u)-bounded. Let § # A C R”™ satisfy A + Q C A.
Suppose first that p(u) = p € [1,00) and FF : A - Y and G : A = Y are two
functions for which ||F(t +u) — G(t + u)||y € LP(Q2 : C) for all t € A. We define
the Stepanov distance Dgn (F,G) of functions F(-) and G(-) by

Lr() (Q:Y)

D% (F,G) = sup

1 1/p
teA (T) 1E(t + 1) = Gt + )| gy |-

()




EJMAA-2022/10(2) STEPANOV AND WEYL CLASSES OF MULTI-DIMENSIONAL... 17

Suppose now that p, ¢ € P(Q), 1/p(u)+1/q(u) =1 for a.e. u € Q and g(u) < +o00
for a.e. u € Q. In this case (the definition is consistent with the above given
provided that p(u) = p € (1,00)), we define the Stepanov distance Dgg)(F, G) of
functions F(-) and G(-) by

m(Q) 7ML o o [F (6 + 1) = Gt +u :

Dgg;)(F, G) :=sup
teA

)||LP(“)(Q:Y)

Clearly, if 1 < pi(u) =p1 < p2 = pa(u) for a.e. u € Q, then we have D! (F,G) <
DE (F,G). It Q =[0,1]" for some [ > 0, then we also write D% (F,G) = D (F,G)
and D’S’E')(F, G) = Dgg)(F, G). By S§(A : Y) we denote the vector space of all
functions F : A — Y for which [[F(t +u)|ly € LP(Q : Y) for all t € A and the

Stepanov norm

1 \1l/p
()1 o)

is finite. If p, ¢ € P(Q), 1/p(u) + 1/q(u) =1 for a.e. u € Q and g(u) < +oo for
a.e. u € €, then (the definition is consistent with the above given provided that
p(u) =p € (1,00)), we define the Stepanov norm || F|| gpw by

Q

[F| sz, = sup
teA

)

1| gpcer = sup lm(ﬁ)1 I oo ) 1 (6 + )| Loy )
teA

again, Sg(u)(A :'Y) denotes the vector space consisting of all functions F': A = Y
satisfying that ||F(t + u)|ly € LPM(Q : Y) for all t € A and [l gpew < oo
Q

We know that Sg(“) (A :Y) is a Banach space equipped with the norm || - || gp(w -
Q

For simplicity and better exposition, we will always assume that the following two
conditions hold henceforth:

(A1) The binary relation p on Y is a function, i.e., p(y) is a singleton for each
y € D(p).

(A2) We have p € D, (). Then the continuity of mapping F' : A x X —» Y
implies the continuity of mapping Fop : A x X — LPW(Q:Y); see [4].

2. STEPANOV MULTI-DIMENSIONAL p-ALMOST PERIODIC FUNCTIONS IN
LEBESGUE SPACES WITH VARIABLE EXPONENTS

In this section, we will tacitly assume that, for any considered function F' :
A x X — Y, the function F : A x X — LPMW(Q : Y) is continuous. Unless
stated otherwise, our standing assumptions will be that # # A’ CR", § # A C R",
A+AN CAA+QC A and F: Ax X — Y. We introduce the notion of a Stepanov
multi-dimensional p-almost periodic function in the following way (in any concept
proposed, Stepanov or Weyl, we omit the term “p” if p = I, the identity operator
onY):
Definition 6 Suppose that 0 # A’ CR*, 0 #ACR*, A+ A CA A+Q CA,
and F: Ax X =Y.
(i) Then we say that F(-;-) is Stepanov (2, p(u))-(B, A’, p)-almost periodic
(Stepanov (2, p(u))-(B, p)-almost periodic, if A’ = A) if and only if for
every B € B and € > 0 there exists [ > 0 such that for each tg € A’ there
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exists 7 € B(tp,l) N A’ such that, for every t € I and = € B, the mapping
u— p(F(t+u;2)), u € Q is well defined, belongs to the space LP(W(Q : V)
and

|F(t+7+usz) — p(F(t + u;x))HLP(“)(Q:Y) <e teA zeB.

By APSg,’f{Su)’p(A x X : V) and APSEP™P(A x X : Y) we denote the
spaces consisting of all Stepanov (€2, p(u))-(B, A’, p)-almost periodic func-
tions and Stepanov (€2, p(u))-(B, p)-almost periodic functions, respectively.

(ii) Then we say that F(+;-) is Stepanov (£2, p(u), p)-(B, A’)-uniformly recurrent
(Stepanov (£2, p(u), p)-B-uniformly recurrent, if A’ = A) if and only if for
every B € B there exists a sequence (7,) in A’ such that lim, . |7| =
+0o and that, for every t € I and x € B, the mapping u — p(F(t +u; z)),
u € Q is well defined, belongs to the space LP(W(Q : Y') and

lim  sup ||F(t+7, +wz)—p(F(t+uz 0.

n—+00 temeB ))HL”(“)(Q?Y) -

By URSg,’Kgu)’p(A x X :Y) and URSg’p(u)’p(A x X :Y) we denote
the spaces consisting of all Stepanov (Q,p(u), p)-(B, A')-uniformly recur-
rent functions and Stepanov (2, p(u), p)-B-uniformly recurrent functions,
respectively.

If X € B, then it is also said that F(-;-) is Stepanov (£2, p(u))-(A’, p)-almost peri-
odic (Stepanov (€, p(u))-(A’, p)-uniformly recurrent) [Stepanov (€2, p(u))-p-almost
periodic (Stepanov (€2, p(u))-p-uniformly recurrent), if A = A'].

Employing Lemma 2, we immediately get the following (the same conclusions hold
for the corresponding spaces of Stepanov uniformly recurrent functions):
Proposition 1 Suppose that ) # A C R" satisfies A+Q C A,and F: Ax X — Y.

(i) For every p € P(f2), we have that APS*,};%“)”’(A x X :Y) is a subset of
APSG V(A X X 1Y)
(ii) For every p, q € P(£2), we have that the assumption ¢(u) < p(u) for a.e.
u € Q implies that APSg’f{Su)’p(A x X :Y) is a subset of APSg’KEu)’p(A X
X :Y). ’ ’
(iii) If 1 <p~ < p(u) <p' < +oo for a.e. u € Q, then

APSGRIP(Ax X 1Y) C APSERM™P(A x X : Y) C APSR P(Ax X 1 Y).

In the next proposition, we will reconsider the statements of [I5, Proposition 2.9]
and [2I] Proposition 2.13] (see also [4, Example 2.8]) for Stepanov multi-dimensional
p-almost periodic type functions:

Proposition 2 Suppose that p =T € L(Y), 1 e N, # A’ CR", ) # A C R",
A+N CAA+QCA and F: Ax X =Y is Stepanov (Q,p(u))-(B, A, T)-almost
periodic (Stepanov (2, p(u))-(B, A’, T)-uniformly recurrent). Then A + A" C A
and the function F(-;-) is Stepanov (€2, p(u))-(B,IA’, T')-almost periodic (Stepanov
(2, p(u))-(B, N, T")-uniformly recurrent).

Proof. We will consider only Stepanov (€2, p(u))-(B,A’, T)-almost periodic func-
tions. Inductively, we easily get A +IA" C A. Let ¢ > 0 and B € B be given.
Further on, if to, 7 € IA’, then to/l, 7/l € A’ and the result follows from the
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corresponding definition and the computation (t € A, u € Q, z € B):

[P+ 7+ wa) = T'P(t + us)|

Lr(W) (Q:Y)

-1
VL [F(t (= )/l +wa) — TF(t+ (1 — j — 1)7/1) +u; x)}
5=0

Lr(w)(Q:Y)
-1

< SOITI|[F(e+ (= /i) + wsw) = TF(6+ (= 5 = 1)7/1) + us)|
7=0

Lr(w) (Q:Y)

-1
<>,
j=0
O

The next simple result follows almost immediately from Definition 5 and Defi-
nition 6; this result enables us to deduce many structural properties of Stepanov
multi-dimensional p-almost periodic functions using the corresponding properties
of multi-dimensional p-almost periodic functions:

Proposition 3 Suppose that 0 A# A’ CR*, 0 AACR*, A+ AN CA A+QCA,
and F: Ax X =Y.

(i) Define a binary relation p; on LPM (Q: Y) by py([Fa(t;2)]())) := p(F(t +
sx)), t € A, z € X. If the function F(+;-) is Stepanov (9, p(u))-(B, A, p)-
almost periodic (Stepanov (€, p(u))-(B, A’ p)-uniformly recurrent), then
the function Fo : A x X — LPW(Q : Y) is (B,A’, p1)-almost periodic
((B,A’, p1)-uniformly recurrent).

(ii) Let p; be a binary relation on LP(W(Q : Y) such that p;(G) is a singleton
for all functions G € R(Fy). Define a binary relation p on Y by p(F(t +
w; ) = pi([Fo(t;z)](n), t € A, z € X, u € Q. If the function Fy :
Ax X — LPW(Q:Y)is (B,A', py)-almost periodic ((B,A’, p1)-uniformly
recurrent), then the function F(-;-) is Stepanov (€2, p(u))-(B, A’, p)-almost
periodic (Stepanov (2, p(u))-(B, A’, p)-uniformly recurrent).

For example, using Lemma 1 and Proposition 3 (see also Lemma 3 for the issue
(iv)), we may deduce the following:
Theorem 1

(i) Suppose that § # A’ CR*, 0 £ A CR*, A+ AN C A A+Q C A, and
F:AxX —Y is Stepanov (2, p(u))-(B,A’, p)-almost periodic (Stepanov
(Q, p(u))-(B, A’, p)-uniformly recurrent). If for each 7 € A’ we have 7+ A =
A, then A 4+ (A" — A’) C A and the function F(+;-) is Stepanov (€, p(u))-
(B, A’ — A, T)-almost periodic (Stepanov (2, p(u))-(B, A’ — A’, I)-uniformly
recurrent).

(ii) Suppose that ) # A’ C R™, and the function F : R® x X — Y is Stepanov
(Q, p(u))-(B, A’, p)-almost periodic (Stepanov (£2, p(u))-(B, A’ p)-uniformly
recurrent). Then the function F(-;-) is Stepanov (Q,p(u))-(B,A" — A, T)-
almost periodic (Stepanov (€, p(u))-(B, A’ — A, I)-uniformly recurrent).

(iii) Suppose that p =T € L(Y) is a linear isomorphism.

(a) Suppose that ) # A CR" A+ A CA Aisclosed, F: AxX =Y
is Stepanov (2,p(u))-(B,T)-almost periodic and B is any family of
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compact subsets of X. If holds with the region I replaced with the
region A therein, then for each B € B we have that the set {Fo(t; z) :
t € I, € B} is relatively compact in LPW(Q : Y); in particular,
F(-;-) is Stepanov (£, p(u))-bounded on 5.

(b) Suppose that f # A CR", A+ A C A, Aisclosed and F : A x X —
Y is Stepanov (€, p(u))-(B,T)-almost periodic, where B is a family
consisting of some compact subsets of X. If holds with the region
I replaced with the region A therein, then for each B € B the function
Fo(+;+) is uniformly continuous on A x B.

(iv) Suppose that 0 Z A CR", 0 AACR*, A+ AN CAand F:AXxX =Y
is a Stepanov (2, p(u))-(B, A’, p)-uniformly recurrent function, where p =
T € L(Y) is a linear isomorphism. Define the function T : LP(™(Q : V) —
LPW(Q:Y) by

[TF](u):=TF(u), ue®Q, FeLl™(Q:Y). (3)

Then T € L(LP™(Q : Y)) is a linear isomorphism, for each real number
a > 0 we have:

sup HT_IFQ(t;x

sup ||FQ(t, T
teA+A|t|>a,z€B

teA,xzeB )||LP(“)(Q;Y)’

)HLp(u>(Q:Y) <

and for each x € X we have

sup Fg t;x Do J sup T71FQ t;x Do

supl P60y < 50T (60

so that the function F(-;x) is almost everywhere equal to zero on the set
A + Q, provided that the function F(-;-) is Stepanov (2, p(u))-(B, A, p)-
uniformly recurrent and limyg| 4 o0 teasa’ Fo(t;z) = 0.

Further on, the following analogue of [12] Theorem 2.11] holds true:

Theorem 2 Suppose that § # A’ CR*, ) #A CR*", A+AN C A A+Q CA,
and F : A x X — Y is Stepanov (Q,p(u))-(B,A’, p)-almost periodic (Stepanov
(Q,p(u))-(B, A, p)-uniformly recurrent). Then the following holds:

(i) Set o == {(lvallyslly2lly) |t € A+Q Iz € X : y1 = F(t;z) and y2 €
p(y1)}. Then the function | F(-;-)||y is Stepanov (2, p(u))-(B, A’, o)-almost
periodic (Stepanov (2, p(u))-(B, A’, o)-uniformly recurrent).

(ii) Suppose that A € C\ {0}. Set px :={A(y1,y2) | H €A+Q T e X : y; =
F(t;z) and y2 € p(y1)}. Then the function AF(-;-) is Stepanov (€, p(u))-
(B, A’, px)-almost periodic (Stepanov (2, p(u))-(B, A’, px)-uniformly recur-
rent).

(iii) Suppose @ € C and xp € X. Define G : (A —a) x X = Y by G(t;z) :=
F(t+a;z4+z0),t € A—a,z € X, as well as B,, :== {—xo + B : B € B},
A=A and pozy = {(y1,92) | HEA+Q—aTx e X : y1 = F(t+
a;x + x0) and y2 € p(y1)}. Then the function G(-;-) is Stepanov (2, p(u))-
(Bzos AL, pa,zo )-almost periodic (Stepanov (2, p(u))-(By,, AL, Pa.z, )-uniformly
recurrent).

(iv) Suppose that a, b € C\ {0}. Define the function G : (A/a) x X — Y by
G(t;x) := F(at;br), t € AJa, v € X, as well as B, := {b"'B : B € B},
AL = NJa and pap = {(y1,92) | Tt € A+ Q)/a Tz € X : y; =
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F(at;bx) and y2 € p(y1)}. Then the function G(+;-) is Stepanov (2, p(u))-
(By, AL, pa,p)-almost periodic (Stepanov (2, p(u))-(Bp, AL, pa,p)-uniformly re-
current).

(v) Assume that for each B € B there exists eg > 0 such that for each element
z € B°UU,cop By, €p), the sequence (Fj(-;x)) of Stepanov (£, p(u))-
(B, A’, p)-almost periodic functions (Stepanov (£2, p(u))-(B, A’, p)-uniformly
recurrent functions) converges to a function F'(-;z) in the norm || - ”sz(u)’

uniformly with respect to x € B°. Then the function F(-;-) is likewise

Stepanov (€2, p(u))-(B, A’, p)-almost periodic (Stepanov (2, p(u))-(B, A’, p)-

uniformly recurrent), provided that {F(t+u;z):t € A, ueQ, € X} C

D(p) and

(C,) For each € > 0 there exists 0 > 0 such that, for every yi, y» € {F(t +
sx) it € A, v € X} Ugen {Fr(t+ 52) : t € A, z € X} with
1 = w2l e @ivy < 6, we have [[21 — z2lly < €/3 with 21 = p1(y1),
2o = p1(y2) and p; being defined in Proposition 3(i).

We continue by providing the following illustrative example:

Example 1 It is worth noting that Theorem 1(i) does not hold if there exists a
point 7 € A’ such that 7 + A # A. For example, in [12, Example 2.21], we have
considered the situation in which A = [0,00), A’ = (0,00), and Y = C2. Let it be
the case, let a € C satisfy |a| > 1, and let the function u : [0,00) — C be almost
periodic; further on, let

a 1—a

= a 1—a

and Q = [0,1]. Then N(A) = {(o, 8) € C? : aa + B(1 — a) = 0}; suppose that ¢ =
(g1,92) : [0,00) — N(A) is any continuous function satisfying lim; . q(t) = 0.
We have shown that the function ¢ — (t) := (u(t) + q1(t), u(t) + g2(t)), t > 0 is
(A, T)-almost periodic but not almost periodic. Since any uniformly continuous,
Stepanov almost periodic function f : [0,00) — Y is almost periodic (see e.g., [19]),
the function ¢ — (t), t > 0 cannot be Stepanov almost periodic (p(u) = 1), and
therefore, the function ¢ — (t), t > 0 cannot belong to the space APS/(\Z,’p(u)’I(A :
Y’) due to Proposition 1(i).

Concerning Stepanov (£, p(u))-(B, A’, T)-almost periodic functions with values in
the finite-dimensional space Y = CF, where T € CF* is a complex matrix of
format k x k, we will clarify only one result closely connected with our conclusions
established in Example 1. This is an analogue of [4, Proposition 2.20] for Stepanov
classes of p-almost periodic type functions; the proof follows from Proposition 3
and the argumentation used in the proof of the afore-mentioned result:
Proposition 4 Suppose that k € N, T' = [a,;] is a complex matrix of format k x k,
Q=1[0,1],A=Ror A =[0,00), A’ CR, A+ A’ C A, and the function F': A — C*
is Stepanov (€2, p(u))-(A’, T')-almost periodic (Stepanov (2, p(u))-(A’, T')-uniformly
recurrent and the function F(-) is Stepanov p(u)-bounded). If F = (Fy,- - -, Fy),
then there exists a non-trivial linear combination F of functions F7y,- - -, F}, which
is Stepanov (€, p(u))-(A’,I)-almost periodic (Stepanov (£, p(u))-(A’,I)-uniformly
recurrent and the function Fg is Stepanov p(u)-bounded).

Further on, in [4 Proposition 2.22], we have clarified a sufficient condition for a
function F': A x X — Y to be Stepanov (€2, p(u))-B-almost periodic. This result
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can be extended in the following way:
Proposition 5 Let T € L(Y), A+ A C A, A+ Q C A, Bis any family of compact
subsets of X and F': A x X — Y satisfy the following conditions:
(i) For each x € X, F(-;2) € APS*P(W.T(A:Y).
(ii) F(-;-) is SP-uniformly continuous with respect to the second argument
on each compact subset B in B, i.e., for each € > 0 there exists dg . > 0
such that for all z1, 25 € B we have

<e forall teA.

o1 — @)l < 0pc = | F(b+520) = F(t+ 522)|
Lr(w) (Q:Y)
(4)

Then F(+;-) is Stepanov (2, p(u), T)-B-multi-almost periodic.

Proof. The proof is almost the same as the corresponding proof of the afore-
mentioned proposition, and we will provide the main details in the case that
p(u) =p € [1,00). Suppose that € > 0 and B C X is a compact set. It follows that
there exists a finite subset {1, ...,2,} C B (n € N) such that B C |J;_, B(2;,05,)-
Therefore, for every € B, there exists ¢ € N,, satisfying ||z — z;|| < dp.. Let
7 € A. Then we have

=

(/Q |F(t+5+752) — TF(t +s:2)|[% ds>

=

< (/ ||F(t+s+7';1:)F(t+s+7;xi)||§’/ds>
Q

=

+</ ||F(t—|—s+7‘;xi)—TF(t+s;xi)||€,ds>
Q

1
P

+</ ||TF(t+s;:v1-)TF(t+s;x)||’;,ds> , t €A (5)
Q

Using (i) to conclude that for each ¢ = 1,...,n there exists g . > 0 such that for
all tg € A there exists 7 € B(to,lp,) satisfying

( [ NG s b mim) - TR+ szl ds)
Q

< (/ |F(t +s+7;2;) —F(t—ﬁ—s;xi)H’;ds)P g% for all t € A. (6)
Q

Since ||z — ;|| < dk,s and T € L(Y), it follows that

S

(/ ||F(t+s+7;x)F(t+s+7';xi)||’;/ds> §§ for all t € A, (7)
Q

and

( /Q ITF(t +s:2) — TE(t + i) [} ds)'l’ (8)

1
<||IT] (/QHF(t—i—s;m)—F(t—&—s;xi)Hf,ds) g% for all t € A. (9)
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Inserting (6]), (7) and (9) in (5)), we obtain

1
sup(/ ||F(t—|—s+7;ac)—TF(t—i—s;m)H’{,ds) <e forallteA.
z€EB Q

Hence, F(;-) is Stepanov (€2, p(u))-(B, T)-almost periodic. O

Concerning the convolution invariance of Stepanov (Q,p(u))-(B, A’, p)-almost
periodic type functions, we will clarify the following result:
Theorem 3 Suppose that h € L'(R") and F : R" x X — Y satisfies that for each
x € X the function t — F(t;x), t € R" is measurable as well as that for each set
B € B there exists a real number ep > 0 such that supyegn yep [|[F(t,2)|ly < +oo,
where B° = B° UJ,cyp B(,€ep). Suppose, further, that p = A is a closed linear
operator on Y satisfying that:

(B) Foreacht € R™ and z € B, the function s ++ AF(t—s+-;2) € LPMW(Q:Y),

s € R" is well defined and bounded.

Then the function

n

(h* F)(t;z) := / h(o)F(t —o;z)do, teR" zeX (10)

is well defined and for each B € B we have supgcgn ,cp- ||(h * F)(t;2)[ly < +00;
furthermore, if F(-;-) is Stepanov (Q,p(u))-(B,A’, A)-almost periodic (Stepanov
(Q,p(u))-(B,A’, A)-uniformly recurrent), then the function (h * F)(+;-) is likewise
Stepanov (£2, p(u))-(B, A’, A)-almost periodic (Stepanov (£2, p(u))-(B, A’, A)-uniformly
recurrent).

Proof. We will consider only Stepanov (€, p(u))-(B,A’, A)-almost periodic func-
tions. It is clear that the function (h* F')(+;-) is well defined and supgegn e p- [|(h*
F)(t;2)|ly < +oo for all B € B; furthermore, supgegn e p- ||Fg(t;x)HLp(u)(Q:y) <
oo for all B € B. Define

A={(F,G) e L’"™M(Q:Y) x LM™(Q:Y) : AF(u) = G(u) for a.e. u € Q}.

Using the fact that the space LP("W (2 : V) is continuously embedded in L'(Q2: Y)
as well as the fact that any sequence of functions converging in L (2 : Y') converges
pointwisely for a.e. u € 2, we can easily show that A is a closed linear operator
in LP(W(Q : Y). Using condition (B) and [12, Theorem 2.14], it follows that the
function (h * Fq)(-;-) € LPMW(Q : Y) is Bohr (B,A’, A)-almost periodic. Then the
final conclusion follows from Proposition 3 and the obvious equality

hx Fo = (hF)g,
O

Keeping in mind the proofs of Theorem 3, [4, Theorem 5.1] and [I7, Proposition
2.6.11] (see also [8, Proposition 6.1]), it is straightforward to deduce the follow-
ing result about the inheritance of Stepanov (€, p(u))-(A’, p)-almost periodicity
(-uniform recurrence) under the actions of the infinite convolution products:
Theorem 4 Let p = A be a closed linear operator on Y, Q = [0,1]", ¢ € P(£),
1/p(x) + 1/q(z) = 1 for all z € Q, and (R(t))¢e(0,00» S L(X,Y) is a strongly
continuous operator family satisfying that 3y [[R(- + X)l|paw (@) < oo and
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R(t)A C AR(t) for all t € (0,00)". If f: R® — X is Stepanov (€2, p(u))-(A’, A)-
almost periodic (Stepanov (€2, p(u))-(A’, A)-uniformly recurrent), and the following
conditions hold:

(i) The functions f(-) and Af(-) are Stepanov (€2, ¢(u))-bounded on B;
(ii) The Bochner transform of function f(-) is uniformly continuous on R™ (with
values in LP(W(Q : Y)).

Then the function F : R™ — Y, given by

F(t) = /_t;/_t;--~/_:R(t—s)f(s)ds, teR",

is well defined and almost periodic (bounded uniformly recurrent).
Remark 1

(i) Tt is worth noticing that conditions (i)-(ii) from the formulation of Theorem
4hold if A’ =R™ and A € L(Y) is a linear isomorphism; see Theorem 1(iii).

(ii) The most important applications of Theorem 4, and Proposition 8 below,
can be given in the one-dimensional setting, for various classes of abstract
(degenerate) Volterra integro-differential equations; basically, we will not
consider here such applications; see [17] for more details.

The following illustrative example can be formulated in the multi-dimensional set-
ting (see e.g., [19, Example 6.2.9], where we have considered case ¢ = 1, only):
Example 2 Let f : R — R be a Bohr almost anti-periodic function; Q = [0, 1].
Define sign(0) := 0 and F': R — R by F(t) :=sign(f(¢)), t € R. Then the function
F(-) is Stepanov p(u)-almost anti-periodic. This can be shown by using the argu-
mentation given in the proof of [25, Theorem 5.3.1, p. 210] and the computation
carried out in [I7, Example 2.2.2(i)].

The following important result about extensions of Stepanov (€2, p(u))-(A’, p)-almost
periodic type functions follows from Proposition 3 and the argumentation contained
in the proof of [4, Theorem 2.15]:

Theorem 5 Suppose that p =T € L(Y) is a linear isomorphism, the linear iso-
morphism 7T of space LP(W(Q : V) is given through (3)), the set A’ is unbounded,
m(OA) =0, Q° #0, F: A — Y satisfies that Fy : A — LP(W(Q 1Y) is a uniformly
continuous, Bohr (A’,T)—almost periodic function, resp. a uniformly continuous,
(N 7TN“)-uniformly recurrent function, S € R™ is bounded and, for every t’ € R",
there exists a finite real number M > 0 such that t'+ A, C A. Define Ag := A’US.
Then there exists a Stepanov (€, p(u))-(Ag, T)-almost periodic, resp. a Stepanov
(Q, p(u))-(Ag, T)-uniformly recurrent, function F : R” — Y such that F(t) = F(t)
for a.e. t € A; furthermore, in Stepanov almost periodic case, if R™\ Ag is a bounded
set and any T-almost periodic function defined on R”™ is almost automorphic, then
any such extension of function F(-) is unique.

Remark 2 As in all previous investigations of the multi-dimenaional almost pe-
riodicity and its generalizations, it is worth noting that Theorem 5 is applicable
provided that (vq,---,vy,) is a basis of R",

A':A:{a1v1+~--+anvn:aiZOforalliENn}

is a convex polyhedral in R™ and §2 is any compact subset of A with non-empty
interior.
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2.1. D-Asymptotically Stepanov p-almost periodic type functions. We start
this subsection by recalling the following notion from [4]:

Definition 7 Suppose that D C A C R", A+ C A and the set D is unbounded. By
Sg%’p,(;) (AxX :Y) we denote the vector space consisting of all functions @ : Ax X —
Y such that, for every t € A and z € X, we have [Qq(t; 2)](u) € LPM™W(Q : Y) as well
as that, for every B € B, we have limtemym_}_,_oo[é)g(t;x)](u) =0in LPMW(Q:Y),
uniformly for x € B. In the case that X = {0} and B = {X}, then we abbreviate
Ser WA x X 1Y) to Sy ™ (A Y).

For the sake of completeness, we will provide all details of the proof of the following
simple result (which remains true for all p € P(Q)):

Lemma 4 Suppose that D C A CR™ A+ Q C A and the set D is unbounded. If
D+ Q C D, then Cop(Ax X 1Y) C Sgrt(Ax X V).

Proof. Let @ € Cop (A x X :Y). Then the mapping u — Q(t + u;z), u € Q
is continuous and bounded, so that it belongs to the space L>=(Q : Y). Applying
Lemma 2(ii), we get that this mapping belongs to the space LP(W)(Q : V). We need
to prove that limgep, j¢)—+00 @(t + u;2) = 0 in LPW(Q :Y), uniformly for z € B.
Let € > 0 be given. The required limit equality follows from the existence of a finite
real number M, > 0 such that ||Q(t + u;z)|ly < ¢ for any € B and t € D with
|t| > M., where we have employed our assumption D + Q C D, and an application
of Lemma 2(ii), which shows that

HQ(t +u; JC)HLP(U)(Q:Y) <2(1+ m(Q))HQ(t + u; x)HLw(Q:Y) < 2(1+m(Q))e,
provided t € D and |t| > M.. O

Now we are ready to introduce the following notion:
Definition 8 Suppose that ) # A C R" satisfies A+Q C A, D C A C R", the set D
is unbounded, and F' : Ax X — Y. Then we say that the function F(-;-) is (strongly)
D-asymptotically Stepanov (2, p(u))-(B, A, p)-almost periodic, resp. (strongly) D-
asymptotically Stepanov (2, p(u))-(B, A’, p)-uniformly recurrent, if and only if there
exist a Stepanov (2, p(u))-(B, A’, p)-almost periodic function (H : R" x X = Y)
H:AxX —Y, resp. a Stepanov (9, p(u))-(B, A’, p)-uniformly recurrent function
(H:R"xX —Y)H:AxX =Y, and a function Q € g% (A x X : Y) such
that F(t;x2) = H(t;z) + Q(t;x) for a.e. t € A and all z € X.
If X € B, then we also say that the function F(-;-) is (strongly) D-asymptotically
Stepanov (€2, p(u))-(A’, p)-almost periodic ((strongly) Stepanov (€, p(u))-(A', p)-
uniformly recurrent). If D = A, then we omit the “prefix D-” and say that the func-
tion F'(-;-) is asymptotically Stepanov (€2, p(u))-(A’, p)-almost periodic ((strongly)
Stepanov (2, p(u))-(A’, p)-uniformly recurrent).
Arguing similarly as in the proof of Lemma 4, we can prove that any Bohr (B, A’, p)-
almost periodic function ((B, A’, p)-uniformly recurrent function) is automatically
Stepanov (92, p(u))-(B, A’)-almost periodic (Stepanov (€, p(u))-(B, A’)-unifromly
recurrent); see also [8] Proposition 4.5]. Keeping in mind the afore-mentioned
lemma and the corresponding definitions, we may deduce the following:
Proposition 6 Suppose that D C A C R™ and the set D is unbounded, as
wellas ) # A CACR", F:AxX - Y, A+AN CAand D+Q C D.
Then a (strongly) D-asymptotically Bohr (B, A’, p)-almost periodic function, resp.
(strongly) D-asymptotically (B, A’, p)-uniformly recurrent function, is (strongly)
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D-asymptotically Stepanov (2, p(u))-(B, A’, p)-almost periodic, resp. (strongly) D-
asymptotically Stepanov (€, p(u))-(B,A’, p)-uniformly recurrent.
The following slightly weaker notion of D-asymptotical Stepanov
(Q,p(n))-(B, A, p)-almost periodicity is important, as well (see also [12], Proposi-
tion 2.26], which can be formulated for the Stepanov classes):
Definition 9 Suppose that D C A C R™ and the set D is unbounded, as well as
D#A#NCACR", F:Ax X —Y and A+ A’ C A. Then we say that:
(i) F(+-) is D-asymptotically Stepanov (Q,p(u))-(B, A’, p)-almost periodic of
type 1 if and only if for every B € B and € > 0 there exist [ > 0 and M >0
such that for each ty € A’ there exists 7 € B(tg,!) N A’ such that

|Ft+7+uz) — p(F(t+u x))HLp(u)(Q:Y) <€, provided t, t+7 €Dy, z € B.

(ii) F(-;-) is D-asymptotically Stepanov (£2, p(u))-(B, A’, p)-uniformly recurrent
of type 1 if and only if for every B € B there exist a sequence (7,,) in A’ and
a sequence (M,,) in (0, 00) such that lim, o |70| = limy,— 400 M, = +00
and
ngrfoo t,t+ng>£n;xeBHF(t i) = p(F(E 4y m))HL““’(Q:Y) =0
If A’ = A, then we also say that F(-;-) is D-asymptotically Stepanov (£2,p(u))-
(B, p)-almost periodic of type 1 (D-asymptotically Stepanov
(Q, p(u))-(B, p)-uniformly recurrent of type 1); furthermore, if X € B, then it is also
said that F(-;-) is D-asymptotically Stepanov (€, p(u))-(A’, p)-almost periodic of
type 1 (D-asymptotically Stepanov (A’, p)-uniformly recurrent of type 1). If A’ = A
and X € B, then we also say that F(-;-) is D-asymptotically Stepanov p-almost
periodic of type 1 (D-asymptotically Stepanov p-uniformly recurrent of type 1). As
before, we remove the prefix “D-” in the case that D = A and remove the prefix
“(B,)” in the case that X € B.
The question when a given uniformly continuous, bounded function F' : A — Y
which is both A-asymptotically Bohr T-almost periodic function of type 1 and A-
asymptotically Bohr I-almost periodic function of type 1 is A-asymptotically Bohr
T-almost periodic, where T € L(Y), has been examined in [4, Theorem 2.27].
This statement can be formulated for the corresponding Stepanov classes using the
multi-dimensional Bochner transform and Proposition 3; details can be left to the
interested reader.
The following analogue of Proposition 6 holds true:
Proposition 7 Suppose that D C A C R™ and the set ID is unbounded, as well
as P #N CACR", A+ A C Aand D+ Q C D. Then any D-asymptotically
(B, A, p)-almost periodic function F : A x X — Y of type 1 (D-asymptotically
(B, A, p)-uniformly recurrent function F' : Ax X — Y of type 1) is D-asymptotically
Stepanov (€2, p(u))-(B, A’, p)-almost periodic of type 1 (D-asymptotically Stepanov
(Q,p(u))-(B, A, p)-uniformly recurrent of type 1).
Further on, define Iy := (—o00,t1] X (—o00,t3] X + -+ X (—00,t,] and Dy := It ND
for any t = (t1,t2, - -, t,) € R™. Keeping in mind Theorem 4 and the proof of [4]
Proposition 5.3], we may deduce the following result about the invariance of strong
D-asymptotical Stepanov (€2, p(u))-(A’, p)-almost periodicity (-uniform recurrence)
under the actions of the finite convolution product:
Proposition 8 Suppose that p = A is a closed linear operator on Y, Q = [0, 1]",
qg € P, 1/p(x) + 1/q(x) = 1 for all x € Q, and (R(t))t>0 € L(X,Y) is a
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strongly continuous operator family satisfying that ZkeNz} [R(: + k)| Laew (@) < 00
and R(t)A C AR(t) for all t € (0,00)™. Suppose that § : R” — X is Stepanov
(Q, p(u))-(A', A)-almost periodic (Stepanov (2, p(u))-(A’, A)-uniformly recurrent),
and the following conditions hold:

(i) The functions §(-) and Ag(-) are Stepanov (£, g(u))-bounded on B;

(ii) The Bochner transform of function g(-) is uniformly continuous and bounded

on R” (with values in LP(W(Q: Y)).

Suppose, further, that ) # A C R™ satisfies A+ Q C A, D C A C R” and the set D
is unbounded. Let ¢ : A — X, and let f(t) := g(t) + ¢(t) for all t € A. Then the
function F': A — Y, defined by

F(t) ;:/D R(t —s)f(s)ds, teA,

is strongly D-asymptotically Stepanov (€2, p(u))-(A’, A)-almost periodic (strongly
D-asymptotically Stepanov (€2, p(u))-(A’, A)-uniform recurrent), provided that

lim " |R(s + )| Lo (6t prenmepyney = 0

|[t] =00, teD
keng

and for each € > 0 there exists » > 0 such that for each t € D with [t| > r there
exists a finite real number r¢ > 0 such that

Z { [R(s + k) HL‘J(S)((tfkf[ltﬁB(O,rt)])ﬂQ)

n
keNg

x [la(s + k- t)||L<1(5)((t—k—[]D)tﬁB(O,rt)])ﬁQ)} <€/2

and

Z { HR(S + k)HLq(s)((t_k—[DmB(O,n)C])ﬁQ)

n
keNg

x [la(s + 1~ t)HLP(S)((tk[DtﬂB(O,rt)C])ﬂQ)} <e€/2.

We close this subsection with the observation that the statement of [4, Theorem
2.23] can be formulated for Stepanov classes, as well.

3. MULTI-DIMENSIONAL WEYL p-ALMOST PERIODIC TYPE FUNCTIONS

In our recent joint research study with V. E. Fedorov [23], we have analyzed
various classes of multi-dimensional Weyl almost periodic type functions. Further
on, in [22 Section 5], we have expanded this study by exploring various classes of
multi-dimensional Weyl c-almost periodic type functions, where ¢ € C\ {0}. The
main aim of this section is to briefly describe how the structural results obtained
in [22] can be slightly generalized for the general class of multi-dimensional Weyl
p-almost periodic type functions.

In the first concept, we assume that the following condition holds:
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(WM1): D £ACR™Y P #£AN CR? P +#QCR"is a Lebesgue measurable set such
that m(Q2) > 0,p € P(A), VN +A+IQ C A A+IQ C Aforall >0,
¢ :]0,00) = [0,00) and F : (0,00) x A — (0, 00).

We introduce the following classes of multi-dimensional Weyl p-almost periodic

functions:
Definition 10

(i) Bye— Wf(zp l(\lf?z’;qb’F’p ) (Ax X :Y) we denote the set consisting of all functions
F:AxX > Y such that, for every ¢ > 0 and B € B, there exist two
finite real numbers [ > 0 and L > 0 such that for each ty € A’ there exists
T € B(tog, L) N A’ such that, for every x € B, the mapping u — p(F(u;x)),
u € Q is well defined, and

sup supF(l,t)¢ (HF +u;z) — p(F(u;2))
zeEB teA

HY) L) (£419) <€ (11)

(ii) By ngp /(\1,1) HF).p P(A x X :Y) we denote the set consisting of all functions
F : A x X — Y such that, for every € > 0 and B € B, there exists a finite
real number L > 0 such that for each to € A’ there exists 7 € B(to, L) N A’
such that, for every « € B, the mapping u — p(F(u;z)), u € Q is well
defined, and

lim sup sup sup F(l, t)¢o (HF T+wz) — p(F(u;z) <e.

l—>+oo zEBtEA )HY)LP(“)(tHQ)

Definition 11

(i) By e— ng(\l,l)l’f’m’p)l (Ax X :Y) we denote the set consisting of all functions
F:AxX — Y such that, for every e > 0 and B € B, there exist two finite
real numbers [ > 0 and L > 0 such that for each tg € A’ there exists
T € B(tg, L) N A’ such that, for every x € B, the mapping u — p(F(u;z)),
u € Q belongs to the space LP(W(t + 19 :Y) for each t € A, and

sup supF(l,t)¢ (HF T4+ uz) — p(F(u;z
zEB tEA

))HLP(u>(t+lQ:Y)) <é€

(ii) By Wélj,(\??[’;(b’F’p)l(A x X :Y) we denote the set consisting of all functions
F: A x X — Y such that, for every € > 0 and B € B, there exists a finite
real number L > 0 such that for each tg € A’ there exists 7 € B(tg, L) N A’
such that, for every « € B, the mapping u — p(F(u;x)), u € 2 belongs to
the space LP(W(t 4-1Q : Y) for each t € A, and

lim sup sup sup F(I, t) (HF T+uyz) — p(F(u,m))H <€

ey
I—+o00 zEB tEA L) (¢+10:Y)

Definition 12

(i) By e— W( ( ) $:Fp)2 (Ax X :Y) we denote the set consisting of all functions
F:AxX —> Y such that, for every e > 0 and B € B, there exist two finite
real numbers [ > 0 and L > 0 such that for each ty; € A’ there exists
T € B(to, L) N A’ such that, for every x € B, the mapping u — p(F(u;x)),
u € Q belongs to the space LP(W(t 4+ 1Q : Y) for each t € A, and

;1612 igggb(IF(l, t)HF(T +uw;x) — p(F(u; x))HLP(m(Hmzy)) < e
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(ii) By Wép,(\?)gb’F’p)?(A x X :'Y) we denote the set consisting of all functions
F:AxX — Y such that, for every e > 0 and B € B, there exists a finite
real number L > 0 such that for each ty € A’ there exists 7 € B(to, L) N A’
such that, for every 2 € B, the mapping u — p(F(u;x)), u €  belongs to
the space LP(W(t 4 1Q: Y) for each t € A, and

lim sup sup iupd)( LOF(+02) = p(F 2| oo 0 ) < €

In the second concept, we intend to ensure the translation invariance of multi-

dimensional Weyl p-almost periodic functions. Assume now that the following

condition holds:

(WM2): D AACR", §#£AN CR"”, 0 #Q CR" is a Lebesgue measurable set such
that m(Q) > 0, p € P(Q), VN +A+1Q C A, A+1Q C A for all [ > 0,
¢ :[0,00) = [0,00) and F : (0,00) x A — (0, 00).

We introduce the following classes of functions:

Definition 13

(i) By e— Wg[sz?g’m’p] (A x X :Y) we denote the set consisting of all functions
F : A x X — Y such that, for every ¢ > 0 and B € B, there exist two
finite real numbers { > 0 and L > 0 such that for each tqg € A’ there
exists 7 € B(to, L) N A’ such that, for every t € A and z € B, we have
F(t+Ilu;z) € D(p) and

sup sup ["F(l, t) (HF (t+7+1luz) — (F(t—&-lu;x))HY)

<e€
rEB tEA Lr(w)(Q)

(ii) By W[p(u) $:F.p] (A x X :Y) we denote the set consisting of all functions
F:Ax X — Y such that, for every ¢ > 0 and B € B, there exists a finite
real number L > 0 such that for each tg € A’ there exists 7 € B(tg, L)NA’
such that, for every I > 0, t € A and z € B, we have F(t + lu;z) € D(p)
and

lim sup sup sup {"F(l,t)¢ (HF (t+7+1uz) — p(F (t+lu;x))||y>
l—+o00 zeBteA

Definition 14

(i) By e— ng{f?g’mﬂh (Ax X :Y) we denote the set consisting of all functions
F : Ax X — Y such that, for every ¢ > 0 and B € B, there exist two
finite real numbers [ > 0 and L > 0 such that for each tqg € A’ there
exists 7 € B(tg, L) N A’ such that, for every t € A and = € B, the mapping
u— p(F(t+lu;z)), u € Qis well defined, belongs to the space LP(W)(Q : V)
and

sup sup ["F(1, t)qS(HF(t +7+1luz) — p(F(t + lu; x))HLP(“)(Q:Y)) <e.
rEB teEA

(ii) By Wg[lp S\u,?’;’ﬁ’p]l(A x X :Y) we denote the set consisting of all functions
F: AxX — Y such that, for every € > 0 and B € B, there exists a finite real
number L > 0 such that for each ty € A’ there exists 7 € B(tg, L) N A’ such
that, for every [ > 0, t € A and = € B, the mapping u — p(F(t + lu; z)),
u € Q is well defined, belongs to the space LP(W)(Q: Y) and

Lr(w) (Q:Y)

lim sup sup sup {"F(l, t)¢ (HF (t+7+ 1w z) — p(F(t+ lu; ac))HLp(u)(va)) <e.
=400 z€B tEA '
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Definition 15

(i) By e— WSB”(A‘i)g*F”’]Q (Ax X :Y) we denote the set consisting of all functions
F:Ax X =Y such that, for every ¢ > 0 and B € B, there exist two
finite real numbers { > 0 and L > 0 such that for each tqg € A’ there
exists 7 € B(tg, L) N A’ such that, for every t € A and = € B, the mapping
u s p(F(t+lu;x)), u € Qis well defined, belongs to the space LP(W)(Q : Y)
and

sup supgb(l"IF(l,t)HF(t +7+1luz) — p(F(t + lu; I))HLP(“)(QY)) < e.
ze€B teA :

(ii) By Wg[zp s\lf?g’F’p ]2(A x X :'Y) we denote the set consisting of all functions
F : AxX — Y such that, for every e > 0 and B € B, there exists a finite real
number L > 0 such that for each to € A’ there exists 7 € B(tg, L) A’ such
that, for every [ > 0, t € A and = € B, the mapping u — p(F(t + lu; z)),
u €  belongs to the space LP(W(Q :Y) and

lim sup sup suqu(l”IF(l7 t)HF(t +7+1luz) — p(F(t+ g a:))HLp(u)(Qy)) <e.
l—+4o00 xz€EBteEA :
It can be simply shown that the both concepts are equivalent in the constant
coefficient case; see also [24] for the study of Weyl one-dimensional almost periodic
functions.
We will only mention in passing that [22] Example 5.4] can be reformulated in
our new framework (cf. also [22] Example 2.10]), as well as the statement of [12]
Proposition 5.5]. The situation is a little bit complicated with the statement of [22]
Theorem 5.6, Proposition 5.9]; this problem can be left to the interested readers.
Concerning [22] Example 5.7], we would like to stress the following:
Example 3 Suppose that (§ # K C R" is a compact set, F(t) := xx(t), t € R",
A=A :=R" ¢(z) =z, Q:=[0,1]" and p(z) := 2* for some non-negative integer
k € Ny. Then for each p € D4 (2) we have F € e — Wgﬁﬁg}’z’l e (R™ : C). Keeping
in mind Lemma 2(ii), we get that (7 € R"; 1 > 0):

X (t+ 7+ 1u) — x5 (t + lu)’

sup ("7

teR™ Lr(w(Q)

ln—O’

xr(t 47+ 1u) — x5 (t + lu)‘

<4 sup
teRn

= 4 sup 177t 4+ 7+ w) (6 + )|
teRn

Lt ()

LrT (1)

—o k
= 45531 lHXK(')HLP* (oK —t—r) T X5 O] ot (lQﬁ[K—t])‘|
< A4l77m(K).

This simply implies that F' € ¢ — W}iﬁgﬁ’w’lig’p] (R™ : C), as claimed.

Concerning the function F'(t) := x[0,00)» (t), t € R™, we want only to recall that
F e Wg]’lg,fﬂJ] (R™ : C) if and only if o > (n — 1)/p, as well as that there is no
o > 0 such that F € e — Wg[zp,]’lg,;l_a’l] (R™ : C). We also know that there is no o > 0
and ¢ € C\ {0} such that F' € e — gﬁ;l_”’cﬂ (R™ : C) as well as that there is no
c € C\ {0,1} such that F € Wg[zlj’m;,l_a’cﬂ (R™ : C) for n > o > (n — 1)/p, which is
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the optimal result.
Concerning the convolution invariance of spaces (e—)WS(f I(\L,")l’f’m’p ) R*x X :Y)

and (e—)WS[{S\lf?g’F’p] (R" x X :Y), we will only state the following result; the
corresponding proof is very similar to the proof of [23, Theorem 2.9] and therefore
omitted; see also [22] Theorem 5.8].

Theorem 6 Suppose that ¢ : [0,00) = [0,00), ¢ : [0,00) — [0,00) is a convex
monotonically increasing function satisfying ¢(zy) < p(x)é(y) for all z, y > 0,
p=Te L), he 'R, Q=[0,1" F € (e )WFW" R x X 1Y),
1/p(u) + 1/q(u) = 1, and for each x € X we have supycpn ||[F(t;2)|y < oo. If
Fy:(0,00) x R* — (0,00), p1 € P(R™) and if, for every t € R™ and | > 0, there
exists a sequence (ay)geg;ze of positive real numbers such that ), ;. ar = 1 and

/t+m P (2 Z arl " [go(a,;ll"h(u B V))}

kelzn

Fi(l,t)[Fl,bu—k)] " |du<1
LAY (u—k41Q) 1(7 )[ (,ll )] > uc<sl,

then hx F € (e—)WIR (R x X V).

4. APPLICATIONS TO THE ABSTRACT VOLTERRA INTEGRO-DIFFERENTIAL
EQUATIONS

In this section, we apply our results in the analysis of existence and uniqueness
of generalized multi-dimensional p-almost periodic type solutions for various classes
of abstract Volterra integro-differential equations.

4.1. Newtonian potential and logarithmic potential. Concerning the notion
introduced in Definition 10-Definition 12, we would like to note that there exist some
important cases in which it is extremely important that the function F(I, t) depends
not only on [ > 0 but also on t € A. We will illustrate this fact by considering
the second-order partial differential equation Au = —f, where f € C?(R?) has a
compact support. It is well known that the Newtonian potential of f(-), defined by
1 [ flz—y)

= 2 _dy, xeR3,
AT Jgs ly|

u(x) :

is a unique function belonging to the class C?(R?), vanishing at infinity and satis-
fying Au = —f; see e.g. [28, Theorem 3.9, pp. 126-127]. For simplicity, suppose
that p=p; =1,Q=10,1]", A’ C A =R3 and

Fi(l,t)
sup /—dy<+oo. 12
ol Jes (L~ 9) 12

Then we have the following (we consider here case p = I but the same conclusions

hold if p(z) = 2*, z € C for some k € N; see [12] for more details):
Theorem 7 Suppose that f € (e—)WH% " (R : C) and holds. Then

[0,1]™,A/
u € (e=) Wiy (B3 : C).

Proof. Suppose that [ > 0 and t € R? are arbitrary; consider the class e —
W[Bgi]ml\, (R? : C) for brevity. Let a point 7 € R? satisfy (1I). Using the Fubini
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theorem and (12)), we have
Ju(-+7) - “(')HLl(t+lsz)

1 |flx+7—y)— flx —y)|
— dyd
= 4 /t+lQ /RS |y\ yar

1 / dy

< — flea+rm—y)— flz —y)ldz| =
47 R3 [ t+1Q | ( ) ( )‘ |y|

1 / dy

== |f(z+7) = f(2)ldz| =

4m RSl t—y+IQ |
1 / €-dy €

< — < .
dm Jgs [yl F(l,t —y) — Fi(l,t)

This simply implies the required. (]

Concerning Theorem 7, we would like to emphasize that the function y — |y| =1,
y € R3 does not belong to the class L'(R3) so that the results on convolution
invariance of multi-dimensional Weyl p-almost periodicity cannot be applied here.

We can similarly analyze the two-dimensional analogue of this example by con-
sidering the logarithmic potential of f(-), given by

uw) =52 [ il ey, wer

In this case, we only need to replace condition by

/ In(ly[) - F1 (I, t)
R2 F(l,t—y)

sup
1>0;teR2
see also [28, Remark 3.7, p. 128].
It will be very complicated to reconsider here many other formulas from the
classical theory of partial differential equations which can be employed for our
purposes.

dy < 4o0;

4.2. Applications to the Gaussian semigroup in R". In a great number of
recent research papers concerning multi-dimensional almost periodic type functions,
we have presented certain applications to the Gaussian semigroup in R™ and the
Poisson semigroup in R”, with obvious applications to the inhomogeneous heat
equation in R".

Let Y be one of the spaces LP(R™), Co(R™) or BUC(R™), where 1 < p < oc.
Then we know that the Gaussian semigroup

2
(Gt)F)(z) := (47rt)_("/2) F(z— y)e_% dy, t>0, feY, zeR",
R’n
can be extended to a bounded analytic Cp-semigroup of angle /2, generated by
the Laplacian Ay acting with its maximal distributional domain in Y. It is clear
that our results about the convolution invariance of Stepanov multi-dimensional p-
almost periodic functions and the convolution invariance of Weyl multi-dimensional
p-almost periodic functions (see Theorem 3 and Theorem 6) can be applied to the
function z — (G(to)F)(x), x € R™, where t5 > 0 is a fixed real number. It is
also worth noting that Theorem 3 and Theorem 6 can be applied in the qualitative
analysis of solutions of the abstract ill-posed Cauchy problems of first order whose
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solutions are governed by integrated semigroups or C-regularized semigroups (see
[19] for more details); the applications can be given also to the abstract ill-posed
Cauchy problems of second (fractional) order.

5. CONCLUSIONS AND FINAL REMARKS

The present paper is devoted to the study of various classes of Stepanov multi-
dimensional p-almost periodic type functions with values in complex Banach spaces.
In the investigation of all examined classes of generalized multi-dimensional p-
almost periodic type functions, we use definitions and results from the theory of
Lebesgue spaces with variable exponents. We also provide some relevant applica-
tions to the abstract Volterra integro-differential equations.

Finally, let us mention some intriguing topics not analyzed here. In [12], we have
recently introduced and analyzed the following notion (cf. also [20]):

Definition 16 Let w € R™\ {0}, p be a binary relation on X and w+ 71 C 1. A
continuous function F' : I — X is said to be (w, p)-periodic if and only if F(t+w) €
p(F(t)), t el

Definition 17 Let w; € R\ {0}, p; € C\ {0} is a binary relation on X and
wje; +1 € I (1 < j <n). A continuous function F' : I — X is said to be
(wj, pj)jen,-periodic if and only if F(t +wje;) € p;(F(t)), t € I, j € Ny,

In the case that p; = ¢;I for some non-zero complex numbers ¢; (1 < j < n),
then we also say that the function F(-) is (wj,¢;) en,-periodic; furthermore, if
¢; =1 for all j € N,, then we say that F(-) is (w;);en,-periodic. In this paper, we
have not analyzed Stepanov and Weyl classes of multi-dimensional (w, p)-periodic
functions ((wj, p;);en, -periodic functions).

Concerning composition principles for Stepanov one-dimensional p-almost peri-
odic functions, we would like to note that the statements of [I9, Theorem 4.2.38,
Theorem 4.2.39] can be straightforwardly reformulated for Stepanov one-dimensional
T-almost periodic functions, where T' € L(Y') is not necessarily linear isomorphism.
A possible application can be given to the abstract semilinear Cauchy inclusions
analyzed in [I9] Subsection 4.2.2], provided that the operator T' commutes with
the closed multivalued linear operator A generating the fractional resolvent family
(R(t))i>0 appearing therein; the pivot Banach space should be

BUR(a);Tuc = {u :R = Y : u(-) is bounded, uniformly continuous,

T — uniformly recurrent and lm sup ||f(t + ax) — Tf(t)|| = 0}.
k—+00 teR

See [19, Theorem 4.2.40] for more details. We have not analyzed, among many other
topics, composition principles for Stepanov (Weyl) multi-dimensional p-almost pe-
riodic functions here.

REFERENCES

[1] J. Andres, A. M. Bersani, R. F. Grande, Hierarchy of almost-periodic function spaces, Rend.
Mat. Appl. (7) 26 (2006), 121-188.

[2] A. Chévez, K. Khalil, M. Kosti¢, M. Pinto, Multi-dimensional almost periodic type functions
and applications, submitted. arXiv:2012.00543.

[3] A. Chévez, K. Khalil, M. Kosti¢, M. Pinto, Multi-dimensional almost automorphic type
functions and applications, submitted.



34

(4]

(5]
(6]

(7]
(8]

(9]
[10]
(11]
(12]

[13]
14]

[15]
[16]
(17]
18]

[19]
20]

21]
(22]
23]
24]
[25]
[26]
27]
(28]

29]

M. KOSTIC EJMAA-2022/10(2)

A. Chéavez, K. Khalil, M. Kosti¢, M. Pinto, Stepanov multi-dimensional almost periodic
functions and applications, submiited. hal-03035195.

A. S. Besicovitch, Almost Periodic Functions, Dover Publ, New York, 1954.

H. Bohr, Zur theorie der fastperiodischen Funktionen I; II; ITI, Acta Math. 45 (1924), 29-127;
H6 (1925), 101-214; HT (1926), 237-281.

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract
Spaces, Springer-Verlag, New York, 2013.

T. Diagana, M. Kostié¢, Generalized almost periodic and generalized asymptotically almost
periodic type functions in Lebesgue spaces with variable exponents LP(®) | Filomat 34 (2020),
1629-1644.

L. Diening, P. Harjulehto, P. Hastiiso, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable
Ezponents, Lecture Notes in Mathematics, 2011. Springer, Heidelberg, 2011.

X. L. Fan, D. Zhao, On the spaces LP(I)(O) and Wm’p(z)(O), J. Math. Anal. Appl. 263
(2001), 424-446.

M. Feckan, K. Liu, J. Wang, (w, T)-Periodic solutions of impulsive evolution equations, Evol.
Equ. Control Theory, doi: 10.3934/eect.2021006, 2021.

M. Feckan, M. T. Khalladi, M. Kosti¢, A. Rahmani, Multi-dimensional p-almost periodic
type functions and applications, preprint.

A. M. Fink, Almost Periodic Differential Equations, Springer-Verlag, Berlin, 1974.

G. M. N’Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces,
Kluwer Acad. Publ, Dordrecht, 2001.

M. T. Khalladi, M. Kosti¢, A. Rahmani, M. Pinto, D. Velinov, ¢-Almost periodic type func-
tions and applications, Nonauton. Dyn. Syst. 7 (2020), 176-193.

M. T. Khalladi, M. Kosti¢, A. Rahmani, M. Pinto, D. Velinov, (w, c)-Almost periodic type
functions and applications, Filomat, submitted. hal-02549066.

M. Kostié¢, Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential
Equations, W. de Gruyter, Berlin, 2019.

M. Kostié¢, Abstract Degenerate Volterra Integro-Differential Equations, Mathematical Insti-
tute SANU, Belgrade, 2020.

M. Kostié¢, Selected Topics in Almost Periodicity, W. de Gruyter, Berlin, in press.

M. Kosti¢, Multi-dimensional (w, ¢)-periodic type functions, Nonauton. Dyn. Syst. 8 (2021),
136-151.

M. Kostié¢, Multi-dimensional c-almost periodic type functions and applications, preprint.
arXiv:2012.15735.

M. Kostié¢, Generalized c-almost periodic type functions in R™, Arch. Math. (Brno), in press.
https://www.researchgate.net/publication/350465957.

M. Kostié¢, V. E. Fedorov, Multi-dimensional Weyl almost periodic functions and applications,
preprint. https://arxiv.org/abs/2101.11754.

M. Kosti¢, Asymptotically Weyl almost periodic functions in Lebesgue spaces
with variable exponents, J. Math. Anal. Appl. 498 (2021), 124961, in press,
https://doi.org/10.1016/j.jmaa.2021.124961.

M. Levitan, Almost Periodic Functions, G.I.T.T.L., Moscow, 1959 (in Russian).

P. Q. H. Nguyen, On variable Lebesgue spaces, Thesis Ph.D., Kansas State University. Pro-
Quest LLC, Ann Arbor, MI, 2011. 63 pp.

A. A. Pankov, Bounded and Almost Periodic Solutions of Nonlinear Operator Differential
Equations, Kluwer Acad. Publ., Dordrecht, 1990.

S. Salsa, Partial Differential Equations in Action: From Modelling to Theory, Springer-
Verlag Italia, Milano, 2008.

S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Pitman Research Notes in Math,
Vol. 126, Pitman, Boston, 1985.

MARKO KosTIi¢

FAcULTY OF TECHNICAL SCIENCES, UNIVERSITY OF Novi SAD, TRG D. OBRADOVICA 6, 21125
NovI SAD, SERBIA

Email address: marco.s@verat.net



	1. Introduction and preliminaries
	1.1. Multi-dimensional -almost periodic type functions
	1.2. Lebesgue spaces with variable exponents Lp(x)
	1.3. Stepanov multi-dimensional Bochner transform, Stepanov distance and Stepanov norm

	2. Stepanov multi-dimensional -almost periodic functions in Lebesgue spaces with variable exponents
	2.1. D-Asymptotically Stepanov -almost periodic type functions

	3. Multi-dimensional Weyl -almost periodic type functions
	4. Applications to the abstract Volterra integro-differential equations
	4.1. Newtonian potential and logarithmic potential
	4.2. Applications to the Gaussian semigroup in Rn

	5. Conclusions and final remarks
	References

