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FIRST-ORDER ITERATIVE DIFFERENTIAL INCLUSION

DORIA AFFANE AND SAMIA GHALIA

Abstract. Through this article, we aim to identify sufficient conditions to
study the existence of solutions to a perturbed first-order iterative differen-
tial inclusion with maximal monotone operator. We provided examples to
demonstrate our results.

1. Introduction

Iterative differential equations are special types of the so-called state-dependent
delay-differential equations. This type of equations appears in many fields such as
biologic, physics, the engineering technique fields,... They have been extensively
and intensively studied in the recent years. One of the first papers which developed
the study of iterative differential equations comes back to E. Eder in [21], where the
existence of the unique monotone solution for the 2-th iterative differential equation
u̇(t) = u[2](t); u[2](t) = u(u(t)) was given. Later, K. Wang [39] obtained a solution
of the generally iterative differential equation u̇(t) = f(u[2](t)), u(T0) = T0, where
T0 is one endpoint of the interval of existence, using Schauder’s fixed point theo-
rem. In [23], M. Fec̆kan showed the existence of local solutions via the contraction
mapping principle for the initial value problem for the iterative differential equation
u̇(t) = f(u[2](t)); u(0) = 0. The nonautonomous equation u̇(t) = f(t, u(t), u[2](t)),
a.e. t ∈ [T0, T ], u(T0) = u0, was investigated by A. Pelczar [33] using Picard’s
successive approximation. In [15] V. Berinde applied the nonexpansive operators
to studied the same problem and extended the existence results given in [18]. Also,
we mention the paper [42], where P. Zhang and X. Gong established the existence
of solutions for general iterative differential equation{

u̇(t) = f(t, u(t), u[2](t), · · ·, u[n](t)), a.e. t ∈ [T0, T ];

u(T0) = u0,

where n ∈ N and for 1 < i ≤ n, u[i](t) = u(u[i−1](t)). There were also quite a
number of papers and research deal it see for example [22, 24, 26, 27, 29, 30, 31,
34, 35, 36, 37, 40, 41].

2010 Mathematics Subject Classification. 34K35, 28B20, 34K35.
Key words and phrases. Iterative differential equations, differential inclusion, maximal mono-

tone operator, perturbation.
Submitted July 21, 2021. Revised Aug. 12, 2021.

1



2 D. AFFANE AND S. GHALIA EJMAA-2022/10(2)

On the other hand, differential inclusions have received great interest from re-
searchers who have used them in studying many situations including differential
variational inequalities, projected dynamical systems, Moreau’s sweeping process,
linear and nonlinear complementarity dynamical systems, discontinuous ordinary
differential equations. For example, S. Aizicovici and V. Staicu [11] proved the
existence of integral solutions to the nonlocal Cauchy problem u̇(t) ∈ −Au(t) +
F (t, u(t)), u(0) = g(u) in a Banach space X. Later, the authors in [1, 5] studied
the existence of solutions of a boundary second order differential inclusion under
conditions that are strictly weaker than the usual assumption of convexity on the
values of the right-hand side. For more details, see the papers [9, 25, 32]. Others
have also been interested in the study of differential inclusions with operators, see
the papers [2, 3, 4, 6, 7, 8, 10, 14] and references therein.
Motivated by the above discussions, the main purpose of this paper is to consider
sufficient conditions for studying the existence of solutions to the problem

(I)

{
u̇(t) = f(t, u(t), u[2](t), · · ·, u[n](t), u[n](αt)), a.e. t ∈ [T0, T ];

u(T0) = u0,

where u0 ∈ [T0, T ] and α ∈]0, 1[. Moreover, we assume a new problem, which is a
perturbed iterative differential inclusion with maximal monotone operators

(II)

{
−u̇(t) ∈ A(t)u[n](t) + f(t, u(t), u[2](t), · · ·, u[n](t), u[n](αt)), a.e. t ∈ [T0, T ];

u(T0) = u0,

and we prove the existence of solutions.
The present paper is organized as follows: After providing some notation and pre-
liminaries; in Section 3, we provide the existence of solutions for problem (I) using
Schauder’s fixed point theorem, where f is a bounded Carathéodory mapping.
Then, we generalize the first result to the perturbed iterative differential inclusion
with maximal monotone operators (II). We provide two examples to demonstrate
our results.

2. Notations and preliminaries

Throughout all the paper, [T0, T ] (T0 ≤ 0 ≤ T ) is an interval of R the set of
real numbers. We denote by L1

R([T0, T ]) the space of measurable mappings u :

[T0, T ] → [T0, T ] such that
∫ t

T0
|u(t)|dt < +∞ with the norm ∥u∥L1

R
=

∫ t

T0
|u(t)|dt,

by C([T0, T ]) the Banach space of all continuous mappings u : [T0, T ] → [T0, T ]
equipped with the sup-norm and C1([T0, T ]) the Banach space of all continuous
mappings with continuous derivative. For extensive information on these concepts,
see the book [16].
Now, we give the definition and some properties of the maximal monotone operator.
We refer the reader to [12], [13] and [17] for this concept.
A set-valued mapping A(t) : R ⇒ R (t ∈ [T0, T ]) is monotone if and only if

∀x1, x2 ∈ D(A(t)) : (A(t)x1 −A(t)x2)(x1 − x2) ≥ 0.

If A(t) is monotone and R(I +λA(t)) = R, we say that A(t) is maximal monotone,
here, D(A(t)) = {x ∈ R : A(t)x ̸= ∅} is the domain of A(t), and R(I + λA(t)) is
the range of (I + λA(t)).
Let λ > 0, we denote by Jλ(t) = (I + λA(t))−1 the resolvent and Aλ(t) =

1
λ (I −

Jλ(t)) the Yosida approximation of A(t).
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Proposition 2.1. Let A(t) : D(A) ⊂ R ⇒ R (t ∈ [T0, T ]) be a maximal monotone
operator and λ > 0. Then

(1) Aλ(t) is single valued, maximal monotone and Lipschitzean with constant
2
λ on R(I + λA(t));

(2) Aλ(t)x ∈ AJλ(t)x, ∀x ∈ R(I + λA(t));

(3)
1

λ
|JλA(t)x− x| = |Aλ(t)x| ≤ |A(t)x|0, ∀x ∈ R(I + λA(t)) ∩D(A(t)),

where |A(t)x|0 = inf{|y|; y ∈ A(t)x}, is the element of A(t)x of minimal norm.

The following theorems are very important in proving our results.

Theorem 2.1. [19] (Scorza Dragoni theorem)
Let J be a compact metric space, (J,Σ, ν) a Radon measure space. Let X a com-
plete separable metric space, E a finite dimensional space and h : J × X → E a
Carathéodory function. So, for all real ε > 0, there exists a compact Jε ⊂ J such
that ν(J\Jε) < ε and the restriction from h to Jε ×X is continuous.

Theorem 2.2. [28] (Schauder)
Let S be a nonempty closed convex subset of a Banach space and let G : S → S be
continuous. If G(S) is relatively compact, then G has a fixed point in S.

3. The main results

3.1. Existence result for a first-order iterative differential equation.

Theorem 3.1. Let f : [T0, T ]
n+2 → R be a mapping such that:

i) for any x ∈ [T0, T ]
n+1 fixed, f(·, x) is Lebesgue measurable on [T0, T ] ;

ii) for any t ∈ [T0, T ] fixed, f(t, ·) is continuous on [T0, T ]
n+1;

iii) there is a nonnegative function m ∈ L1
R([T0, T ]) such that

|f(t, x)| ≤ m(t), ∀(t, x) ∈ [T0, T ]
n+2.

Then, the problem (I) has an absolutely continuous solution.

Proof. Step1. Suppose that f is continuous on [T0, T ]
n+2. Let S be a subset

defined by

S = {v ∈ C([T0, T ]) : v has a continuous derivative and ∥v∥C ≤ m1}

where m1 = |u0|+∥m∥L1
R
. It is clear that S is a closed convex subset of C1([T0, T ]).

For all v ∈ S, the problem

(Pf,v)

{
u̇(t) = f(t, v(t), v[2](t), · · ·, v[n](αs)), a.e. t ∈ [T0, T ];

u(T0) = u0,

admits a solution uv ∈ C1([T0, T ]) defined by

uv(t) = u0 +

∫ t

T0

f(s, v(s), v[2](s), · · ·, v[n](s), v[n](αs))ds.

Consider the mapping P : v 7→ uv defined on S with values in C([T0, T ]) by P (v) =
uv. Let us show that uv ∈ S. We have u is derivative continuous and for all
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t ∈ [T0, T ]

|uv(t)| ≤ |u0|+
∫ t

T0

|f(s, v(s), v[2](s), · · ·, v[n](αs))|ds

= |u0|+
∫ t

T0

m(s)ds = |u0|+ ∥m∥L1
R
= m1.

Then,
∥u∥C ≤ m1. (3.1)

Let (vr) be a sequence of elements of S converging to v in S. Then, (v
[i]
r ) converges

to v[i] (i = 2, 3, · · ·, n) and we have

|uvr (t)− uv(t)| ≤
∫ t

T0

|f(s, vr(s), v[2]r (s), · · ·, v[n](αs))− f(s, v(s), v[2](s), · · ·, v[n](αs))|ds.

Since f is continuous, so
(
|f(·, vr(·), v[2]r (·), ···, v[n]r (α·))−f(·, v(·), v[2](·), ···, v[n](α·))|

)
r

converging to 0 when r → +∞, then

∥P (vr)− P (v)∥ = ∥uvr − uv∥C → 0 when r → +∞.

Hence we have the continuity of P .
Now, let us prove that P (S) is relatively compact in C([T0, T ]). For all t, τ ∈ [T0, T ],
we have

|uv(t)− uv(τ)| ≤
∫ t

τ

|f(s, v(s), v[2](s), · · ·, v[n](αs))|ds ≤
∫ t

τ

m(s)ds.

As m ∈ L1
R([T0, T ]), we obtain the equicontinuity of the set {uv : v ∈ S}.

On the other hand, for all v ∈ S and all t ∈ [T0, T ], |u̇v(t)| ≤ m(t), by the
relation (3.1), it is clear that {uv(t) : v ∈ S} is relatively compact in [T0, T ]. The
Arzelà-Ascoli theorem gives us its relative compactness in C([T0, T ]). From where
P (S) = {uv : v ∈ S} is relatively compact in C([T0, T ]). The Theorem 2.2 allows
us to conclude that P admits a fixed point which is in fact the solution to the
problem under consideration.
Step2. Suppose that f satisfies the hypotheses of Theorem 3.1. Let ε > 0, according
to the Theorem 2.1, there exists a compact set Jε ⊂ [T0, T ] such that the Lebesgue
measure of ([T0, T ] \ Jε) is less than ε and the restriction gε of f to Jε × [T0, T ]

n+1

is continuous. Hence, the existence of an increasing sequence of compact sets (Jr)
in [T0, T ] such that the Lebesgue measure of ([T0, T ] \ Jr) tends to 0 when r → ∞
and the restriction gr of f to Jr × [T0, T ]

n+1 is continuous.

Let f̃r be the Dugundji continuous extension of gr to [T0, T ]
n+2. We apply the

arguments of the demonstration of Step 1 to each f̃r; we obtain for all r ∈ N a
solution ur of the problem{

u̇r(t) = f̃r(t, ur(t), u
[2]
r (t), · · ·, u[n]r (αt)), ∀t ∈ [T0, T ];

ur(T0) = u0.

We have for all r ∈ N and all t ∈ [T0, T ], |u̇r(t)| ≤ m(t). So, we can extract from
the sequence (u̇r(·)) a subsequence converging weakly* in L∞

R ([T0, T ]) to a function
w(·).
On the other hand, we have

ur(t) = u0 +

∫ t

T0

u̇r(s)ds,
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then for all t, τ ∈ [T0, T ]

|uh(t)− uh(τ)| ≤
∫ t

τ

m(s)ds

therefore the sequence (ur(·)) is equicontinuous and relatively compact. According
to Arzelà-Ascoli’s theorem (ur) is relatively compact in C([T0, T ]). By extracting a
subsequence we may (ur) converges uniformly to a function u satisfying u(T0) = u0.
We have to show that

u̇(t) = f(t, u(t), u[2](t), · · ·, u[n](αt)), a.e. t ∈ [T0, T ].

By construction, for each r ∈ N, there is a set Nr of negligible Lebesgue measure,
such as

u̇r(t) = f(t, ur(t), u
[2]
r (t), · · ·, u[n]r (αt)), ∀t ∈ Jr \ Nr.

Let N0 = ([T0, T ] \ ∪Jr) ∪ (∪Nr) which is Lebesgue-negligible. If t /∈ N0, there is
an integer p = p(t) such that

u̇r(t) = f(t, ur(t), u
[2]
r (t), · · ·, u[n]r (αt)), ∀ r ≥ p,

this relation gives us

lim sup
r→∞

⟨x′, u̇r(t)⟩ = lim sup
r→∞

⟨x′, f(t, ur(t), u[2]r (t), · · ·, u[n]r (αt))⟩

≤ ⟨x′, f(t, u(t), u[2](t), · · ·, u[n](αt))⟩,
for all x′ ∈ R and r ≥ p. As (u̇r) converges weakly* to u̇ in L∞

R ([T0, T ]), we get for
any set A ⊂ [T0, T ], ∫

A

⟨x′, u̇(t)⟩dt = lim
r→∞

∫
A

⟨x′, u̇r(t)⟩dt,

using Fatou’s lemma, we get∫
A

⟨x′, u̇(t)⟩dt =
∫
A

lim sup
r→∞

⟨x′, u̇r(t)⟩dt ≤
∫
A

⟨x′, f(t, u(t), u[2](t), · · ·, u[n](αt))⟩dt,

so

⟨x′,
∫
A

u̇(t)dt⟩ = ⟨x′,
∫
A

f(t, u(t), u[2](t), · · ·, u[n](αt))dt⟩,

then,

u̇(t) = f(t, u(t), u[2](t), · · ·, u[n](αt)), a.e. t ∈ [T0, T ].

3.2. Existence result for a first-order iterative differential inclusion. For
our proof, we need the following lemma.

Lemma 3.1. [42] Let

ΦK = {u ∈ C([T0, T ]) : |u(t)− u(s)| ≤ K|t− s|, ∀t, s ∈ [T0, T ]},
where 0 < K < 1. If φ,ψ ∈ ΦK, then

∥φ[j] − ψ[j]∥C ≤ 1−Kj

1−K
∥φ− ψ∥C , j = 1, 2, · · ·.

Theorem 3.2. Let f : [T0, T ]
n+2 → R be a function satisfies the hypothesis i) and

ii) of Theorem 3.1 and A(t) : R ⇒ R (t ∈ [T0, T ]) be a maximal monotone operator.
Suppose that the following assumptions hold:
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(H1) for all y ∈ [T0, T ] and all λ > 0, t 7→ JλA(t)y is Lebesgue measurable and
there exists ḡ ∈ L2

R([T0, T ]) such that t 7→ JλA(t)ḡ(t) belongs to L
2
R([T0, T ]);

(H2) there exists a function m ∈ L2
R([T0, T ]) such that ∥m∥L2

R
< 1 and

|A(t)y|0 + |f(t, x)| ≤ m(t), ∀(t, x, y) ∈ [T0, T ]
n+2.

Then, the problem (II) admits a solution.

Proof. We consider the mapping

gr(t, x) = Aλr (t)y + f(t, x), ∀(t, x) ∈ [T0, T ]
n+2,

where (λr) is a decreasing sequence in ]0, 1[ converges to 0 when r → ∞.
According to the property 3) of the Proposition 2.1 and hypothesis (H2), we have

|gr(t, x)| ≤ |Aλr (t)y|+ |f(t, x)|
≤ |A(t)y|0 + |f(t, x)| ≤ m(t).

Note that hypothesis (H1) and property 1) in Proposition 2.1 implies that (t, y) 7→
Aλr (t)y is a Carathéodory mapping. By applying Theorem 3.1, we obtain for all
r ∈ N, the existence of a solution ur for the differential equation

(Pgr )

{
−u̇r(t) = gr(t, ur(t), u

[2]
r (t), · · ·, u[n]r (αt)) a.e. t ∈ [T0, T ];

ur(T0) = u0,

with

ur(t) = u0 +

∫ t

T0

gr(s, ur(s), u
[2]
r (s), · · ·, u[n]r (αs))ds.

By applying the arguments of the proof of Theorem 3.1, we conclude that (ur(·))
is relatively compact. By extracting a subsequence, we may (ur(·)), (u[i]r (·)) and

(u
[i]
r (α·)) uniformly converge to u(·)), u[i](·) and u[i](α·) with u(T0) = u0 and that

(u̇r(·)) converges σ(L2
R([T0, T ]), L

2
R([T0, T ])) to u̇(·).

On the other hand, by the hypotheses on f we have (f(·, ur(·), u[2]r (·), · · ·, u[n]r (α·)))r
converges to the function f(·, u(·), u[2](·), · · ·, u[n](α·)) a.e. and also

|f(t, ur(t), u[2]r (t), · · ·, u[n]r (αt))| ≤ m(t), ∀t ∈ [T0, T ].

by Lebesgue’s theorem, we conclude that

|f(t, u(t), u[2](t), · · ·, u[n](αt))| ≤ m(t),

(f(·, ur(·), u[2]r (·), ···, u[2]r (α·)))r converges to the function f(·, u(·), u[2](·), ···, u[n](α·))
in L2

R([T0, T ]) and therefore this convergence is true for the weak topology.
According to property 2) of Proposition 2.1, we have for a.e. t ∈ [T0, T ],

−u̇r(t)−f(t, ur(t), u[2]r (t), ···, u[n]r (αt)) = Aλr (t)u
[n]
r (t) ∈ A(t)JλrA(t)u

[n]
r (t). (3.2)

On the other hand, we have

|JλrA(t)u
[n]
r (t)− u[n](t)| ≤ |JλrA(t)u

[n]
r (t)− u[n]r (t)|+ |u[n]r (t)− u[n](t)|. (3.3)

Using property 3) of Proposition 2.1 and hypothesis (H2), we obtain

|JλrA(t)u
[n]
r (t)− u[n]r (t)| = λr|Aλr (t)u

[n]
r (t)| ≤ λr|A(t)u[n]r (t)|0 ≤ λrm(t). (3.4)

We have λrm(t) → 0 when r → ∞. By the relation (3.4), we can see that

|JλrA(t)u
[n]
r (t)− u[n]r (t)| → 0 when r → ∞,
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and so
|Jλr

A(t)u[n]r (t)− u[n](t)| → 0 when r → ∞.

By the relations (3.2), (3.3) and (3.4) we have

|JλrA(t)u
[n]
r (t)− u[n](t)| ≤ |JλrA(t)u

[n]
r (t)− u[n]r (t)|+ |u[n]r (t)− u[n](t)|.

Using Lemma 3.1, we get

|JλrA(t)u
[n]
r (t)− u[n](t)| ≤ λrm(t) +

1− ∥m∥n
L1

R

1− ∥m∥L1
R

∥ur − u∥C

≤ λrm(t) +
1− ∥m∥n

L1
R

1− ∥m∥L1
R

(∥ur∥C + ∥u∥C)

≤ λrm(t) + 2
1− ∥m∥n

L1
R

1− ∥m∥L1
R

(|u0|+ ∥m∥L1
R
).

Since λr < 1, for all r ∈ N we obtain for a.e. t ∈ [T0, T ],

|JλrA(t)u
[n]
r (t)− u[n](t)| < m(t) +

2

1− ∥m∥L1
R

(|u0|+ ∥m∥L1
R
).

As m ∈ L2
R([T0, T ]), we conclude by using Lebesgue’s theorem that JλrA(t)u

[n]
r (·)

converges to u[n](·) in L2
R([T0, T ]).

Let A : L2
R([T0, T ]) ⇒ L2

R([T0, T ]) be an operator defined by

v ∈ Au[n] ⇔ v(t) ∈ A(t)u[n](t) a.e. t ∈ [T0, T ].

Using the proof of Lemma 3.1 in [20] and thanks to hypothesis (H1) we conclude
that A is a maximal monotone operator in L2

R([T0, T ]) by ([38], Theorem 1.5.2) its
graph is sequentially strongly-weakly closed.

As (u̇r(·)+f(·, ur(·), u[2]r (·), ···, u[n]r (α·)))r converges σ(L2
R, L

2
R) to u̇(·)+f(·, u(·), u[2](·), ··

·, u[n](α·)), we conclude, by relation(3.2) that the problem (II) admits a solution.

4. Applications

Example 4.1. Consider the following problem

(P1)

{
−u̇(t) ∈ ∂|u[2](t)|+ 1

8 t
(
cos(u(t)) + sin(u[2]( t2 ))

)
, a.e. t ∈ [−π

2 ,
π
2 ];

u(0) = 0.

where the set-valued mapping

∂|x2| =


− 1

2 if x2 < 0,
1
2 if x2 > 0,

[−1
2 ,

1
2 ] if x2 = 0,

is a maximal monotone operator. The function f(t, x1, x2, x3) =
1
8 t(cosx1+sinx3),

for (t, x1, x2, x3) ∈ [−π
2 ,

π
2 ]

4 satisfies the hypotheses i) and ii) of Theorem 3.1. Let
us show that the hypotheses (H1) and (H2) of Theorem 3.2 are satisfied.

(H1) for all λ > 0,

Jλ∂|x2| =
(
I + λ∂|x2|

)−1
=


0 if x2 ∈ [−λ

2 ,
λ
2 ],

1−λ
2 if x2 ≥ λ

2 ,
1+λ
2 if x2 ≤ −λ

2 .
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Therefore, t 7→ Jλ∂|x2| is Lebesgue measurable and there exists ḡ ∈ L2
R([−π

2 ,
π
2 ])

such that t 7→ Jλ∂|ḡ(t)| belongs to L2
R([−π

2 ,
π
2 ]).

(H2) For all (t, x1, x2, x3) ∈ [−π
2 ,

π
2 ]

4, we have

∣∣∂|x2|∣∣0 + |f(t, x1, x2, x3)| ≤ m(t) =
1

4
t+

1

2
, with ∥m∥L2

R
< 1.

The hypotheses of Theorem 3.2 are satisfied, then (P1) has a solution.

Example 4.2. Let C : [−1, 1] ⇒ [−1, 1] be a set-valued mapping and consider the
problem

(P2)

{
−u̇(t) ∈ ∂IC(t)(u

[3](t)) + 1
4 t(u(t) + u[2](t) + u[3](t)) + 1

5u
[3]( t3 ), a.e. t ∈ [−1, 1];

u(0) = 0,

where

IC(t)(x3) =

{
0 if x3 ∈ C(t),

+∞ if x3 /∈ C(t).

For all λ > 0, we have

∂IC(t)(x3) =


R− if x3 = −1;

R+ if x3 = 1;

0 if x3 ∈]− 1, 1[.

Hence

Jλ∂IC(t)(x3) =


x3 if x3 ∈ [−1, 1];

1 if x3 ≥ 1;

−1 if x3 ≤ −1.

Therefore, t 7→ Jλ∂IC(t)(x3) is Lebesgue measurable and there exists ḡ ∈ L2
R([−1, 1])

such that t 7→ Jλ∂IC(t)(ḡ(t)) belongs to L2
R([−1, 1]).

For all (t, x1, x2, x3) ∈ [−1, 1]4, we put

f(t, x1, x2, x3, x4) =
1

4
t(x1 + x2 + x3) +

1

5
x4

which is a Carathéodory mapping, since |∂IC(t)(x3)|0 = {0}, we get

|∂IC(t)(x3)|0 + |f(t, x1, x2, x3, x3)| ≤ m(t) =
3

4
t+

1

5
, with ∥m∥L2

R
< 1.

The hypotheses of Theorem 3.2 are satisfied, then (P2) has a solution.
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[17] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces

de Hilbert. North Holland, 1973.
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[39] K. Wang, On the equation ẋ(t) = f(x(x(t))). Funk. Ekva, Vol. 33, 405-425, 1990.

[40] D. Yang D and W. Zhang, Solution of equivariance for iterative differential equations. Appl.
Math. Lett., Vol. 17, 759-765, 2004.

[41] P. Zhang, Analytic solutions for iterative functional differential equations. Electron. J. Dif-
ferential Equations, 180, 1-7, 2012.

[42] P. Zhang and X. Gong, Existence of solutions for iterative differential equations. Electron. J.
Differential Equations, Vol. 7, 1-10, 2014.

Doria Affane
LMPA Laboratory, Department of Mathematics, Mohamed Seddik Ben Yahia University,
Jijel, Algeria

E-mail address: affanedoria@yahoo.fr

Samia Ghalia

LMPA Laboratory, Department of Mathematics, Mohamed Seddik Ben Yahia University,
Jijel, Algeria

E-mail address: ghalia.samia02@gmail.com


