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PROPERTIES OF THE DIRICHLET KERNEL

JOSEFINA ALVAREZ AND MARTHA GUZMÁN-PARTIDA

Abstract. We prove several statements concerning the Dirichlet kernel which,
as far as we know, are not proved in the literature. In particular, we show
that the Dirichlet kernel does not satisfy the third condition in Stein�s and
Shakarchi�s de�nition of good kernel.

1. Introduction

Let us consider a family of integral operators of the form

f !
Z �

��
Kn (x� t) f (t) dt (1)

where the function Kn : R ! R, called the kernel of the operator, is 2�-periodic
and continuous for each n = 1; 2; :::, and the function f : R! R is 2�-periodic and
Riemann integrable on [��; �].
Elias M. Stein and Rami Shakarchi formulated in [7] three integral conditions on

Kn that, jointly, imply the existence of

lim
n!1

Z �

��
Kn (x� t) f (t) dt = f (x)

at each point x where f is continuous. A function Kn is called a good kernel if it
satis�es those three conditions.
When Kn is the Dirichlet kernel Dn the operator (1) returns the nth partial

sum Sn (x) of the Fourier series for f . It is known that Dn is not a good kernel
since, as it is proved in the literature, it does not satisfy the second of Stein�s and
Shakarchi�s conditions. The �rst condition is a normalization requirement which
Dn satis�es, while Dn does not satisfy the third condition, a fact rarely mentioned
in the literature, and always without a proof as far as we know. This article is
dedicated, in part, to give such a proof which, although uses basic tools, turns out
to be rather subtle. We also state and prove sharp lower and upper bounds for Dn
and we show directly that Dn does not satisfy a pointwise estimate due to Antoni
Zygmund [8].
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The organization of our article is as follows. In Section 2 we brie�y discuss
historic background material. To be sure, the history of how to represent periodic
functions using trigonometric series is long and laborious, so we look only at those
parts that are relevant to our purposes. Section 3 is dedicated to Stein�s and
Shakarchi�s work on good kernels. In Section 4 we develop a formula for the Dirichlet
kernel Dn and we show that it is not a good kernel. Finally, in Section 5 we go
over our main result, namely that Dn does not satisfy the third of Stein�s and
Shakarchi�s conditions. Also in this last section, we state and prove sharp lower
and upper bounds for Dn as well as we show that the kernel Dn does not satisfy
Zygmund�s pointwise estimate.

2. Where Fourier meets Cauchy

Before Joseph Fourier, the nature of heat was not well understood. For instance,
in 1736, the French Academy called for essays on the topic �The nature and the
propagation of ��re��, where the word ��re�was meant to signify �heat�. All the
submissions, including Euler�s, missed the point and attempted to explain how
�res develop ([4], p. 5).
Nevertheless, according to Umberto Bottazzini ([1], p. 59), by the end of the

eighteenth century, heat was starting to be perceived as a form of energy that could
aid in production. However, �if it is the practical interests that are best expressed
in the English textile mills, it is the theoretical aspects that particularly engaged
the French scientists.�([1], p. 59).
Under the title The Analytical Theory of Heat, Fourier published in 1822 two

pieces, written in 1807 and 1811. In a radical departure from the work of others,
Fourier developed a mathematical model for the propagation of heat, a di¤erential
equation known as heat equation. In the 1811 piece, he appropriately included a
quotation attributed to Plato: �Also heat is governed by numbers.�([4], p. 6).
To solve the heat equation, Fourier used certain series, now called Fourier series.

At the time, the heat equation was viewed as Fourier�s crowning achievement, while
the series �were considered a disgrace.�([4], p. 6).
The topic of Fourier series basically rests upon the formulas

f (x) = a0 +
X
n�1

(an cosnx+ bn sinnx) , (2)

a0 =
1

2�

Z �

��
f (x) dx, (3)

an =
1

�

Z �

��
f (x) cosnx dx, n = 1; 2; :::, (4)

bn =
1

�

Z �

��
f (x) sinnx dx, n = 1; 2; ::: . (5)

Fourier shows in several cases that the series converges to the function f , meaning
that the series converges pointwise to f (x), for each x, in the sense of Augustin-
Louis Cauchy�s de�nition. Then, he proceeds to state that �all the series converge�.
Later on, he says �we must remark that our demonstration applies to an entirely
arbitrary function.�([4], p. 12).
In spite of, or perhaps because of, these rather exuberant statements, the topic

of representing a function as (2) has been the catalyst for many developments in
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analysis, such as the Riemann integral and the Lebesgue integral, and it was the
inspiration for Georg Cantor�s theory of the trans�nite.
Now, given a function f , let us calculate an and bn, if the integrals exist in some

sense, and then let us form the series appearing on the right-hand side of (2). Of
particular interest in our context, is the following question: Does the series converge
to f (x) for all x? According to Fourier, the answer is always yes. However, after
several mathematicians of the time, including Cauchy, produced more or less faulty
proofs, Peter Gustav Lejeune Dirichlet showed pointwise convergence under rather
general conditions. The work was published in 1829 in J. reine und angew. Math.
(Journal de Crelle). Here is Dirichlet�s result:

Theorem 1. (Dirichlet) Let f : R! R be a 2�-periodic function that is continuous
and has a bounded continuous derivative, except, possibly, at a �nite number of
points. Then, the equality (2) holds at every x 2 R where f is continuous.

In Jean-Pierre Kahane�s words ([4], p. 31), �The article of Dirichlet on Fourier
series is a turning point in the theory and also in the way mathematical analysis is
approached and written. Its intention is simply to give a correct statement and a
correct proof of the convergence of Fourier series. The result is a paradigm of what
is correctness in analysis.�
Kahane reproduces the full article in pp. 36-46 of [4].
After Dirichlet�s result, it was natural to wonder about the necessity of its as-

sumptions. A counterexample produced by Paul du Bois-Reymond in 1873, showed
that the hypotheses on f could not be relaxed inde�nitely. Indeed,

Theorem 2. (du-Bois Reymond) (for a proof see, for instance, [6], p. 67, Theorem
18.1) There is a function g : R! R, 2�-periodic and continuous, for which

lim sup
n!1

Sn (0) =1,

where Sn (0) denotes the partial sum of the Fourier series for g, evaluated at x = 0.

The realization that Theorem 1 is not generally true when f is only continuous,
closed the door forever on Fourier�s paradise.
The example by du-Bois Reymond seemed, for a long time, to open the possi-

bility of �nding a continuous function whose Fourier series diverges at every point.
However, Lennart Carleson, in the 1960s, proved the impossibility of such a func-
tion, when he showed the following:

Theorem 3. Let f : R! R be a 2�-periodic and continuous function. Then, there
is a set E � R of Lebesgue measure zero so that

a0 +
X
n�1

(an cosnx+ bn sinnx) = f (x)

for x 2 RnE.

Actually, Carleson proved, among other things, that the conclusion of Theorem
3 holds for a 2�-periodic function that is just square integrable on [��; �], in the
sense of Lebesgue [2]. In the Mathematical Reviews, MR199631, Kahane refers to
the results in Carleson�s article as �spectacular�and catalogs the proofs as �very
di¢ cult�and �very delicate�. We mention Carleson�s convergence result, just for
the sake of completeness. Its proof is, indeed, of a great complexity, well beyond
the scope of our exposition.
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The proof of Theorem 1 is, for instance, in ([6], p. 56, Section 15) for everywhere
continuous functions and in ([6], p. 59, Section 16) for the general case.
Let us point out that, for our purposes, it will su¢ ce to work with Riemann

integrable functions.

3. The importance of being a good kernel

We begin with the following de�nition.

De�nition 1. ([7], p. 48) Given an integral operator of the form

f !
Z �

��
Kn (x� t) f (t) dt,

the kernel Kn is called a good kernel if it satis�es the following conditions:
(1) Z �

��
Kn (t) dt = 1

for all n � 1.
(2) There is C > 0 so that Z �

��
jKn (t)j dt � C

for all n � 1.
(3) For each 0 < � < � �xed, there is

lim
n!1

Z
��jtj��

jKn (t)j dt = 0.

The signi�cance of this de�nition is shown in the result that follows.

Theorem 4. ([7], p. 49, Theorem 4.1) Let f : R ! R be a 2�-periodic function,
that is Riemann integrable on [��; �]. Then,

a): if Kn is a good kernel, there is

lim
n!1

Z �

��
Kn (x� t) f (t) dt = f (x)

at each x 2 R where the function f is continuous, and
b): the limit is uniform on x 2 R, when f is continuous everywhere.

Proof. SinceZ �

��
Kn (x� t) f (t) dt =

t!s=x�t
�
Z x��

x+�

Kn (s) f (x� s) ds

=

Z x+�

x��
Kn (s) f (x� s) ds,

the 2�-periodicity of Kn and f implies that the above is equal toZ �

��
Kn (s) f (x� s) ds. (6)
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Therefore,����Z �

��
Kn (x� t) f (t) dt� f (x)

���� =(i)
����Z �

��
Kn (s) f (x� s) ds� f (x)

Z �

��
Kn (s) ds

����
=

����Z �

��
Kn (s) (f (x� s)� f (x)) ds

���� ,
where we have used, in (i), condition 1).
If the function f is continuous at x, given " > 0, there is � = � (x; ") > 0, which

we can choose smaller than �, so that

jf (x� s)� f (x)j � "
for jsj < �.
Then, we can write����Z �

��
Kn (s) (f (x� s)� f (x)) ds

���� � " Z
jsj<�

jKn (s)j ds

+ 2 sup
jtj��

jf (t)j
Z
��jtj��

jKn (s)j ds

�
(ii)
C"+ 2B

Z
��jtj��

jKn (s)j ds,

where B = supjtj�� jf (t)j and we have used, in the �rst term of (ii), condition 2).
Finally, condition 3) tells us that there is N = N (") � 1 so thatZ

��jtj��
jKn (s)j ds � "

for n � N .
This completes the proof of a).
As for b), we only need to observe that when f is continuous everywhere, it is

uniformly continuous on [��; �], and also on R because f is periodic. Then, � can
be chosen independently of x and, therefore,

sup
x2R

����Z �

��
Kn (s) (f (x� s)� f (x)) ds

���� � (C + 2B) ".
So, we have proved b).
This completes the proof of the theorem. �

Remark 1. The proof of Theorem 4 appears in ([7], pp. 49-50). We have included
it here to illustrate how the conditions in De�nition 1 are used to prove convergence
results.

4. The Dirichlet kernel is not a good kernel, part I

To prove Dirichlet�s result on pointwise convergence, the function x! Sn (x) is
written as an integral operator of the formZ �

��
Dn (x� t) f (t) dt

where Dn : R ! R is called the Dirichlet kernel. As we will see, the impossibility
of having pointwise convergence everywhere of the sequence fSn (x)gn�0 for every
2�-periodic and continuous function f , rests upon the nature of Dn.
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In the lemma that follows we calculate a formula for Dn. We assume that the
function f : R! R is 2�-periodic, and Riemann integrable on [��; �].

Lemma 5. The nth partial sum Sn can be written as

Sn (x) =

Z �

��
Dn (x� t) f (t) dt,

where the function Dn (t), called the Dirichlet kernel, is
1
2�

sin(n+ 1
2 )t

sin t
2

if t 6= 0
2n+1
2� if t = 0

. (7)

Proof. Let us write

Sn (x) =
nX
j=0

(aj cos jx+ bj sin jx) ,

where we agree that b0 = 0. For convenience, we will use complex exponentials,
although �they were not used in Fourier series until well into the twentieth century�
([4], p. 2). The identities

cos jx =
eijx + e�ijx

2
,

sin jx =
eijx � e�ijx

2i
give

Sn (x) =
nX
j=0

1

2

�
aj +

bj
i

�
eijx +

nX
j=0

1

2

�
aj �

bj
i

�
e�ijx, (8)

where
1

2

�
aj +

bj
i

�
=
1

2�

Z �

��
e�ijtf (t) dt,

1

2

�
aj �

bj
i

�
=
1

2�

Z �

��
eijtf (t) dt,

for j � 1.
Therefore,

Sn (x) =

Z �

��

24 1
2�

nX
j=�n

eij(x�t)

35 f (t) ,
while

nX
j=�n

eij(x�t) = e�in(x�t)
2nX
j=0

eij(x�t) =
(i)
e�in(x�t)

1� ei(2n+1)(x�t)
1� ei(x�t)

=
e�in(x�t) � ei(n+1)(x�t)

ei(x�t)=2
�
e�i(x�t)=2 � ei(x�t)=2

� = sin
�
n+ 1

2

�
(x� t)

sin (x�t)2

,

for x 6= t, where we have used in (i) the formula for the sum of the 2n �rst terms
of a geometric progression.
So, we arrive at (7) for t 6= 0. An application of L�Hôpital�s rule when t ! 0,

gives the value of the kernel at t = 0.
This completes the proof of the lemma. �
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Let us observe that, technically speaking, we should refer to Dn as the nth
Dirichlet kernel.

Remark 2. The function Dn : R ! R is 2�-periodic, even, and it is continuous
with continuous derivatives of all orders. Moreover, it satis�es condition 1) in
De�nition 1 sinceZ �

��
Dn (t) dt =

1

2�

Z �

��

nX
j=�n

eijtdt =
1

2�

Z �

��
dt = 1.

Proposition 6. The kernel Dn is not a good kernel.

Proof. First, we go over a quick roundabout way of showing that Dn is not a good
kernel: du-Bois Reymond�s counterexample tells us that the conclusion of Theorem
4 cannot hold generally when Kn = Dn. Therefore, Dn cannot be a good kernel.
Next, we show directly that Dn is not a good kernel, by proving that it does not

satisfy condition 2) in De�nition 1 ([7], p. 66, Problem 2).Z �

��
jDn (t)j dt =

Z �

��

1

2�

����� sin
�
n+ 1

2

�
t

sin t
2

����� dt =
Z �

0

1

�

��sin �n+ 1
2

�
t
��

sin t
2

dt

� 2

�

Z �

0

��sin �n+ 1
2

�
t
��

t
dt =

t!s=(n+ 1
2 )t

2

�

Z (n+ 1
2 )�

0

jsin sj
s

ds

� 2

�

Z n�

0

jsin sj
s

ds =
2

�

n�1X
j=0

Z (j+1)�

j�

jsin sj
s

ds

� 2

�2

n�1X
j=0

1

j + 1

Z (j+1)�

j�

jsin sj ds

� 2

�2

n�1X
j=0

1

j + 1

�����
Z (j+1)�

j�

sin s ds

�����
=
4

�2

nX
j=1

1

j
. (9)

If we compare the sum in (9) with the integral of f (t) = 1
t over the interval

[1; n], we conclude that Z �

��
jDn (t)j dt �

4

�2
lnn. (10)

This completes the proof of the proposition. �

Remark 3. Although (10) su¢ ces for now, in the next, and last, section we will
go over a much improved version that gives sharp lower and upper bounds for the
integral.

Remark 4. If Kn is a good kernel, given 0 < � < � �xed,Z �

0

jKn (t)j dt =
Z �

0

jKn (t)j dt�
Z �

�

jKn (t)j dt

can be made arbitrarily close to C
2 , for n large enough, where C is the constant in

condition 2) of De�nition 1.
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This observation does not hold for the Dirichlet kernel.
Indeed, Z �

�

jDn (t)j dt �
1

� sin �
2

Z �

�

����sin�n+ 12
�
t

���� dt � � � �
� sin �

2

,

for every n � 1.
Therefore, using (10),Z �

0

jDn (t)j dt =
Z �

0

jDn (t)j dt�
Z �

�

jDn (t)j dt

� 2

�2
lnn� � � �

� sin �
2

!
n!1

1.

Remark 5. If we write the arithmetic mean of D0;D1; :::;Dn,

1

n+ 1

nX
j=0

Dj (t) =
1

2� (n+ 1)

nX
j=0

sin
�
j + 1

2

�
t

sin t
2

,

after a few calculations we arrive at the Fejér kernel

Fn (t) =
(

1
2�(n+1)

sin2 n+1
2 t

sin2 t
2

if t 6= 0
n+1
2� if t = 0

.

This kernel is named after Leopold Fejér, who proved the summability of a Fourier
series by arithmetic means, a method due to Ernesto Cesàro. As evidence of the
heuristic principle �averaging might make for better behavior�, two improvements
over the Dirichlet kernel are readily apparent: First the Fejér kernel is non-negative,
second the presence of the factor 1

n+1 assures that Fn (t) ! 0 as n ! 1 for each
t 6= 0. But not only that, Fn is a good kernel (see, for instance, [7], p. 53). There-
fore, applying Theorem 4 to the operator with kernel Fn, proves immediately the
convergence of the arithmetic means for any 2�-periodic and continuous function,
in contrast with Theorem 2. Much more can be said, but since our interest is in
convergence à la Cauchy and not summability, we will say no more.

5. The Dirichlet kernel is not a good kernel, part II

As promised in Remark 3, the following result gives sharp bounds for the integralR �
�� jDn (t)j dt.

Theorem 7. For each n � 1,
2

�
+
4

�2
ln

�
n+

1

2

�
�
Z �

��
jDn (t)j dt � 1 +

2

�
+
4

�2
ln (2n) . (11)

In particular, Z �

��
jDn (t)j dt =

4

�2
lnn+O (1) ,

where O (1), in the �big o�notation, indicates a quantity that remains bounded as
n!1. More speci�cally,

0 � O (1) � 1 + 2

�
+
4

�2
ln 2.
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Proof.Z �

��
jDn (t)j dt =

1

�

Z �

0

��sin �n+ 1
2

�
t
��

sin t
2

dt

=
1

�

Z �

0

����sin�n+ 12
�
t

���� � 1

sin t
2

� 1
t
2

�
dt+

2

�

Z �

0

��sin �n+ 1
2

�
t
��

t
dt.

(12)

The function 1
sin t �

1
t is positive, and it is increasing for 0 < t �

�
2 as it can be

seen by manipulating its derivative. Moreover, an application of L�Höpital�s rule
shows that the function is continuous on

�
0; �2

�
if we assign the value zero at t = 0.

Therefore,

(12) � 1

�

�
1� 2

�

�Z �

0

����sin�n+ 12
�
t

���� dt+ 2

�

Z �

0

��sin �n+ 1
2

�
t
��

t
dt.

First, we consider

1

�

�
1� 2

�

�Z �

0

����sin�n+ 12
�
t

���� dt =
s=(n+ 1

2 )t

2

(2n+ 1)�

�
1� 2

�

�Z (n+ 1
2 )�

0

jsin sj ds

=
2

(2n+ 1)�

�
1� 2

�

�Z n�

0

jsin sj ds+ 2

(2n+ 1)�

�
1� 2

�

�Z (n+ 1
2 )�

n�

jsin sj ds

=
(i)

2

(2n+ 1)�

�
1� 2

�

�
n

Z �

0

sin s ds+
2

(2n+ 1)�

�
1� 2

�

�Z �
2

0

sin s ds

=
2

(2n+ 1)�

�
1� 2

�

�
2n+

2

(2n+ 1)�

�
1� 2

�

�
=
2

�

�
1� 2

�

�
,

where (i) holds because the function jsin sj is �-periodic.
Next,

2

�

Z �

0

��sin �n+ 1
2

�
t
��

t
dt =

s=(n+ 1
2 )t

2

�

Z (2n+1)�2

0

jsin sj
s

ds

=
2

�

Z �
2

0

sin s

s
ds+

2

�

2nX
j=1

Z (j+1)�2

j �2

jsin sj
s

ds

� 1 + 2

�

2nX
j=1

1

j �2

Z (j+1)�2

j �2

jsin sj ds =
(ii)
1 +

4

�2

 Z �
2

0

sin s ds

!
2nX
j=1

1

j

� 1 + 4

�2

�
1 +

Z 2n

1

dt

t

�
= 1 +

4

�2
+
4

�2
ln (2n) ,

where the equality (ii) holds because jsin sj is �-periodic and the graph is locally
symmetric with respect to each of the lines s = �, s = 2�, s = 3�, etc.
Finally, Z �

��
jDn (t)j dt �

2

�

�
1� 2

�

�
+ 1 +

4

�2
+
4

�2
ln 2n

= 1 +
2

�
+
4

�2
ln (2n) .
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As for the lower bound, according to (12),Z �

��
jDn (t)j dt �

2

�

Z �

0

��sin �n+ 1
2

�
t
��

t
dt =

s=(n+ 1
2 )t

2

�

Z (2n+1)�2

0

jsin sj
s

ds

=
2

�

Z �
2

0

sin s

s
ds+

2

�

2nX
j=1

Z (j+1)�2

j �2

jsin sj
s

ds.

By L�Höpital�s rule, sin ss ! 1 as s! 0. Therefore, the function

f (s) =

�
sin s
s for 0 < s � �

2
1 for s = 0

is continuous and positive on
�
0; �2

�
. So,

min
0�s��

2

f (s) > 0.

Comparing the graphs of f (s) and 2
� s on

�
0; �2

�
, we conclude that, for 0 � s � �

2 ,

f (s) � f
��
2

�
=
2

�
,

which is usually called Jordan�s inequality, for the mathematician Marie Ennemond
Camille Jordan.
Hence,

2

�

Z �
2

0

sin s

s
ds � 2

�
.

Next, we consider

2

�

2nX
j=1

Z (j+1)�2

j �2

jsin sj
s

ds � 2

�

2nX
j=1

2

�

1

j + 1

Z (j+1)�2

j �2

jsin sj ds

=
4

�2

Z �
2

0

sin sds
2nX
j=1

1

j + 1

=
4

�2

2n+1X
j=2

1

j
� 4

�2

Z 2n+1

2

dt

t
=
4

�2
ln

�
n+

1

2

�
.

Therefore, we can writeZ �

��
jDn (t)j dt �

2

�
+
4

�2
ln

�
n+

1

2

�
.

This completes the proof of the theorem. �

In page 14 of [5], Yitzhak Katznelson states, without proof, that the Dirichlet
kernel does not satisfy the following equivalent version of condition 3) in De�nition
1 ([5], p. 9):
For each 0 < � < �, there is

lim
n!1

Z 2���

�

jKn (t)j dt = 0. (13)

We do not know of any reference where this claim is proved. Likewise, we do not
know of any reference where a similar claim concerning condition 3) in De�nition 1
is stated and proved. Therefore, we present below our own proof of the statement.
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Theorem 8. For each 0 < � � �
2 , the expression

Z
��jtj��

jDn (t)j dt

does not go to zero as n!1.

Proof. Let us �x 0 < � � �
2 . Then,

Z
��jtj��

jDn (t)j dt = 2
Z �

�

jDn (t)j dt � 2
Z �

�
2

jDn (t)j dt

=
s=t��

2

1

�

Z �
2

0

��sin �n+ 1
2

� �
s+ �

2

���
sin

s+�
2

2

dt.

Now,

sin

�
n+

1

2

��
s+

�

2

�
= sin

�
n+

1

2

�
s cos

�
n+

1

2

�
�

2
+ cos

�
n+

1

2

�
s sin

�
n+

1

2

�
�

2

= sin

�
n+

1

2

�
s cos (2n+ 1)

�

4
+ cos

�
n+

1

2

�
s sin (2n+ 1)

�

4
.

For n = 4k, with k = 1; 2; 3; :::,

(2n+ 1)
�

4
= (8k + 1)

�

4
= 2k� +

�

4
,

so

cos (2n+ 1)
�

4
= cos

�
2k� +

�

4

�
= cos

�

4
=

p
2

2
,

sin (2n+ 1)
�

4
= sin

�
2k� +

�

4

�
= sin

�

4
=

p
2

2
.

Furthermore, if 0 � s � �
2 , then 0 �

s
2 �

�
4 , so

�

4
�
s+ �

2

2
� �

2

and we can write

p
2

2
� sin

s+ �
2

2
� s

2
+
�

4
.
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Hence,

1

�

Z �
2

0

��sin �4k + 1
2

� �
s+ �

2

���
sin

s+�
2

2

ds �
p
2

2�

Z �
2

0

��sin �4k + 1
2

�
s+ cos

�
4k + 1

2

�
s
��

s
2 +

�
4

ds

=

p
2

2�

Z �
2

0

��sin (8k + 1) s2 + cos (8k + 1) s2 ��
s
2 +

�
4

ds

=
t= s

2

p
2

�

Z �
4

0

jsin (8k + 1) t+ cos (8k + 1) tj
t+ �

4

dt

�
p
2

�

8kX
j=1

Z (j+1)�
4(8k+1)

j�
4(8k+1)

jsin (8k + 1) t+ cos (8k + 1) tj
t+ �

4

dt

�
p
2

�

8kX
j=1

1
(j+1)�
4(8k+1) +

�
4

Z (j+1)�
4(8k+1)

j�
4(8k+1)

jsin (8k + 1) t+ cos (8k + 1) tj dt

�
p
2

�

8kX
j=1

1
(j+1)�
4(8k+1) +

�
4

�����
Z (j+1)�

4(8k+1)

j�
4(8k+1)

(sin (8k + 1) t+ cos (8k + 1) t) dt

����� .

Now,

Z (j+1)�
4(8k+1)

j�
4(8k+1)

sin (8k + 1) t dt = � 1

8k + 1

�
cos

�
(8k + 1)

(j + 1)�

4 (8k + 1)

�
� cos

�
(8k + 1)

j�

4 (8k + 1)

��
= � 1

8k + 1

h
cos (j + 1)

�

4
� cos j �

4

i
= � 1

8k + 1

�
cos j

�

4
cos

�

4
� sin j �

4
sin

�

4
� cos j �

4

�
=

p
2

2 (8k + 1)

�
� cos j �

4
+ sin j

�

4

�
+

1

8k + 1
cos j

�

4
,

while

Z (j+1)�
4(8k+1)

j�
4(8k+1)

cos (8k + 1) t dt =
1

8k + 1

�
sin

�
(8k + 1)

(j + 1)�

4 (8k + 1)

�
� sin

�
(8k + 1)

j�

4 (8k + 1)

��
=

1

8k + 1

�
sin (j + 1)

�

4
� sin j �

4

�
=

1

8k + 1

�
sin j

�

4
cos

�

4
+ cos j

�

4
sin

�

4
� sin j �

4

�
=

p
2

2 (8k + 1)

�
sin j

�

4
+ cos j

�

4

�
� 1

8k + 1
sin j

�

4
.
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Then,
p
2

�

8kX
j=1

1
(j+1)�
4(8k+1) +

�
4

�����
Z (j+1)�

4(8k+1)

j�
4(8k+1)

(sin (8k + 1) t+ cos (8k + 1) t) dt

�����
=

p
2

�

1

(8k + 1)

8kX
j=1

1
(j+1)�
4(8k+1) +

�
4

�����
p
2

2

�
� cos j �

4
+ sin j

�

4

�
+ cos j

�

4

+

p
2

2

�
sin j

�

4
+ cos j

�

4

�
� sin j �

4

�����
=

p
2

�

1

(8k + 1)

8kX
j=1

1
(j+1)�
4(8k+1) +

�
4

���p2 sin j �
4
+ cos j

�

4
� sin j �

4

���
=

p
2

�

8kX
j=1

1

(j + 1) �4 +
�
4 (8k + 1)

����p2� 1� sin j �
4
+ cos j

�

4

��� .
Let us observe that�p

2� 1
�
sin (j + 8l)

�

4
+ cos (j + 8l)

�

4
=
�p
2� 1

�
sin j

�

4
+ cos j

�

4

for any l = 0; 1; 2; :::.
On the other hand, here are the values of f (j) =

�p
2� 1

�
sin j �4 + cos j

�
4 , for

j = 1; 2; :::; 8:

j f (j) j f (j)

1 1 5 �1
2
p
2� 1 6 1�

p
2

3 1�
p
2 7

p
2� 1

4 �1 8 1

.

Therefore, the values of f (j) for j = 9; 10; 11; :::; 16, are the values for j = 1; 2; 3; :::; 8,
respectively, and so on. As a consequence of this observation,����p2� 1� sin j �

4
+ cos j

�

4

��� � p2� 1
for every j.
Then,
p
2

�

8kX
j=1

1

(j + 1) �4 +
�
4 (8k + 1)

����p2� 1� sin j �
4
+ cos j

�

4

���
�
p
2

�

�p
2� 1

� 8kX
j=1

1

(j + 1) �4 +
�
4 (8k + 1)

�
p
2

�

�p
2� 1

� 8k

2 (8k + 1) �4
=
2

�2

�
2�

p
2
� 8k

8k + 1
!
k!1

2

�2

�
2�

p
2
�
.

Hence, Z
��jtj��

jD4k (t)j dt
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does not converge to zero as k !1 and, as a consequence,Z
��jtj��

jDn (t)j dt

does not converge to zero as n!1.
This completes the proof of the theorem. �

In page 86 of [8], Zygmund introduces the following uniform pointwise version
of condition 3) in De�nition 1.
For each 0 < � < �, there is

lim
n!1

sup
��jtj��

jKn (t)j = 0. (14)

Zygmund observes that the Dirichlet kernel does not satisfy (14) and the claim is
repeated in page 370 of [3]. To be sure, Dn cannot satisfy (14), otherwise it would
satisfy condition 3). However, since we do not know of any source where the claim
is proved directly, we conclude by giving our own proof.

Proposition 9. For each 0 < � � �
2 , the expression

sup
��jtj��

jDn (t)j

does not go to zero as n!1.

Proof. Let us �x 0 < � � �
2 . Then,

sup
��jtj��

jDn (t)j � sup
�
2�jtj��

jDn (t)j .

Therefore, it is su¢ cient to assume that � = �
2 .

sup
�
2�jtj��

jDn (t)j =
1

2�
sup

�
2�t��

��sin �n+ 1
2

�
t
��

sin t
2

=
s= t

2

1

2�
sup

�
4�s�

�
2

jsin (2n+ 1) sj
sin s

� 1

2�
sup

�
4�s�

�
2

jsin (2n+ 1) sj .

When �
4 � s �

�
2 , we have

�

4
(2n+ 1) � (2n+ 1) s � �

2
(2n+ 1)

or
�

4
(2n+ 1) � (2n+ 1) s � 2�

4
(2n+ 1) .

That is to say, the argument of the function jsin (2n+ 1) sj takes values in the
interval h�

4
+ 2n

�

4
; 2
��
4
+ 2n

�

4

�i
.

If n = 2k for k = 0; 1; 2; :::,
�

4
+ 2n

�

4
=
�

4
+ 4k

�

4
=
�

4
+ k�,

while if n = 2k + 1 for k = 0; 1; 2; :::,

�

4
+ 2n

�

4
=
�

4
+ 2 (2k + 1)

�

4
=
3�

4
+ k�.
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Therefore, by periodicity and symmetry,

1

2�
sup

�
4�s�

�
2

jsin (2n+ 1) sj � 1

2�
sin

�

4
=

p
2

4�
.

This completes the proof of the proposition. �
Remark 6. With minor adjustments, (13) can replace condition 3) in the proof of
Theorem 4. We refer to ([5], p. 10, Lemma) for the details.
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